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Résumé et introduction

Résumé

Ce texte est consacré a I’étude de produits tensoriels cristallins (ou semi-stables, ou de
de Rham, ou de Hodge-Tate) de représentations p-adiques de Gx = Gal(Qp /K),ou K/Q,
est une extension finie, ainsi que de produits tensoriels triangulins de représentations p-
adiques de Gi. On étudie également le cas ou 'image d’une représentation p-adique par
un foncteur de Schur (tel, par exemple, Sym™ ou A") est cristalline (ou semi-stable, ou
de de Rham, ou de Hodge-Tate). Les résultats présentés dans cette theése sont énoncés

pour les B-paires; ils s’appliquent donc en particulier aux représentations p-adiques de

Gk.

Mots-clefs : Représentation p-adique du groupe de Galois absolu d’un corps p-adique,
B-paire, théorie de Hodge p-adique, représentation cristalline, semi-stable, de de Rham,

de Hodge-Tate, représentation trianguline, produit tensoriel, foncteur de Schur.

Introduction

Cette introduction résume les questions que nous avons abordées, ainsi que leurs
réponses et quelques éléments de démonstration. Dans la partie I de cette these, nous
rappelons quelques éléments fondamentaux de la théorie de Hodge p-adique et des fonc-
teurs de Schur. La partie II est consacrée a ’étude de produits tensoriels et objets de
Schur cristallins (ou semi-stables, ou de de Rham, ou de Hodge-Tate), tandis que la partie

III est consacrée a I’étude de produits tensoriels triangulins de représentations p-adiques
de GK.

Produits tensoriels et objets de Schur admissibles en théorie de Hodge
p-adique. Soient Qp une cloture algébrique de Q,,, K/Q, et E/Q, des extensions finies
contenues dans Qp, et Gg = Gal(ap/ K) le groupe de Galois absolu de K. On note
Repp(Gg) la catégorie des représentations E-linéaires continues de G. En utilisant les
anneaux B.s, By, et Bar (voir [Fon94b]), Fontaine a défini la notion de représentation
E-linéaire de G cristalline, semi-stable et de de Rham, et il a montré que les sous-
catégories correspondantes de Repy(G ) sont stables par sous-quotient, somme directe
et produit tensoriel. L’un des buts de la partie II de cette these est de répondre a la

5



6 RESUME ET INTRODUCTION

question suivante : si V et V'’ sont des représentations E-linéaires non nulles de Gg
dont le produit tensoriel V @ V' est cristallin (ou semi-stable, ou de de Rham, ou de
Hodge-Tate), que peut-on dire de V' et V' 7 On répond aussi a la question suivante :
si # : Repp(Gg) — Repgr(Gk) est un foncteur de Schur (comme, par exemple, A" ou
Sym") et si .# (V) est cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate),
alors que peut-on dire de V' (sous certaines hypotheses sur dimg V') 7

Les résultats obtenus dans cette these portent sur les B-paires, ce qui permet d’en
déduire des résultats pour les représentations galoisiennes p-adiques. On explique main-

p=1
cris °

tenant plus en détail les énoncés obtenus. On note B, I'anneau B Berger a défini
dans [Ber0§| la catégorie des B-paires. Une B%E—paire est une paire W = (We, Wii),
ou W, est une B, ®q, E-représentation de Gg (c’est-a~dire un B, ®q, F-module li-
bre de rang fini muni d’une action Be-semi-linéaire et E-linéaire de G) et Wi est un
B ®q, E-réscau de Wyr = (Bar ®q, E) R (B, 5q,2) We stable sous Taction de G.
Si W = (W, W) est une B@E—paire, alors le rang de W est défini par rang(W) :=
rang(p,gq, F) We. Par exemple, si V est une représentation FE-linéaire de Gk, alors
W(V) =(Be®q, E)2rV, (Bjz®q, E)®pV) est une Bﬁ(E—paire de rang d = dimg V, et
la catégorie Repy (G ) s’identifie par le foncteur W (—) a une sous-catégorie tensorielle de
la catégorie des BE’(E -paires. Les notions d’objets cristallins, semi-stables, de de Rham, et
de Hodge-Tate s’étendent aux B“%{E -paires de telle fagon qu’une représentation E-linéaire
V' de G est cristalline (ou semi-stable, ou de de Rham, ou de Hodge-Tate) si et seulement
sila B%E—paire W (V) Dest.

La théorie de Sen des représentations C,-semi-linéaires de G (voir [Sen80]) et la
théorie de Fontaine des représentations Bggr-semi-linéaires de Gk (voir [Fon04]) nous

permettent de montrer le résultat suivant (c’est le théoreme [5.1.0.15| de la partie II).

Théoréme A. Soient W et W' des B@E—paz’ms non nulles. Si la B%E—paz're W W' est
de Hodge-Tate, alors il existe une extension finie F/E et un caractére p: Gx — F* tels
que les B“%{F—paires W(u™t) et W (u) soient de Hodge-Tate. De plus, si W @ W' est de
de Rham, alors W (u™t) et W'(u) le sont.

Il est connu que toute B%E—paire de de Rham est potentiellement semi-stable, grace
aux résultats de [And02], [Ber02], [Ked00] et [Meb02]. Les propriétés des (¢, N, Gal(L/K))-
modules, ou L/K est une extension finie galoisienne, nous permettent de comprendre la

situation ou W et W’ sont toutes les deux potentiellement semi-stables : ¢’est le théoreme
6.2.0.21| de la partie II, dont 1’énoncé est le suivant.

Théoréme B. Soient W et W' des B@E-paims non nulles potentiellement semi-stables.

Si la Bﬁ’(E-paz’T@ W @ W' est semi-stable, alors il existe une extension finie F/E et un
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caractére p : Gg — F* tels que les B@F—paires W(p™t) et W'(n) sont semi-stables. De
plus, si W @ W' est cristalline, alors W (u=') et W'(u) le sont.

En particulier, les deux théoremes ci-dessus s’appliquent lorsque W et W' sont des
B%E—paires de la forme W = W (V) et W/ = W (V') avec V, V' € Repp(Gk) pour donner
le résultat suivant (voir les corollaires [5.1.0.16| et |6.2.0.22| de la partie II).

Corollaire. SoientV et V' des représentations E-linéaires non nulles de Gg. SiV@gV’
est cristalline (resp. semi-stable, ou de de Rham, ou de Hodge-Tate), alors il existe une
extension finie F/E et un caractére p @ G — F* tels que V(u™) et V'(u) soient

cristallines (resp. semi-stables, ou de de Rham, ou de Hodge-Tate).

Les méthodes utilisées pour démontrer les théoremes A et B peuvent étre utilisées
pour comprendre le cas ou I'image par un foncteur de Schur d’'une B-paire est cristalline
(ou semi-stable, ou de de Rham, ou de Hodge-Tate), ce que 'on explique dans la suite.

Sin € Nyget sin = u + ...+ u, est une partition de n en entiers telle que
uy > ... > u, > 1, alors le r-uplet v = (uy,...,u,) définit un foncteur de Schur, noté
Schur(—), qui envoie une B%E—paire W sur une B%E—paire Schur*(W). Sir =1 ou si
Uu; = U = ... = u,, alors on pose r(u) = r + 1; sinon, on pose r(u) = r. Par exemple, si
u = (n), alors r(u) = 2 et le foncteur de Schur associé a u est Sym"(—); siu = (1,...,1),
alors r(u) =n + 1 et le foncteur de Schur associé a u est A™(—).

Les deux théoremes suivants correspondent respectivement aux théoremes et

6.3.0.24] de la partie II.

Théoreme C. Soit W une B@E—paire telle que rang(W) > r(u). Si la B&E—paim
Schur"(W) est de Hodge-Tate, alors il existe une extension finie F/E et un caractére
w: G — F* tels que la B%F—paz're W (u™') soit de Hodge-Tate. Si, de plus, Schur® (W)

est de de Rham, alors W(u™') lest.

Théoreme D. Soit W une B%E-paire potentiellement semi-stable avec rang(W) > r(u).
Si la B%E—paire Schur" (W) est semi-stable, alors il existe une extension finie F/E et
un caractére j : Gg — F* tels que la B%F—paire W(u™t) soit semi-stable. Si, de plus,

Schur"(W) est cristalline, alors W (™) lest.

Les théoremes C et D impliquent a leur tour des résultats analogues pour les représentations

p-adiques de G (voir les corollaires [5.2.0.19| et [6.3.0.25| de la partie II). On montre apres
le corollaire [5.2.0.19] que la borne sur le rang donnée dans les théoremes C et D est

optimale.
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Corollaire. Soit V' une représentation E-linéaire de Gk avec dimg(V) > r(u). Si
Schur" (V') est cristalline (resp. semi-stable, ou de de Rham, ou de Hodge-Tate), alors
il existe une extension finie F/E et un caractére p : Gg — F* tels que V(u™') soit

cristalline (resp. semi-stable, ou de de Rham, ou de Hodge-Tate).

Dans son étude de la compatibilité de Langlands locale pour les formes modulaires
de Hilbert, Skinner a montré (voir §2.4.1 de [Ski09]) que si V' est une représentation p-
adique telle que Sym?(V) soit cristalline, alors les méthodes de Wintenberger présentées
dans [Win95| et [Win97| peuvent étre appliquées pour montrer I'existence d'un car-
actere quadratique p tel que V(i) soit cristalline (voir §2.4.1 de [Ski09]). Récemment,
Chenevier et Harris ont utilisé des arguments analogues pour le foncteur A?(—) dans
la démonstration de la partie (b) du théoreme 3.2.3 de [CheHar13|. On s’attend a
ce que les méthodes de Wintenberger puissent étre utilisées de la méme maniere pour

redémontrer les théoremes A, B, C, et D.

Produits tensoriels triangulins de représentations galoisiennes p-adiques.
Si W est une B%E—paire, on dit que W est triangulable si elle est extension successive
de B@E—paires de rang 1, et 'on dit que W est potentiellement triangulable s’il existe
une extension finie L/K telle que la BSE—paire W, soit triangulable. Si V' est une
représentation E-linéaire de Gi, on dit que V' est trianguline deployée si la B@E—paire
W (V') est triangulable, et I'on dit que V' est trianguline s'il existe une extension finie
E'/E telle que la représentation E’-linéaire E' ®p V soit trianguline deployée. On dit
que V € Repy(Gk) est potentiellement trianguline s'il existe une extension finie L/K
telle que Vg, est trianguline. Par exemple, si W est une BS;E—paire semi-stable, alors
il existe une extension finie F//E telle que la B@F -paire F'®p W est triangulable (c’est
la proposition . Ces notions ont été introduites par Colmez dans le cadre de son
travail sur la correspondance de Langlands p-adique pour GL2(Q,) (voir [Col08c]).

Dans la partie III de cette these, on s’intéresse a la question suivante : si V et V' sont
des représentations E-linéaires de G dont le produit tensoriel V ®g V' est trianguline,
alors que peut-on dire de V et V' 7

Pour toute extension finie £/Q,, 'anneau B, p = B, ®q, £ est un anneau principal
(voir le paragraphe [2.5.1 pour des références) et 'on pose F = Frac(Be g). Si W est une
B%E—paire, alors W est triangulable si et seulement si la représentation Fg-semi-linéaire
Fp ®s, , W est extension successive d’objets de dimension 1 (c’est la corollaire .
Ce résultat, combiné avec des résultats d’algebre semi-linéaire des Fg-représentations de

Gk et le théoreme A énoncé plus haut nous permettent de prouver le résultat principal

de la partie III (c’est le théoreme [7.3.1.2)).
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Théoreme E. Si W et W' sont deux B@E—paires telles que W @ W' soit triangulable,
alors il existe des extensions finies F/E et L/ K telles que les BﬁF—paz’res (F @ W)|a,
et (F g W')|q, soient triangulables.

En particulier, ce théoreme s’applique lorsque W et W’ sont des B%E—paires de la
forme W =W (V) et W =W (V') avec V, V' € Repp(Gk).

Corollaire. Si V et V' sont des représentations E-linéaires de G telles que V @p V'

soit trianguline, alors V et V' sont potentiellement triangulines.

Dans le paragraphe de la partie III, on donne I'exemple d’une représentation F-
linéaire V' de dimension 2 de Gq, qui est potientiellement trianguline sans étre trianguline,

tandis que V ®p V' est trianguline.
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Synopsis and introduction

Synopsis

This text is devoted to the study of crystalline (resp. semi-stable, de Rham, and
Hodge-Tate) tensor products of p-adic representations of G = Gal(Qp /K), where K/Q,
is a finite extension, as well as trianguline tensor products of p-adic representations of
Gk. We also study the situation where the image of a p-adic representation of Gk by
a Schur functor (for example, Sym"(-) or A(-)) is crystalline, semi-stable, de Rham, or
Hodge-Tate. The results presented in this thesis are statements about B-pairs; they

apply in particular to p-adic representations.

Keywords: p-adic Galois representations of absolute Galois groups of p-adic fields, B-
pairs, crystalline representations, trianguline representations, tensor products, Schur

functors, p-adic Hodge theory.

Introduction

This synopsis states the questions studied, the statements of our theorems, and ele-
ments of the methods used to prove them. Part I of this thesis introduces various fun-
damental results from p-adic Hodge theory and properties of Schur functors. Part II is
devoted to the study of crystalline (resp. semi-stable, de Rham, and Hodge-Tate) tensor
products and Schur objects in p-adic Hodge theory, and in part III we study trianguline

tensor products of p-adic Galois representations of G .

Admissible tensor products and Schur objects in p-adic Hodge theory. Let
Qp be an algebraic closure of Q,, let K and £ be finite extensions of Q, contained in Qp,
and let G = Gal(Q,/K) be the absolute Galois group of K. We let Repy(Gx) denote
the category of continuous linear E-representations of Gg. Using the rings B, B,
and Bggr (see, for example, [Fon94b|), Fontaine has defined the notions of crystalline,
semi-stable and de Rham continuous FE-linear representations of G and he has proved
that the corresponding categories are stable under sub-quotient, direct sum and tensor
product. One of the goals of part II is to answer the following question: if V and V' are
nonzero p-adic representations of G whose tensor product is crystalline (or semi-stable
or de Rham or Hodge-Tate), then what can be said about V' and V'?

13



14 SYNOPSIS AND INTRODUCTION

We also answer the following question: if .# : Repgp(Gk) — Repyp(Gk) is a Schur
functor (for example, A™ or Sym") and if .# (V) is crystalline (or semi-stable or de Rham
or Hodge-Tate), then what can be said about V' (under suitable constraints on dimg(V'))?

The results obtained in this thesis are stated for B-pairs, which allows us to deduce
analogous results for p-adic Galois representations as corollaries. We now explain the
results we have obtained in more detail. Let B, denote the ring B“C';izsl. Berger has defined
the tensor category of B@E -pairs, in which the objects are pairs W = (W, W) such that
W, is a B, ®q, E-representation of Gk (i.e., W, is a free B, ®q, F-module of finite rank
endowed with a Be-semi-linear, F-linear action of G ) and WjR is a G i-stable BCTR@QP E-
lattice of War = (Bar ®q, F) DB 00, E) We. HW = (W, W) is a B%E-pair, then the
rank of W is defined to be rank(Be®Qp nWe = rank(BjR®Qp ) W(;“R. For example, if V' is
an E-linear representation of G, then W(V) = ((B.®q, E) ®p V., (Bjzr ®q, E) ®r V) is
a B@E—pair of rank d = dimg V', and the category Repy (G ) identifies with a full tensor
subcategory of the category of BS(E -pairs by the functor W (-). The notions of crystalline,
semi-stable, de Rham, and Hodge-Tate objects extend to objects in the category of BF?{E -
pairs in such a way that an E-linear representation V' of G is crystalline (or semi-stable
or de Rham or Hodge-Tate) if and only if the Bﬁ(E—pair W(V) is.

Using Sen’s theory of C,-representations (as in [Sen80]) and Fontaine’s theory of

Bgr-representations (as in [Fon04]), one can show the following result (which appears

as theorem [5.1.0.15| of part II).

Theorem A. Let W and W' be nonzero B@E-paim. If the Bl‘?{E—paz’r W @ W' is Hodge-
Tate, then there is a finite extension F/E and a character i : Gxg — F* such that the
B%F—pairs W(p™") and W'(u) are Hodge-Tate. If, moreover, W @ W' is de Rham, then
so are W (™) and W (p).

It is known that every de Rham B%E—pair is potentially semi-stable, due to the re-
sults of [And02], [Ber02], [Ked00], and [Meb02]. The properties of (¢, N, Gal(L/K))-
modules (where L/K is a finite Galois extension) allow us to understand the situation

when W and W' are both potentially semi-stable. The following is theorem [6.1.0.20] in
part II.

Theorem B. Let W and W' be nonzero potentially semi-stable B%E—pairs. If the B@E—
pair W @ W' is semi-stable, then there is a finite extension F/E and a character u :
Gk — F* such that the B@F—pairs W) and W'(p) are semi-stable. If, moreover,
W @ W' is crystalline, then so are W {(u™) and W'(p).

In particular, the above two theorems may be used to deduce analogous results for

p-adic representations (see corollaries [5.1.0.16[ and |6.2.0.22| in part II).
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Corollary. Let V and V' be non-zero linear E-representations of Gx. If V ®g V' is
crystalline (resp. semi-stable, de Rham, or Hodge-Tate), then there is a finite extension
F/E and a character u : Gx — F* such that V(u™') and V(1) are crystalline (resp.
semi-stable, de Rham, or Hodge-Tate).

The methods used to prove theorems A and B above may be used to understand the
situation when the image of a B-pair by a Schur functor is crystalline (or semi-stable or
de Rham or Hodge-Tate), which we now explain.

If n € Nyg and if n = u; + ... + u, is an integer partition with u; > ... > u, > 1,
then the r-tuple u = (uq, ..., u,) gives rise to a Schur functor, denoted Schur®(—), which
sends B%E—pairs to B@E—pairs. Ifr=1orifu; =uy=...=u,, then we put r(u) =r+1
and we put r(u) = r when this is not the case. For example, if n > 1 and if u = (n),
then r(u) = 2 and the associated Schur functor is Sym"(—) and if v = (1,...,1), then
r(u) = n+ 1 and the associated Schur functor is A"(—).

The following theorems correspond to theorems [5.2.0.18 and |6.3.0.24] respectively, in

part II.

Theorem C. Let W be a B%E-pair such that rank(W) > r(u). If the BS’(E -pair Schur (W)
is Hodge-Tate, then there is a finite extension F/E and a character p : Gg — F* such
that the B%F—pair W (u™") is Hodge-Tate. If, moreover, Schur"(W) is de Rham, then
W (u™') is de Rham.

Theorem D. Let W be a potentially semi-stable Bﬁ’(E—pair such that rank(W) > r(u).
If the Bﬁ’{E—pair Schur” (W) is semi-stable, then there is a finite extension F/E and a
character p : G — F* such that the Bﬁ(p—pair Wi(u™') is semi-stable. If, moreover,
Schur®(W) is crystalline, then so is W(u™").

Theorems C and D above imply the analogous results for p-adic Galois representations
(see corollaries [5.2.0.19] and [6.3.0.25| in part II). In the discussion following corollary
5.2.0.19) in part II, we show that the bounds on rank(W) in theorems C and D are

optimal.

Corollary. Let V € Repg(Gg) be a representation such that dimg(V') > r(u). If the
linear E-representation Schur®(V') is crystalline (resp. semi-stable, de Rham, or Hodge-
Tate), then there is a finite extension F/E and a character u : Gx — F* such that
V(u=t) is crystalline (resp. semi-stable, de Rham, or Hodge-Tate).

Special cases of theorems C and D have been used in the study of Galois representa-
tions attached to certain automorphic forms. For example, in his study of local Langlands

compatibility for Hilbert modular forms, Skinner showed and used the fact that if V' is
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a p-adic representation and if Sym?(V) is crystalline, then Wintenberger’s methods of
[Win95| and [Win97] may be applied to show that there exists a quadratic character p
such that V' (u) is crystalline (see §2.4.1 of [Ski09]). Recently, similar arguments for the
functor A*(—) were applied by Chenevier and Harris to prove part (b) of theorem 3.2.3
of [CheHar13]. It is expected that Wintenberger’s methods can be used in the same

fashion to give alternate proofs of theorems A, B, C, and D.

Trianguline tensor products of p-adic representations of G. If W is a B|K
pair, then we say that W is triangulable if it is a successive extension of B| 7 -pairs of
rank 1, and we say that W is potentially triangulable if there is a finite extension L/K
such that the B®E pair W|g, is triangulable. If V' is a linear E-representation of G,
then V is said to be split trianguline if the B|K -pair W(V) is triangulable, and V is said
to be trianguline if there is a finite extension F'/FE such that F ®@g V is split trianguline.
One says that V' € Repg(G) is potentially trianguline if there is a finite extension L/K
such that Vg, is trianguline. For example, if W is a semi-stable B| % -bair, then there is
a finite extension F'/FE such that the B®F -pair F' ®@g W is triangulable (see proposition
[7.1.4.1)). These notions were introduced by Colmez in [Col08&c| in the context of his work
on the p-adic Langlands correspondence for GL2(Q,).

In part III of this thesis, we study the following question: if V' and V' are linear
E-representations of Gk such that V ®g V' is trianguline, then what can be said of V/
and V'? We now explain our results in this direction.

The category of E-(¢,'kx)-modules is equivalent to the category of B®E pairs (see
theorem A of [Ber0Q8]); in particular, the notion of a trianguline representatlon may be
translated in terms of B-pairs.

If £/Q, is a finite extension, then B, p = B, ®q, £ is a principal ideal domain (see

paragraph [2.5.1] for references) and we define Fp = Frac(B.g). If W is a B@E -pair,

then W is triangulable if and only if the semi-linear Fg-representation Fg ®g, , We is a
successive extension of 1-dimensional semi-linear Fp-representations of Gk (see corollary
. Using this and several other results on semi-linear algebra of Fg-representations
of Gk, and our theorem A, we may show the following, which is theorem of part
I1I.

Theorem E. If W and W' are B|K -pairs such that W W' is triangulable, then there are
finite extensions F/E and L/ K such that the BﬁF—pairs (FRpW)lg, and (FRgW')|q,

are triangulable.

In particular, the theorem above applies to B‘ 7 -pairs of the form W = W (V') and
W' =W (V') for representations V, V' € Repp(G).
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COROLLARY. If V and V' are linear E-representations of Gk such that V ®g V' is

trianguline, then V' and V' are potentially trianguline.

In section [7.3.2) we give an example of a potentially trianguline 2-dimensional E-linear

representation V' of Gq, which is not trianguline and such that V ®g V' is trianguline.
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General background






CHAPTER 1

Galois representations

1.1. Notation

If p > 0 is a prime integer, then let Q, denote the completion of Q for the topology
defined by the p-adic absolue value | - |, (normalized so that |p|, = 1/p), and let Q, denote
an algebraic closure of Q,. The field Qp is endowed with its p-adic topology, which is
defined by the absolute value arising from putting |- | = {/]|Nmpg/q,(-)], for every finite
extension F/Q, of degree n = [E : Q,]. The ficld Qp is not complete for the p-adic
topology, and its completion is denoted by C,; the field C,, is algebraically closed.

If £/Q, is a sub-extension of C,/Q,, then we let O denote the valuation ring of E.
If £/Q, is a sub-extension of Qp/ Q,, then Op is the ring of integers of £ over Z, and
it is a discrete valuation ring; we denote its maximal idea by mg, and its residue field
Og/mg by kgp. When we choose a uniformizer of E, we will denote it by 7z or simply .

In this document, if K is a field and if K /K is an algebraic closure, then K /K
denotes the separable closure of K in K /K and Gy denotes the absolute Galois group
Gal(K®*?/K) endowed with its profinite topology, which is compact, Hausdorff, and to-
tally disconnected. If F//K is a separable sub-extension of K /K, then F denotes the
Galois closure of F in K /K. The group Gq, = Gal(Qp/ Q,) acts on Qp by Q,-linear
isometries, so that the action of Gq, extends to an action on C,. Continuity estimates on
the action of Gq, on C, due to Ax, Sen, and Tate imply that if K/Q, is a sub-extension
of Qp /Qp, then the inclusion K C CEK is an equality.

Let F/Q, be a finite extension. If k/kp is a finite extension, then there is a unique
non-ramified sub-extension F'(k)/F of Q,/F with residual extension k/kp, and there is a
unique continuous F-automorphism op : F(k) — F(k) lifting  — 2/*7 on k/kp. If, for
example, L/F is a finite extension and k = ky, then F(k;) C L, and L/F(ky) is totally
ramified. We let F™/F denote the maximal non-ramified sub-extension of Qp /F, and
we let (abusing notation) op : For — o denote the unique continuous F-automorphism
extending the maps op on finite sub-extensions F(k)/F of F™/F. If F = Q, (so that
kr =F,) and if K/Q, is a finite extension with residual extension k/F,, then we write

K instead of Q,(k) and we write o instead of oq,.

23
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1.2. Galois representations: definitions and examples

Let E/Q, be a finite extension, and let K be a field. We let Rep,(Gk) denote the
category of continuous linear E-representations of G, where morphisms of objects are
G i-equivariant E-linear transformations. When F is unspecified, we simply refer to such
objects as p-adic representations of Gg. FEvery linear E-representation of G is also a
linear Q,-representation of G'.

If n : Gk — E* is any continuous linear character and if W = E -e is a 1-
dimensional E-vector space with basis (e), then defining g.e = n(g) - e makes W into
a 1-dimensional linear E-representation of Gk, which we denote by E(n). More gener-
ally, if V' € Repp(Gk) and if n : Gx — E* is a continuous linear character, then we
define V(n) =V ®@g E(n).

Let F € {Q,Q,}. If F/F is an algebraic closure, and if ((pn),>1 is a sequence
of primitive p"™-th roots of 1 in F such that §§n+1 = (pn, then for each n > 1 and
g € Gp, g((pn) is a primitive p"-th root of 1, and we have ¢g((m) = C;‘JL(Q) for some
xn(g) € {1,...,p" — 1} prime to p, defining a character x,, : Gp — (Z/p"Z)*. This
gives rise in the limit to the cyclotomic character x : Gp — Z,, which is surjective and
continuous. If K/F is finite, if V € Repy(Gk), and if k € Z, then we will write V (k)
instead of V(x*|a,)-

Let ¢ > 0 be a prime number, and let Q and Q, be algebraic closures of Q and
Qy, respectively. Giving a maximal ideal [ C Og lying over £ is equivalent to giving an
embedding 7 : Q — Q, lifting Q C Q. Such an embedding gives an injective group
morphism ¢, : Gal(Q,/Q,) — Gal(Q/Q) defined by sending g € Gal(Q,/Qy) to its
restriction g]QT[ via 71. The inclusion Q C C corresponds to the infinite place, and allows
one to view Gal(C/R) as a sub-group of Gq. The group Gq acts transitively on the set of
primes [|¢ of Og lying over /, and the image of the map ¢, is equal to the decomposition
group D(I|) = {g € Gqlg(l) = [} = Staby; in particular, D(I|() ~ Gq,. For each ¢,
we have a surjective group morphism D(I|¢) — Gal(F;/F;). Its kernel is denoted by
I(1)¢), and is called the inertia group of l|. A Frobenius element at [|¢ is any elemenet
Froby, € D(I|¢) such that Froby,(z) = 2‘(modl) for all 2 € Og. If [,['|¢ are maximal
ideals of Og lying over ¢, then decomposition groups Dy, and Dy, (resp. inertia groups
Iy, and Iy) are conjugate in Gq; we let Dy (resp. I;) denote any such decomposition
group (resp. inertia group) at ¢ when speaking about properties that only depend on /.
One has analogous notions and notation over a general number field K/Q.

In particular, if V' € Repy(Gq), and if £ is a prime, then we may consider the restricted
representation p|p, : Dy — GLq, (V) (which only depends on ¢ up to isomorphism); we

sometimes write, somewhat abusively, plag, = plp,. We say that p is unramified at € if
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I, C ker p; in this case, p|p, is determined by the image of a Frobenius element of a place
over {. For example, if x : Gq — Z, is the cyclotomic character for F' = Q and if £ # p,
then x|p, is unramified and x|p,(Frob,) = ¢. After identifying D, with Gq,, xlap, is

equal to the cyclotomic character for F' = Q,,.

1.2.1. Lubin-Tate characters. Let K/Q, be a finite extension. In this paragraph,
we summarize some constructions used in [LubTat65] to describe Ga>.
A commutative 1-parameter formal group over Of is a formal series F' € Og[[X, Y]]

satisfying the following conditions:

(1) F(X,Y) =X + Y (moddeg?2),
(2) F(XvF(KZ)) = F(F(X>Y)>Z>7
(3) F(X,Y) = F(Y, X).

If FF € Okg[[X, Y]] is a formal group as above, then there is a unique A € Ok [[X]] such that
AMX) = =X (moddeg2) and F(X,A\(X)) = F(N(X),X) =0. If F;G € Ok[[X,Y]] are
formal groups as above, then a morphism f : F — G is a formal series f € Okl[[X]]
such that f(F(X,Y)) = G(f(X), f(Y)); the set Endp, (F) of endomorphisms of F
is a ring with respect to addition and composition. A formal Ok-module is a for-
mal group F' together with a ring homomorphism [-] : Ox — Ende, (F) such that
[a](X) = aX (mod deg 2).

A formal group (resp. formal Og-module) F' may be used to endow a group (resp.
Og-module) structure upon domains of convergence for F' (resp. F and [a](X) for all
a € Ok). For example, if mg, is the maximal ideal of the valuation ring OQP of Qp, then
for all power series F' € Og|[[ X7, ..., X,]] with constant term 0 and all z4,...,z, € mg,
F(xy,...,x,) converges to an element in mg . In particular, if F' € Ok|[[X,Y]] is a formal
group (resp. formal Ox-module) then x+ry := F(z,y) defines a map mg XMg — Mg
(resp. and a.x = [a](z) defines a map O x mg, — mép) which makes mg into a
commutative group with additive inverses given by A (resp. Og-module). If F is a
formal Ok-module and if a € Ok, then let Fla] = {z € meHa] (x) = 0}.

Let ¢ = |kk|, and let m € Ok be a uniformizer. If f € Og[[X]] satisfies

(i) f(X)=nX(moddeg2), and
(i) £(X) = Xo(mod ),

then there is a unique commutative 1-parameter formal group Fy € Ok[[X, Y]] such that
f € End(Ff). Moreover, Fy is a formal Og-module with structural map [-]; : Ox —
End(Fy) satisfying [7];(X) = f(X). If g € Og[[X]] is another power series satisfying
conditions (i) and (ii), then Fy and F}, are isomorphic as formal Ox-modules; in particular,

the isomorphism class of Fy depends only on 7. In particular, while the set of 7"-torsion
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points in mg, of Fy depends on f, the extension K, . = K(F¢[r"]) of K depends only

on 7w and n.

ExaMpPLE 1.2.1.1. Let K = Q,, so that Ox = Z,, and let 7 = p. If f(X) =
(X+1)p—1=>"0_ (®)X*, then F; = X +Y + XY, and [-|; : Z, — End(F}) is given
byar (1+X)*—1:=>7", (1) X*. The set Fy[p"] consists of ( —1 with ¢ a p"-th root
of 1.

In what follows, let m € Ok be a uniformizer and let LT € Og[[X]] denote the formal
Ok-module attached to f(X) = 71X + X% Forn > 1, let K, = UnZl K, », where
K, = K(LT[7"]). By Galois theory, the following theorem of Lubin and Tate gives an

explicit description of G2

THEOREM 1.2.1.2. For each n > 1, the extension K, /K is totally ramified of degree
q"Y(q—1), where q = |kk|, and we have an isomorphism Gal(K, ./K) = (O /7" Ok)*.
The sub-extensions K, /K and K™ /K of QP/K are linearly disjoint, and K, K™ = K2,

the mazimal abelian sub-extension onp/K.

For n > 1, LT[n"] is a free O /7" Ox-module of rank 1 which is stable by the natural
action of Gk on mg - For n > 1, we therefore have a system of surjective characters
Xnx @ Gk — (O /7" Ok)* which give rise in the limit to a character x, : Gx — O
with ker(y,) = Gk,. The character x, is called the Lubin-Tate character attached to 7
and satisfies g(z) = [x(g)](z) for all z € {J,,5, LT[7"] and g € Gk.

EXAMPLE 1.2.1.3. If K = Q, and m = p as in|1.2.1.1, then the Lubin-Tate character
Xp : Gq, — Z, is the cyclotomic character.

1.2.2. Galois representations coming from geometry. Let £/Q be an elliptic
curve. The set £(Q) of Q-rational points of £/Q is endowed with the structure of an
abelian group. If £ > 0 is a prime number, then we let £, denote the reduction modulo £
of £, which is a curve over Fy; £/Q is said to be of good reduction at { if £, is smooth (i.e.,
if it is an elliptic curve over Fy), and £/Q is said to be of bad reduction at ¢ otherwise. If
£/Q is of bad reduction at ¢, then &, has a singularity which is either a node (in which
case, we say that £/Q is of multiplicative reduction at ¢) or a cusp (in which case, we say
that £/Q is of additive reduction at ¢). Attached to £/Q is an integer N = N¢ called
the conductor of £/Q whose prime divisors are the finitely many primes ¢ at which £ has
bad reduction, and the ¢-adic valuation of N is defined in terms of the reduction type of
Eat L. If £/Q is of good or multiplicative reduction for every prime ¢ (in this case, £/Q
is said to be of semistable reduction), then N is equal to the product of the primes of bad

reduction.



1.2. GALOIS REPRESENTATIONS: DEFINITIONS AND EXAMPLES 27

If p > 0 is a prime number, then for each n > 1, the set E[p"] C £(Q) of p"-torsion
points is a free Z/p"Z-module of rank 2 and is stable by the natural action of Ggq.
Passing to the limit with respect to the multiplication by p maps z + p.x : E[p"™] —
E[p"], we may consider V,(£) = Q, ®z, @18(@) [p"], which is a 2-dimensional Q,-vector
space endowed with a continuous linear action of Gg. We denote this representation by

(V(£), pep); the basic properties of these representations are developed, for example, in
[Ser68] and [Sil].

ProposITION 1.2.2.1. If £/Q is an elliptic curve of conductor N, then det ps, = x
and for all prime numbers £ > 0 such that {1 pN, we have

(1) peplp, : Di — GLa(Qy) is non-ramified, and
(2) the characteristic polynomial of ps ,(Froby) is equal to X% —({+1—|Ey(Fy)|) X +L.

Note in particular that if ¢ € Gq is complex conjugation, then det pg ,(c) = x(c) = —1
since ¢(¢) = ¢! for every p"-th root of unity (; the representation pg, is therefore said
to be odd. Results of Faltings imply that the Galois representation pg, determines £/Q
up to isogeny.

More generally, if X/Q is an algebraic variety, then the i-th étale cohomology H, (X Qp)
(here, Xg denotes the base change of X/Q to Q) is a finite dimensional Q,-vector space
endowed with a continuous Q,-linear action of Gq which comes from functoriality. If
£/Q, is an elliptic curve, then Hélt(é'ap, Q,) =V, (&)

1.2.3. Galois representations coming from modular forms. Let H = {z €
C|Im(z) > 0} and let O(#H) denote the C-vector space of holomorphic functions f : H —
C. For k € Z, the right weight-k action of SLy(Z) on O(H) is defined as follows: if v =
(2%) € SLy(Z) and if f € O(H), then (f|y)(2) := (cz +d)~* f(v.2), where 7.2 = ZZ[S,
defines a holomorphic function on #; this definition makes sense since Im(y.z) = =)

= Jez+d®

Forall N > 1, T1(N) = {y = (2%) € SLy(Z)|y = (} 1) (mod N)} is a sub—grl)u; ‘of
SLs(Z). A holomorphic function f : H — C is said to be a modular form of weight k and
level T'y (V) if it is invariant by I'y (V) for the weight-k action and if limyer_yoo (f|x7)(2y)
exists and is finite for all v € SLy(Z); the C-vector space M (I';(N)) of modular forms
of weight k and level I'; (V) is known to be finite dimensional. Elements of the sub-space
Sk(F1(N)) € Mi(T'1(N)) of f such that limyer_oo (f|x7)(iy) = 0 are called cusp forms.
If £ <0 then Mp(T'y(N)) = {0}, and My(I'1(NV)) consists of constant functions.

If f € O(H) is a modular form of weight &k and level I'; (N), then f(z+1) = f(z) and
therefore f has a Fourier series expansion (also called the g-expansion of f) of the form

f(z) =300 s en(f)g"™ where ¢ = €™ if f is a cusp form, then co(f) = 0.
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EXAMPLE 1.2.3.1. (1) If A(z) = q[1,0(1 —¢")*" with ¢ = €™ for z € H, then
A is a cusp form of weight 12 and level I'1(1) and S12(I'1(1)) is generated by
A(z) as a C-vector space.

(2) The space Mis(I'1(1)) decomposes as E1o B S12(I'1(1)), where &5 is the C-vector
space generated by the Eisenstein series Ei(2) = 92— + Zfil(zdln d") g™ with

= 32760
q=e*= for z € H.

The C-vector space Si(I'1(IV)) is stable by the action of the sub-group I'g(N) =
{v=1(2% € SLa(Z)|y = (4:) (mod N)}. The sub-group I';(N) is normal in T'o(N),
and To(N) acts on Si(T'1(N)) through the quotient To(N)/T'1(N) = (Z/NZ)* (this

latter isomorphism is given by (¢%) + d); if d is prime to N, then we let (d) denote

the corresponding operator on Si(I'1(V)) (one calls it a diamond operator). If f is a
simultaneous eigenform for the operators (d) (with d € (Z/NZ)*), then (d)(f) = e(d)f
for some character € : (Z/NZ)* — C*. Moreover, for each prime ¢ 1 N, there is a so-
called Hecke operator T, on Si(I'y(N)). One has 1,071, =T,y 0T, and (d) o T, = T, o (d)
for all primes ¢,¢' f N and d € (Z/NZ)*. The space Si(I';(N)) is therefore a direct
sum of generalized simultaneous eigenspaces for the Hecke and diamond operators; a
simultaneous eigenvector f € Si(I'1(NN)) is called a Hecke eigenform. 1t is known that if
f € Sp(I'1(N)) is a Hecke eigenform, then the eigenvalues of f generate a finite extension
E¢/Q; we will call this the coefficient field of f.

The following theorem is due to Eichler [Eic54], Shimura [Shi58], Igusa [Igu59] in
the weight £ = 2 case, to Deligne [Del71] in the weight & > 2 case, and to Deligne-
Serre [DelSer74] in the weight k = 1 case. The irreducibility statement is due to Ribet
[Rib77].

THEOREM 1.2.3.2. Let k, N > 1. If f € Si(I'1(N)) is a normalized eigenform with
character € and coefficient field Ey/Q and if p is a prime number, then for every mazimal
ideal p C Op, lying over p, there is an irreducible Galois representation pyy, : Gq —
GLy(Og, ) such that det pyy = ex™ ! (where x : Gq — Z is the cyclotomic character
and € is viewed as a character of Gq via the quotient Gal(Q((n)/Q) = (Z/NZ)*) such
that for all ¢ with €1 pN,

(1) pyplp, : De — GLa(Og, ) is non-ramified, and
(2) The characteristic polynomial of ps,|p,(Froby)) is X2 — co(f)X + e(£) k1,

The representation py, is odd.

1.2.4. Galois representations coming from Hilbert modular forms. If v =
(2%) € SLy(R) and if z € H, then putting .z = %:[2 defines an action of SLy(R)
on H. For n > 1, let SLy(R)™ = SLy(R) x ... x SLy(R) act componentwise on H" =
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Hx...xH. k= (ki,...,k,) € N2, then the weight k-action of SLy(R)™ on the space
O(H™) of holomorphic functions f : H" — C is defined as follows: for f € O(H") and
T= (?Z 211 )1§i§n € SLy(R)™, put

(fli7) = (crze +d) ™ o (Cnzn + dn) ™5 f(.2)
for all z = (z1,...,2,) € H".

If F/Q is totally real of degree [F' : Q] = n > 1 then the set [ = {7,...,7,} of
embeddings of F' into R allows us to view SLy(Op) as a sub-group of SLo(R)" via the
embedding v — (7:(7))1<i<n : SL2(OF) — SLa(R).

If I' € SLy(Op) is a congruence sub-group and if k € N2, then a Hilbert modular
form of level T and weight k is a holomorphic function f € O(H™) such that (f|xy) = f
for all v € I'. In contrast with the n = 1 situation as in paragraph no additional
condition on cusps is necessary. The C-vector space Si(I') of Hilbert modular forms of
weight k£ and level I' is finite dimensional.

Suppose now that k = (ki,...,k,) satisfies k; > 2 and k; = k;mod 2 for all 1 <4, j <
n. For a non-zero ideal n C Op, we have a congruence sub-group I'(n) C SLy(Op). If
q C Op is a prime ideal and if a C F' is a fractional ideal prime to n, then there are
notions of Hecke operators Ty and S, on Si(I'(n)). If f € Si(I'(n)) and if f is an eigenform
for all T, and all S,, then Shimura showed in [Shi78] that the extension E¢/Q generated
by the Hecke eigenvalues 6(7},) and 6(S,) of f is finite.

The following theorem was proven in various cases (including when [F' : Q] is odd) by
Carayol [Car86] and Wiles [Wil88], in the case when [F' : Q] is even by Taylor [Tay89],
and in general by Blasius-Rogawski [BlaRog93|, following work of Eichler, Shimura,
Deligne, Ohta, Tunnel, and others.

THEOREM 1.2.4.1. Let k and n be as above. If f € Sp(I'(n)) is a Hilbert eigenform
with field of definition Ey/Q and if p|p is a non-zero prime of Og,, then one may associate
to f a continuous representation

Pty GF — GLQ(OEJ,m)
such that

(1) pyp is unramified outside np,
(2) Uis a prime of F' not dividing np, then the characteristic polynomial of py,(Froby)
is X2 — 0(T) X + 0(S;) Nm(1)






CHAPTER 2

p-adic Hodge theory

2.1. Rings of periods and admissible representations

In this section, we summarize some fundamental notions from p-adic Hodge theory.

2.1.1. The rings E* and B*. In this paragraph, we summarize several results on
the rings defined in §1 of [Fon94al. The articles [Fon82], [FonWin]|, and [Win83]| are
also good references, as well as sections §4.3 and §5.1 of [Col08a] are also good references
for the statements presented in this paragraph. We signal to the reader that the notation
used for these rings differs in the literature; for example, the ring E* is sometimes denoted
by R or by R(C,).

Let E* denote the set

lim Oc, = {($(i))z‘ezzo |29 € Og, and (2 = 20 Vi € Zso}
TP
If # = (@) and y = (y@) are elements of E*, then the operations z + y defined by
putting (z+4)® = lim;_, (x4 + y+))P" (this limit converges for the p-adic topology)
and z -y defined by (z - )@ = 2@ . y® make E* into a perfect ring of characteristic p.

If 2 = (z®) € ET, then putting valg(z) = v,(7?) defines a discrete valuation on E',
and E* is complete for the topology defined by valg. The componentwise action of Gq,
on E* is an action by ring endomorphisms.

Let {(,+}z., denote a sequence of primitive p¥-th roots of 1 such that C i1 = Cpr for
all k > 1. Let € = (1,¢,, (2 ) ) € E* and let 7 = €~ 1. Since v,((pm — 1) = m,
we have valg(7) = -5, and E = E* [77!]. The field E is algebraically closed (see (iv) of
proposition 4.10 of [Col08b]).

If R is a perfect ring of prime characteristic p > 0, then we let W(R) denote the ring
of Witt vectors of R; it is a ring of characteristic 0 which is p-adically separated and
complete, and such that W(R)/pW (R) = R, and it comes equipped with a multiplicative
map [-] : R — W(R) (called the Teichmiiller map) such that [z] = z for all z € R (here,
= denotes the reduction mod p map). In particular, every element x € W(R) may be
written as a p-adically convergent series x = Y, _,p'[z;] (with 2; € R). For example,
W(F,) = Z,. More generally, if K/Q, is finite, then W (kg)[1/p] = Ky is the maximal

31
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non-ramified sub-extension of K/Q,, and W (kx) = Ok, as in paragraph[L.1] See chapter
IT of [Ser68b] for details on the construction of the ring of Witt vectors.

Let F, be an algebraic closure of F,, and let [-] : F, — @Qgr denote the Teichmiiller
map. The map Fp — E* given by x — ([$1/pk])kezzo allows us to view Fp as a sub-ring
of Et.

The ring A* = W(E") and the field Bt = W(E™)[1/p] are p-adically separated
and complete and inherit the actions of Gq, and ¢ on E+: more precisely, if © =
> ks oo PMls] € BT (such an expression is unique, and z is in AT if zj, = 0 for all
k < 0), then we have:

g(x)= > pMgla)] forall g € Gq, and p(x) = > pilaf]
k>>—o0 k>>—o00
Note that (AT)#=! = Z, and (BT)*=! = Q,,.

The universal property of Witt vectors gives rise to a surjective ring morphism @ :
K+N—> Oc, given by > .o prlry] — Y koo pkx,go), which extends to a morphism
6 : Bt — C,. The following can be found, for example, as proposition 2.4 of [Fon82].

ProproSITION 2.1.1.1. If w € ker(f) C 11+, then w generates ker @ if and only if
valg(w) = 1. Ewvery generator of ker(6 : At > Og,) is a generator of ker(0 Bt — Oc,).

For example, the above proposition shows that if p € E* is any element such that
7© = p, then the element £ = [p] — p € At generates ker 6.

The strong topology (resp. weak topology) on A* is the finest topology making the
projection map A+t — ET continuous, when E* is endowed with the discrete topology
(resp. the topology of valg). The strong topology on A* is the same as the p-adic
topology, and the weak topology on A+ is the same as the topology given by the family
of semi-valuations {wy(—)}rez defined by wi(d oo, p'lz;]) = inf;< valg(z;). The ring
B+ may be endowed with the strong (resp. weak) topology by giving it the inductive
limit topology from B+ = U0 p”ﬂ&*. The following can be found, for example, as

proposition 5.2 and remark 5.3 of [Col08al].

PROPOSITION 2.1.1.2. The map ¢ acts continuously on B+ for the weak and strong
topologies. The action of Gq, on B* is continuous for the weak topology, but is not

continuous for the p-adic topology.

2.1.2. The rings B(J{R and Byt. Let 6 : Bt — C, be the surjective G'k-equivariant
ring homomorphism given by >, pFlae] = >, pka:,(ﬁo) as in the previous para-
graph. The (ker f)-adic completion of B* is denoted by Bi;. The kernel of 4 : B+ — C,

is generated, for example, by the element [¢] — 1, so that the series t = log(le]) =
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Zk>l(—1)k_1([5]+l) converges in B, for the (kerf)-adic topology. Moreover, B} is
a discrete valuation ring and ¢ is a uniformizer; in this document, we let v;(-) denote the
t-adic valuation on the field Bqg = Biz[1/t]. For all g € Gk, g(t) = x(g9)t (where y is
the cyclotomic character). There is a G g-equivariant section of 6 over Qp C C,, so that
we have a G g-equivariant inclusion Qp C By (see, for example, §1.2 and §2 of [Col12]
for a proof of this fact and a detailed topological discussion).

The associated graded ring gr,(Bjz) = @,cz(t'Bir/t"™'Blg) is denoted by Bpr,
and is isomorphic in a Gq,-equivariant way to the graded ring C,[T,T~'] of Laurent
polynomials, where C,[T, 77| is endowed with the action of Gq, given by the natural
action on C, and by defining g(7") = x(g)T for all g € Gq,).

2.1.3. The rings B and Bg. Let p € E* be an element with P = p, so that
p= (papl/p,pl/pz, ...) and so that & = [p] — p generates the ideal ker(f : At — Oc, )
The sub-ring

crls = {.1' - Z&n_ ‘ an € B+ and Ay, —> 0 p—adlcally }
n>0
of By is stable by the action of Gq, and contains the element ¢ = log([e]). Put Beys :=

Beis|1/t] € Bgr. The Frobenius ¢ on B+ extends by continuity to BZ.., and thus to a

map ¢ : Beis = Beais which is additive and injective, and such that for all A € Qgr and
T € B, one has p(A\z) = o(AN)p(z), where o : Q)F — Q) is the absolute frobenius for
F = Q, as defined in paragraph [1.1]

The action of Gq, on B extends to the polynomial ring By = Beis[X] by defining
9(X) = X + c(g)t where ¢ : Gq, — Z, is the cocycle defined by g(pt/?") = p'/P" . Q;gg)
for all n > 1 and primitive p™-th roots (p» of 1, and one extends ¢ on B to By
by defining ¢(X) = pX. The map N = —0x on By is referred to as the monodromy
operator. By sending the variable X to an element log([p]/p) = —> -, %,
which converges in Bggr, the ring By may be equipped with an injective Gq,-equivariant
morphism By < Bgr of Beis-algebras, which allows us to view By as a Gq,-stable sub-
ring of Bgg (this is theorem 4.2.4 of [F0n94a])‘ this inclusion corresponds to choosing
an extension of log, : OX — Q to Q by putting log,(p) = 0, while choosing other
values for log,(p) gives rlse to different embeddings of By in Bgg. If K/Q, is finite, then
Bg’( Bgfg Ky. The properties of B and By are developed in §2.3.3 of [Fon94al;

see also 11T §2 of [Col98b] for a technical discussion of the topology on By;s, as well for

a discussion of the ring B,.y, which is sometimes used as an alternative to the ring B .

2.1.4. Admissibility. In this paragraph, let B denote any of the rings B;s, B,
Bar, or Byt from paragraphs or [2.1.3 or any Gg-stable sub-extension of C,/Q,.
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A semi-linear B-representation of G is a free B-module of finite rank together with an
action of G by semi-linear operators. If W and W' are semi-linear B-representations of
G, then a morphism f : W — W' is defined to be a morphism of B-modules such that
flg(w)) = g(f(w)) for all w € W and g € Gg. If W is a semi-linear B-representation
of Gk, then W is said to be trivial if it admits a basis of G g-invariant elements; this

Brarks W ag semi-linear representations. We will sometimes

is equivalent to saying W ~
denote the category of semi-linear B-representations of G by Repg(Gk).

For example, if V' € Repp(Gk), then W = B ®q, V is a free B-module of rank
d=[E:Q,)dimgV, and putting g(b ® v) = ¢g(b) ® g(v) for all g € Gk defines an action
of Gg on W by semi-linear operators. One says that V' is B-admissible if the semi-linear
B-representation B ®q, V' is trivial. One says that V' is potentially B-admissible if there
is a finite extension L/K such that the restriction of V' to G, is B-admissible.

To be more precise, we say that V' € Repg(Gg) is (potentially) crystalline if it
is (potentially) Bs-admissible, and similarly we speak of (potentially) semi-stable, de
Rham, or Hodge-Tate representations.

If V€ Repp(Gk), then Dg(V) = (B ®q, V)% is a vector space over the field
B ; we often abreviate Dp_, (-) by Deis(-), and we use similar notation for Dg(-) when
B € {Bs, Bar, Bur}. The following can be found as propositions 1.4.2, 5.1.2, and 3.6 of
[Fon94b].

PROPOSITION 2.1.4.1. Let B € {Bgis, Bst, Bar, Bur}. If V € Repyp(Gk), then the
morphism f : B ®gex Dp(V) — B ®q, V of semi-linear B-representations of G is
injective, and dimpge, Dg(V) < dimgq, V. Moreover, the following conditions are equiv-
alent:

(1) f is an isomorphism,
(2) V is B-admissible,
(3) dimgex Dg(V) = dimq, V

Note that the above proposition implies that for V' € Repy(Gk), the notion of B-
admissibility is encoded by the dimension of Dg(V') as a B¢%-vector space. On the other
hand, the object Dg(V') inherits additional structures from the structures on B (such as
filtration, ¢, or monodromy operator N, etc.).

For example, if V' is Hodge-Tate (i.e., Byr-admissible), then we define i € Z to be a
Hodge-Tate weight of V' of multiplicity m if (C,(—i) ®q, V)% # 0 and dimg (C,(—i) ®q,
V)6 =m. If k € Z, then V = Q, (k) is Hodge-Tate, with unique Hodge-Tate weight k&
of multiplicity 1. If V' is a p-adic representation of G, then the K-vector space Dqr (V)
is endowed with the filtration of sub-K-vector spaces Fil' Dgr(V) := (t'Blz ®q, V).
If V is de Rham, then it is also Hodge-Tate; in this case, the Hodge-Tate weights of V'
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are the integers i € Z such that Fil™* Dag (V) # Fil 7" Dgr(V'), and the multiplicity of
i is equal to dimg (Fil™* Dar(V)/ Fil~"™ Dgr(V)). In the same spirit, it turns out that a
semi-stable representation V' can be completely described by simple invariants on Dy (V);
more will be said about this in paragraph below.

If B contains Qp as a Gk-stable sub-ring (for example if B is Bgr or Byr), then the
notion of B-admissibility is equivalent to the notion of potential B-admissibility by Galois

descent. The various GGq,-equivariant inclusions and morphisms between the period rings

from paragraphs [2.1.2] and [2.1.3] give the following relationships:

pot. crystalline =—=> pot. semi-stable =—= de Rham —= Hodge-Tate

W W

crystalline =————= semi-stable

It is also known that every de Rham representation is potentially semi-stable, due to
the results of Y. André [And02], L. Berger [Ber02], K. Kedlaya [Ked00], and Z.
Mebkhout [Meb02]. This was formerly known as the p-adic local monodromy conjecture
of Fontaine. Aside from this, the other implications in the above diagram are strict. For

example, the following appears as proposition 3.10 of [Fon03].

EXAMPLE 2.14.2. If 0 —- Q, = V — Q,(1) — 0 is a non-split extension in
Repq, (Gk), then V is Hodge-Tate but not de Rham.

The following describes the *-admissible (for x € {Bs, Bst, Bar, Bur}) 1-dimensional

linear Q,-representations of G (see, for example, propositions 4.3 and 5.6 of [Fon04]).

PROPOSITION 2.1.4.3. Let n : Gx — Qp be a continuous character and let V. =
Qp(n)-

(1) The following conditions are equivalent:

(a) V is crystalline,

(b) V is semi-stable,

(c) n=x"1 for some h € Z and some non-ramified character '
(2) The following conditions are equivalent:

(a) V is de Rham,

(b) V is Hodge-Tate,

(c) n = x"1 for some h € Z and some finitely-ramified character ' .

Propostion 1.5.2 of [Fon94b] implies the following.

PROPOSITION 2.1.4.4. The full sub-category of Repp(Gk) of crystalline (resp. semi-
stable, de Rham, Hodge-Tate) representations is stable by direct sum, sub-objects, quo-

tients, tensor product, and duals.
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The notion of (potential) B-admissibility for B € {B,s, Bst, Bar, Bur} and the basic
properties of the functors Dg(-) attached to period rings are developed in §1 of [Fon94b].

If V € Repp(Gk) and if L/K is finite, then the B¢“-vector space Dg (V) = (B ®q,
V)Cr is also a B2 @q, E-module. The following appears in §6.3 of [Col08b].

PROPOSITION 2.1.4.5. Let V € Repg(Gk) and let L/ K be a finite extension.

(1) The Ly ®q, E-modules Deyis, (V) and Dg (V) are free.
(2) If V is de Rham, then Dgr (V') is a free L ®q, E-module.

2.1.5. Semi-stable representations and admissible filtered (y, NV)-modules.
Let £/Q, and K/Q, be finite sub-extensions of Qp/Qp. In this section, we let Ky g
denote Ko ®q, E. A filtered E-(¢, N)-module over K is a free Ko g-module D of finite

rank endowed with the following structures:

(1) a bijective additive map ¢ : D — D which is E-linear and Ky-semilinear for the
Frobenius o : Ky — Ko,
(2) a Ky g-linear operator N : D — D such that No = ppN,
(3) a family {Fil'(K ®x, D)}iez of sub-(K ®q, E)-modules of K ®, D such that
(a) Fil'" (K ®g, D) C Fil'(K ®g, D) for alli € Z,
(b) Fil'(K ®g, D) = {0} for i > 0 and Fil'(K ®, D) = K ®, D for i < 0
The relation No = ppN implies that N is nilpotent. Every filtered F-(¢, N)-module
over K may also be viewed as a filtered Q,-(¢, N)-module over K by forgetting the
E-linear structure.
If D and D’ are filtered E-(p, N)-modules over K, then a morphism f : D — D’ is
a morphism of K, g-modules such that f commutes with ¢ and N on D and D', and
such that the K-linearisation f : K ®g, D — K ®g, D’ satisfies f(Fil'(K ®g, D)) C
Fil'(K ®p, D') for all i € Z.
If D and D" are filtered E-(¢, N)-modules over K, then the free Ko p-module D®g, ,,
D’ together with
(1) the map ¢ : D ®g, , D' = D Qf, , D' defined by ¢ : d @ d' — p(d) @ o(d'),
(2) themap N : D®k, , D" — D®k, , D' defined by N : d®@d' — N(d)@1+1N(d'),
(3) a filtration defined by Fil'(K ®x, D) @k, » (K ©xy D)) = 3y 1ps Fil*(K 1,
D) ®k, , Fil*(K ®g, D) for all i € Z.

a+b=i

is a filtered F -(p, N)-module, which we refer to as the tensor product of D and D’.
The basic properties of filtered E-(¢, N)-modules over K are developed in chapter 4

of [Fon94b], in [ColFon00], §5.1-5.3 of [Fon04], §3.1 of [BreMez]|, and §2 of [Col10€],

among other places. We refer to §5.1 of [Fon04] for the notions of exact sequences and

quotients in the category of filtered E-(p, N)-modules over K.
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EXAMPLE 2.1.5.1. If V € Repp(Gk) and if L/K is finite, then Dy (V) = (Bs ®q,
V)9t is a filtered E-(p, N)-module over L. If V|, is semi-stable, thenranky, , Dy (V) =

The following example appears in remark 3.1.1.4 of [BreMez].

EXAMPLE 2.1.5.2. If p # 1mod4 is a prime, then let E = Q,(v/—1) denote the
unramified quatratic extension of Q,. If D = (E ®q, E) - e, then defining

D fori <o
ple) = @1+ 22/=1T®v=1) e, N(e) =0, FiliD_{ (E®q, E)-[(1®1+V-1®v=1)-¢] fori=1
{0} for2 <i

makes D into a filtered E -(¢, N)-module over E.

In the above example, the (F ®q, F)-module Fil' D is annihilated by the element
1®+v—14+v/—1®1, and thus is not free.

Admissible filtered E-(p, N)-modules. Let D be a filtered E-(¢, N)-module over K.
When viewed as a filtered Q,-(¢, NV)-module, the dimension of D as a Kj-vector space
is d = [E : Qp)ranky, (D) and A}, D = Ky - e is a filtered Q, (¢, N)-module of rank
1. We let (D) denote the maximal integer i € Z such that Fil'(K ®p, /\f(0 D) # 0,
and we let ty(D) = v,(A\), where A € Kj is defined by ¢(e) = X - e (the integer t5(D)
depends only on D). One says that D is weakly admissible if

(i) ty(D') < tny(D’) for all sub-filtered Q,-(¢, N)-modules D" C D over K,
(ii) and ty(D) =ty (D).

If V € Repp(Gk) is semi-stable, then Dy (V') as in is weakly admissible. It
is shown in proposition 3.1.1.5 of [BreMez] that if D is a filtered E-(¢, N)-module over
K, then D is weakly admissible if and only if ¢ty (D) = ty(D) and ty(D') < ty(D’) for
all sub-filtered F-(¢, N)-modules D" C D over K.

The following theorem of Colmez and Fontaine (see [ColFon00]) allows one to trans-
late questions about the category Rep(G) of semi-stable representations in Rep ; (G )

into questions about filtered F-(¢, N)-modules over K.

THEOREM 2.1.5.3. The functor Dg k induces an equivalence of categories between
RepSt(G ) and the full sub-category of weakly admissible filtered E -(p, N)-modules over
K ; crystalline representations in Repg (G ) correspond to weakly admissible filtered E -(¢, N )-
modules over K for which N = 0. On Repy(Gk), the functor Dy i is compatible with

direct sums, tensor products, and exact sequences.

2.2. Examples

Here are some examples of admissible linear Q,-representations of dimension > 1.
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2.2.1. Lubin-Tate characters. Let K/Q, be a finite extension and let 7 € Ok be
a uniformizer. One may attach to 7 a formal Lubin-Tate Ox-module LT, € Ok|[[X,Y]]
and the Lubin-Tate character x, : Gx — Oj as in m

PROPOSITION 2.2.1.1. The linear K -representation V = K(x,) of Gk is Hodge-Tate
with Hodge-Tate weights 1 with multiplicity 1 and 0 with multiplicity [K : Q,] — 1

The above proposition is a special case of more general results on Hodge-Tate de-
compositions for p-divisible groups given by Tate in [Tat66]. A proof along these lines is
given, for example, in lemma 2 in appendix A5 to chapter III of [Ser68]. See also [Col93]
and [Fou09] for another perspective. More precisely, what is shown in [Ser68] is that
the proposition is true after restriction to G gcar, but Bgr-admissibility and Hodge-Tate

weights are invariant by restriction to an open sub-group.

2.2.2. Representations coming from geometry. If X/Q, is an algebraic variety,
then V' = Hét(XQP,Qp) is a continuous linear Q,-representation of Gq,. If X/Q, is
proper and smooth, then the i-th hypercohomology H’y(X/Q,) of the de Rham complex
QB{/Qp has a natural structure as a filtered Q,-vector space of finite dimension. The
following was formerly a conjecture of Fontaine and Jannsen (see §6.2 of [Fon94b] and
[Tsu02] for a survey), and has been proven in various cases and generalities by Faltings,
Fontaine, Fontaine-Messing, Hyodo, Niziot, Tsuji, and more recently by Beilinson and

Bhatt.

THEOREM 2.2.2.1. If X/Z, is a proper smooth variety, then there is an isomorphism

of semi-linear Bqr-representations of Gq,
Bar ®q, Hy(Xg,. Q) =~ Bar ®q, Hir(X/Qp)

which is compatible with filtrations, so that V = Hz}t(XQp, Q,) is de Rham and Dar(V') ~
HiR(X/Q,p) as filtered Qp-vector spaces.

(1) If X/Z, is of good reduction, then V is crystalline and in this case D..s(V) =
Héris(X/Zp)'

(2) If X/Z, is of bad semi-stable reduction, then V is semi-stable and Dg (V) =
Hi (X).

log - cris

2.2.3. Representations coming from modular forms. Let £, N > 1 and let
f € Sk(I'1(N)) be an eigenform with character € : (Z/NZ) — C*. Let p be a prime and
let £/Q, be the finite extension, of degree d = [E : Q,] say, generated by the images of
the Hecke eigenvalues by a fixed embedding ¢ : Q — Q,,. Let py), : Gq — GL2(E) be the
p-adic representation attached to f with underlying E-vector space Vy,, as described in
section



2.3. SEN’S THEORY OF C,-REPRESENTATIONS 39

PROPOSITION 2.2.3.1. The representation pyp|p, is potentially semi-stable, and if
p 1 N, then it is crystalline and Dcris(VJZ‘jp) = Dy q, is the 2 dimensional E-vector space
E ey ® E - ey with filtered E - p-module structure given by
‘ Dy, fori<0
Mat(p) = <E(p)gk—1 ;pl) and Fil'D = Eey for1<i<k-1
{0}  fori>k
In particular, the Hodge-Tate weights of ps,|p, are O (with multiplicity d) and k—1 (with
multiplicity d).

The fact that py,|p, is potentially semi-stable is is due to Saito (see [Sai97]) and the
description of Deis(V5,) when p { N is due to Scholl (see [Sch90]). Saito also established
local Langlands compatibility of Weil-Deligne representations for f at p.

2.3. Sen’s theory of C,-representations

2.3.1. Sen-Tate theory for C,-representations. Let K/Q, be a finite extension
and let x : Gq, — Z, be the cyclotomic character. If Hx = ker(x|g, : Gx — Z)),
then Hy = Gal(ﬁp/Koo), where Koo = J,»; K((n) C Qp. The group I'x = Gk /Hg is
isomorphic to an open subgroup of Z; via ;( The following theorem is due to Sen, and

appears as theorem 2 of [Sen80]:

THEOREM 2.3.1.1. If X is a semi-linear Cy-representation of G of dimension d, then
XU« is a d-dimensional semi-linear l?oo-representation of ' and X = Cp ®p_ XHr gs

semi-linear C,-representations of G .

If W € Repg_(Gk), then let W™ denote the set of w € W such that the T'g-orbit
of w in W generates a finite-dimensional K-vector space. The set Wi is a K_-vector

space and is stable by the action of I'x. The following is theorem 3 of [Sen80]:

THEOREM 2.3.1.2. If W € Repg_(T'x), then W = Ko @5, W™,

Theorems [2.3.1.1] and [2.3.1.2] taken together, give the following.

THEOREM 2.3.1.3. The functor Dsen : Repc, (Gx) — Repg(I'x) defined by X +
Dyen(X) = (XHx)n s an equivalence of categories, with quasi-inverse given by the

extension of scalars functor C, ®q, - : Repg_ (') = Repg, (I'k ).

Proposition[2.3.2.5|below gives some properties of the functor Dg,(-). Theorem|2.3.1.1
is applicable in particular when X = C, ®q, V for some V' € RepQP(G k), and theorem

2.3.1.2 may be applied to (C, ®q, V)"*. In this note, we also write (abusively) Dgen(V)
for (C,®q, V)"*. We signal to the reader that the notation used in this text differs from
the notation of in [Sen80].
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2.3.2. Sen’s operator and generalized Hodge-Tate weights. The cyclotomic
character induces an inclusion I'y = G /Hg — Z;, so that we may write I'xy = X x Iy
where ¥ is a finite abelian group and I'y >~ Z,. Let 7 € I'y be a topological generator. If
D € Repg_ (') and if £ = (ey,...,eq) is a K-basis, then lemma 2 of [Sen80] shows
that there is a finite sub-extension K'/K of K., /K such that Mat(g|€) € GLy(K’) for
all g € I'g;ie., W = @le K’ -e;is stable by I'. If IV C 'k is the open sub-group such
that K’ = KT, then we have a linear representation p’ : I — GLg(K’) = Autg:(W’) and
there is an operator 7' € End g/ (W) such that p'(y*) = exp(2T) for all z € Z, sufficiently
close to 0. Put © = WT.

In this way, to each D € Repg_(I'x), Sen associates a K-linear operator ©p : D —
D. The following is theorem 4 of [Sen80], and shows how O (locally) describes the action

of ')y on D.

THEOREM 2.3.2.1. If D € Repg_ ('), then ©p : D — D is the unique K..-linear
operator such that for all x € D, there is an open sub-group I'i, C 'k such that y(z) =

exp(log,(x(7)) - ©)(x) for all v € I'kq-

In particular, © p commutes with the action of I'x on D, and therefore its character-
istic polynomial Pe has coefficients in K = KL¥. The roots of Pg in Qp are called the

Sen weights of D, or sometimes the generalized Hodge-Tate weights of D.

EXAMPLE 2.3.2.2. If X = C,(i), then Den(X) = Koo(i) and © : Dgen(X) — Degen(X)

18 given by multiplication by 1.

If (x) denotes the projection of x onto the second factor of Zx = [F] x (1+pZ,) for p
odd (resp. the second factor of Z = {1} x (1+4Z,) if p = 2) and if s € Z,, then (x(g))*
converges in Z for all g € Giq, and therefore defines a character (x)*: Gq, — Z, .

EXAMPLE 2.3.2.3. If n = p(x)® for some s € Z, and a finitely ramified character
p: Gq, — 2y, then the unique generalized Hodge-Tate weight of Cp(n) is s.

The following is the corollary in §2.3 of [Sen80], and it gives a re-interpretation of

the notion of Hodge-Tate representation in terms of Sen’s theory.

PROPOSITION 2.3.2.4. If V' € Repq, (Gk), then V is Hodge-Tate with Hodge-Tate

weights hy, ..., hq if and only if Oy is semi-simple with integer eigenvalues hy, ..., hy.

The above proposition explains the teminology “generalized Hodge-Tate weights.”
Here are some properties of Sen’s operator and generalized Hodge-Tate weights, which

are proven in §2.2 of [Sen80].

PROPOSITION 2.3.2.5. Let D, D" € Repg_ (I'g).
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(1) If L/K is a finite extension, then Dsen(Dlc,) = Lo ® k. Dsen(D) and Opy, s
the Loo-linearization of ©p. In particular, the Sen weights of D are the same as
the Sen weights of D|g, .

(2) Dsen(D @ D') = Dgen(D) @ Dgen(D') and ©pgpr = Op © Opr.

(3) Dsen(D @ D') = Dgen(D) @ Dsen(D’) and ©pgp = Op @ Id+1d ®Op,. In par-
ticular, the Sen weights of D ® D' are the elements of the form o« + B where a
is a Sen weight of D and (3 is a Sen weight of D’.

(4) If D" is a sub-object of D, then © pr = Op|ps, and Op,p is the canonical operator
induced by Op.

Sen’s theory has been generalized to apply to different rings than C, (see §3.3 of
[Col03] and §3 of [BerCol02]). We also briefly mention that Colmez has given a rein-

terpretation of Sen’s theory more in the spirit of the period ring formalism (see [Col94]).

2.4. Fontaine’s theories of C,-representations and Big-representations

2.4.1. Fontaine’s theory of semilinear C,-representations. Let Repc, (Gr)
denote the category of semi-linear Cp-representations of Gx. We will say that W ¢
Repc, (G ) is Hodge-Tate if there is a C,-basis (e1, ..., eq) of W and integers hy, ..., hq
such that g(e;) = x(g)"e; for all i € {1,...,d}. When W = C, ®q, V for some
V e RepQP(G k), W is Hodge-Tate if and only if V' is Byr-admissible; one also says
that V' is Hodge-Tate in this case.

We now describe Fontaine’s classification of C,-representations as in §2.6 of [Fon04].
A Gg-orbit A C Qp is a sub-set of Qp of the form O, = {gz|g € Gk} for some = € Qp;
note that O, is necessarily finite and stable by the action of Gx. If W € Repg, (Gk)
and if A C Qp, then Fontaine says that W is of type Sa if every element of the multiset
Wt(W) of generalized Hodge-Tate weights of W is an element of A. If W € Repg, (G)
is indecomposible, then the set Wt(W) of Sen weights of W is a single G -orbit A in Qp.
If d > 0, then let Z,(0; d) denote the Z,-module of polynomials of degreeﬂ < d in a formal
variable X' = logt, on which Gq, acts by g(logt) = logt+log,(x(g)). If W € Repg, (Gk)
is irreducible, then W ®z, Z,(0; d) is indecomposible; it is irreducible if and only if d = 0.

Fontaine shows in proposition 2.13 of [Fon04] that if A C Qp is a G g-orbit, then there
is a unique irreducible object C,[A] € Repg, (G ) of type Sa. For example, if A = {i}

for some integer i € Z, then C,[A4] is just C,(7). If V is a 2-dimensional Q,-vector space

'In [Fon04], Z,(0;d) denotes the Z,-module of polynomials of degree < d, but we have shifted d to
make some of our notation later work out more cleanly.
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on which g € Gq, acts on a basis £ = (e, e2) by the matrix

e = 1503

then C, ®q, V = C,[{0};1].
The following is theorem 2.14 of [Fon04]:

THEOREM 2.4.1.1. If W € Repc, (Gk) is non-zero, then there are unique Gx-orbits
A, ... A C Qp and integers dy,...,d, € N and h; = ha,q,(W) such that W =
i1 CplAis di]™.

If W € Repc,(Gk) admits a decomposition as in the above theorem, then W is
Hodge-Tate if and only if for all i, A; = {«;} with o; € Z and d; = 0 (see p. 45 of loc.
cit.). In this case, hyqa,3,0(W) is the multiplicity of o; as a generalized Hodge-Tate weight
of W.

2.4.2. Fontaine’s theory of Byr-representations. Let Repg,, (Gk) denote the
category of semi-linear Bqr-representations of G. We will say that W € Repg,_, (Gk) is
de Rham if it is trivial as a semi-linear Byg-representation of G. If W € Repg (Gk),
then a Gy-stable lattice of W is a Gg-stable sub-Bz-module W+ C W of finite type
such that Bar ®p+_ W, For example, if V € Repg(Gk), then BJ; ®q, V' is a Gx-stable
lattice of W = Bar ®q, V. More generally, if W = (W, W) is a B%E-pair, then W3
is (by definition) a Gk-stable lattice of War = Bar,r ®8, , We.

Let W be a Bgr-representation of G and let W C W be a G g-stable BJR—lattice.
The quotient W := W/tW is a C,-representation of G, and we may therefore associate
to it the set Wt(WW) of its Sen weights, which is a set of elements of Qp of cardinal
dimgp,, W which is stable by the action of G'x. The following proposition shows that all
lattices of W have the same Sen weights up to integers, so that the set of Sen weights

modulo Z of a lattice W is an invariant of W.

PROPOSITION 2.4.2.1. Let W be a Bgr-representation of Gi. If W and W' are two
G -stable B, -lattices of W, then each Sen weight of W' may be written in the form
o + i where o is a Sen weight of W and i € Z.

PROOF. Let ¢ > 0 be an integer such that the lattice t“W’ is contained in WV and let
¢ > 0 be an integer such that the lattice t“W is contained in t“W'.
Consider the sequence of G g-stable lattices :
W = tW + W CtW + 17 IW C . CHEW + W CEW + W =W,
and let X, denote the lattice W' + t<—FW (for 0 < k < ¢). We have Gk-equivariant

inclusions tX 1 C Xy C Xjpyq for k=0,1,...,¢ — 1 ; we therefore have exact sequences
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of C,-representations :
Xk+1/th+1 — XkJrl/Xk —0 and 0— thJrl/th — Xk/t.)(k — Xk+1/t.)(k+1

which, taken together with (i) and (iii) of proposition and since z — tz induces
an isomorphism of (Xji1/X)(1) onto tXyy1/tX, implies that Wt(AXy) € Wt( X)) U
(Wt(Xy11) + 1). By recurrence, the Sen weights of Xy = t“W’ are all of the form o + i,
where « is a Sen weight of X, = W and i is an integer. Again by (iii) of proposition
, the Sen weights of W are of the form a + i where a is a Sen weight of W. O

If W is a Bgr-representation of G and if W C W is a Gi-stable lattice, then the
multiset Wtqr (W) of de Rham weights of W is the multiset of images of elements of
Wt(W) modulo Z; by proposition , this multiset depends only on W and not on the
lattice W.

For each Gk-orbit A C Q,, Fontaine constructed a simple object C,[A] € Repg, (Gk)
(see the previous paragraph), which corresponds (via Sen’s theory) to a simple object
K«[A] € Repg_(I'k). Fontaine defines Byr[A] = Bar ® k.. Ko[A]; the set of de Rham
weights of W is the image of A modulo Z. Fontaine showed in proposition 3.18 of [Fon04]
that for Gg-orbits A, A’ C Q,, one has Bag[A] ~ Bag[A'] if and only if A = A'mod Z,
and (ii) of Theorem 3.19 of loc. cit. asserts that for each d > 0, the Bgg-representation
Bar[A; d] = Bar[A] ®z, Z,(0; d) is indecomposible, and it is simple if and only if d = 0.
The following is part of theorem 3.19 of [Fon04].

THEOREM 2.4.2.2. IfW € Repg, . (Gk) is non-zero, then there are G -orbits Ay, ..., A, C
Qp (unique modulo Z) and unique integers dy,...,d, € N and h; = ha, 4,(W) such that
W = @;:1 BdR[Ai; dz]hl .

In light of the above, W € Repg, (Gk) is de Rham (i.e., isomorphic to By as an
object in W € Repg_, (Gk)) if and only the decomposition of W as in the above theorem
is such that for all 1 <i <r, A; = {z} for some z; € Z and d; = 1.

2.5. The category of B-pairs

In this section we recall several basic properties of B-pairs developed in |[Ber08],
[BerChel0], and [Nak09].

2.5.1. The ring B, . Let B, = BYZ'. If £/Q, is a finite extension, then let G
act on the ring B, g = B. ®q, £ by defining g(b ® e) = g(b) ® e. It is known that B, g
is a Bézout domain; for £ = Q,, this is shown in proposition 1.1.9 of [Ber08], and the

same method is used to show general case in lemma 1.6 [Nak09]. In fact, it is now known
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that B, is a principal ideal domain (see theorem 10.2 of [FarFonl|), and therefore B, g is

principal as well since it is a quotient of the polynomial ring B.[X], and thus noetherian.
PRrROPOSITION 2.5.1.1. If E/Q, is finite, then the ring Be g is a principal ideal domain.

2.5.2. The category of B-pairs. A B%E—pair W = (W, W) is a B, g-representation
W, of Gk together with a Gg-stable By g-lattice Wi of War = (Bar ®q, E) ®(Bogq, F)
We; saying that Wi is a Bjy p-lattice of Wag means that W C Wag is a free sub-B ;-
module such that Byr, g OB » Wi =War. HWisa B%E—pair, then rank (W) is defined
to be the rank of W, as a B, g-module, which is equal to the rank of W(;FR as a BchrR,E'
module. If W and W' are BF-pairs, then W@ W' = (W.®s, , W/, Wi ®py, , Wik) isa
B@E—pair. If F/E and L/K are finite extensions and if W is a B%E—pair, then F@gWg,
is a B‘%F-pair.

For example, if V' is a linear E-representation of G, then

W<V) = ((Be ®Qp E) QF V> (Bji_R ®Qp E) QF V)

is a B@E—pair of rank d = dimg V.

The notions of crystalline, semi-stable, de Rham, and Hodge-Tate objects in Repz(Gx)
may be extended to objects in the category of B‘%{E -pairs in such a way that an F-linear
representation V' of Gk is crystalline (or semi-stable or de Rham or Hodge-Tate) if and
only if the associated B&E—pair W (V') is. More precisely, if B is any of the period rings
Bris, Bty or Bag and if W = (W, W) is a B@E—pair, then W is said to be B-admissible
if the semi-linear B-representation (B ®p, W, of Gk is trivial and W is Hodge-Tate if
the C,-representation W = W /tW, is Hodge-Tate.

One can also construct B@E—pairs from filtered E-(¢, N)-modules over K: if D is a
filtered E-(¢, N)-module over K, and if W, (D) = (Bg g ®k, , D)?~""=" and Wi (D) =
Fil’(Bar,r ®k, , D), then W(D) = (Wo(D), Wi (D)) is a semi-stable B%E—pair of rank
r = rankg, , D (see proposition 2.3.3 of [Ber08]).

Quotients in the category of B-pairs. If W' C W are B@E—pairs, then W' is said to be
saturated in W if W' g = Wig "W, In this case, Wi, /W' i is a free Bj; ;-module and
W/W' = (W /W, , Wik /W'ir) is therefore a B%E-pair of rank r = rank(W) — rank(W").

Rank one B-pairs. The following is shown for ' = Q,, in lemma 2.1.3 of [Ber08] and
for £ D K%! in theorem 1.45 of [Nak09]; the same proof as in lemma 2.1.3 of [Ber08]

together with proposition [7.1.2.3|implies the following:

LEMMA 2.5.2.1. If W is a B@E—pair of rank 1, then there is a linear character n :
Gx — E* and a G-stable fractional ideaf] W+ C Bar,p such that W = (Be (1), W (n)).

e, Wt C Bgr,E is a Gi-stable free sub—B('fRE—module of rank 1. If £ = Q,, then the fractional
ideals of Byg are of the form ‘Bl with i € Z.
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PrROOF. If W = (W, W) is a BZ-pair of rank 1, then proposition [7.1.2.3| im-

K
plies that there is a character n : Gx — E* such that W, = B g(n), so that W =
Wik(n™') C Bar,g is free sub-Bjz-module of rank 1 on which Gy acts trivially. O

2.5.3. Trianguline representations. Let £/Q, be a finite extension. In the con-
text of the p-adic Langlands correspondence for GLy(Q,), Colmez has defined the notion
of a trianguline E-linear representation of Gq, = Gal(Qp /Qp)-

A B@E—pair W is said to be triangulable if there are sub-Bﬁ’{E-pairs {0y =W, Cc W, C
... C W, = W such that W;/W,_, is a BjF-pair of rank 1 for allé € {1,...,n}. If V €
Repp(Gk), then V is said to be split trianguline if the B‘%{E—pair W (V) is triangulable,
and V is said to be trianguline if there is a finite extension E’/E such that the linear
FE'-representation £’ @p V of G is split trianguline. For example, if V € Repg(Gk)

is semi-stable, then V' is trianguline (see proposition [7.1.4.1)). The following is an easy
consequence of corollary [7.1.3.2

PROPOSITION 2.5.3.1. The sub-category of split trianguline representations in Rep (G )

18 stable by sub-quotients, extensions, tensor product, and duals.

Here is another example of a trianguline representation. If f is an overconvergent p-
adic modular form of finite slope in the sense of Katz (see [Kat73]), then one may attach
to f a 2-dimensional p-adic representation V,f of Gq, and results of Kisin (theorem
6.3 of [Kis03]) and Colmez (prop 4.3 of [Col08c]) show that V,f|cq, is trianguline.
Representations attached to finite slope overconvergent p-adic modular forms need not

be Hodge-Tate at p in general (indeed, they need not have Hodge-Tate weights in Z).






CHAPTER 3

Schur functors

In this chapter, we present some fundamental properties of Schur functors which
are used in this document. We signal to the reader that we have chosen to follow the
construction of Schur functors as given in [Ful97|, which is dual to the construction given
in §6.1 of [FulHar| for example.

3.1. Young diagrams and tableaux

3.1.1. Basic definitions. Let n > 1 be an integer and let n = u; + ... 4+ u, be
an integer partition such that w; > wu;1; > 1 for all 7 € {1,...,r — 1}. We denote this
partition by u = (uq, ..., u,) and we may represent u by its Young diagram Y,,, which is
a diagram of n-many boxes arranged into left-justified rows such that the i-th row from
the top contains u;-many boxes. We say that Y, has shape u. For example, the partition

13=5+4+2+1+41 is represented by the following diagram:

If d > 1 is an integer, then a tableau on Y, with values in {1,...,d} is a labeling of
the boxes of Y, with elements in {1,...,d} such that the labeling is weakly increasing
from left to right and strongly increasing from top to bottom. Note that if d is strictly
less than the length of the left-most column of Y, then Y, has no tableau with values in
{1,...,d}. For example, the following is a tableau with values in {1,...,7} on the above

Young diagram:

—_
[\
w

3

‘\I‘Cﬂ»lkl\:ﬂ—

We will write T' = (¢;;) to denote a tableau with the integer t;; € {1,...,d} in the i-th
row (from the top) of the j-th column (from the left) of Y.
47
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Let v; denote the length of the j-th column from the left of Y,. Put r(u) =+ 1 if
Y, is a rectangle (i.e., if u; = ... = u,) and put r(u) = r if Y, is not a rectangle. For
example, if n > 1 and if v = (n), then we have r(u) = 2 and for v = (1,...,1) we have
r(u) = n+ 1. If d > r, then there is a tableau on Y, with values in {1,...,d} which
has 7 in each box of the i-th row from the top; we refer to this tableau as the standard
tableau, and we denote it by 77. For example, here is T on the Young diagram for
u=(54,2,1,1):

1[1]1]1]

[\l
DO
]

‘m‘%ww»—
(U%)

PropoSITION 3.1.1.1. If d > r(u), then there are tableaux Ty, Ts, ..., T4 on'Y, with
values in {1, ...,d} such that for alli € {1,...,d—1}, there is an integer j € {1,...,d—1}
such that T; and Tj 1 have the same entries in all but one box, and this box of T contains

v while this box in T, contains © + 1.

For example, for the partition v = (2,2,2,1,1) of n = 8, we have r(u) = 5 and if

d =5, then we have T}, ..., T as follows:

1[1 1[1 1]1 1]1 1]2
2[2 2|2 22 213 213
313 34 315 315 315
4] 4] 4 4 4
5] D 5 15 15

PROOF OF THE PROPOSITION. Let T} denote the trivial tableau on Y, with values
in {1,...,d}; this is the tableau having i in every box in the i-th row. Let v,, denote the
length of the rightmost column in Y,. From T} obtain 75 by adding 1 to the bottom-most
entry in the right-most column of 7} (i.e., in coordinate (uq,v,, ), and therefore it is equal
to vy, ). If i > 2 and if the entry in the (uy,v,,) coordinate of T; is less than d, then let
T;+1 be the tableau obtained from 7T; by adding 1 to the entry in its (uy,v,,) coordinate.
Repeat this process until we obtain a tableau T, with d in the bottom-most cell of the
right-most column of Y,,. To obtain 7,,, add 1 to the entry just above the bottom-most
cell in the right-most column of 7,.. To obtain 7, from 7., add 1 to the entry of 7,
in the (uy,v,, — 1) coordinate. To obtain T,,s from T,,1, add 1 to the entry of T,
in the (u1,v,, — 2) coordinate, and so on until we end with a tableau T, having 2 the
rightmost column of the first row of Y,. The tableaux T}, 75, ..., T, satisfy the desired

condition. O
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The row bumping operation. Let Y, be a Young diagram of shape u and let T" = (¢;;)
be a tableau on Y, with values in {1,...,d}. If x € {1,...,d}, then we define a Tableau
on a Young diagram having one more box than Y, (denoted by T' <— z) by the following
procedure. If ¢;; < x for all j, then append one box to the end of row 1 and label it with
the number z (the result is a tableau). If this is not the case, then there is some j such
that ¢;; < x and 2’ := t; 41 < z, and we replace ¢; ;41 with = (the result is a Tableau).

At this point, we do the same for 2’ in the second row of T" and so on. Here are two

examples:
112]2 1/2]2]2] 112]2 111]2
2133 21313 2133 2123
34 34 314 313
4] —2=4 and 4] —1=14/4

Products of tableauxr. The row bumping operation is used to define the product of
two tableaux. Let Y, and Y, be Young diagrams of shape u and v respectively. If T"is a
tableau on Y, and if 7" is a tableau on Y,, both with values in {1,...,d}, then we may
define a product tableau T - T as a series of row-bumping operations: let z be left-most
number in the bottom-most column of T, construct T' <— z, and repeat this process with
T < 2z and 7" (ignoring = in T"), continuing until there are no more entries in 7" left to

bump. Here are two examples of products of tableaux :

Example 1:
1[1]1] 1[1]1]1]3]
22 113] [2]2]2
13 2] =03
Example 2:
11]1 1/1]1]2]2]
2[213] [1]2] [2]2]2]3
3[3 213] [3/3[3]4
4] 4] =14

If A, p, v are partitions of integers oy, 0y, and o, then we denote by cf , the number
of tableaux 7" on Yy and U on Y, such that T"- U is equal to the standard tableau on
Y,; this number is referred to as the Littlewood-Richardson number. Note that ¢ , =0
unless |A| + || = |v| and Y, can contain both Y) and Y,. There are many equivalent
definitions of the Littlewood-Richardson number; we have chosen that which has been

easiest to work with in our situation (see proposition 2 of §5 and §5.3 of [Ful97]).
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3.2. Schur functors

3.2.1. The universal property of Schur modules. Let u = (uy,...,u,) be a
partition of an integer n > 1 as in and let v; denote the length of the j-th column
from the left of Y.

Let R be a commutative ring with 1. If M is an R-module, then we let M ** denote
the n-fold direct product M x ... x M indexed by the squares of Y,; i.e., elements of
M** are tuples of the form m = (m;;) (1 < j < w; and 1 <17 < w;), so that m;; € M is
the coordinate of m corresponding to the box of Y, in the ¢-th row of the j-th column. If
m = (m;;) € M*", then m’ € M** is said to be an (a, b; k)-ezchange of m if there exist
I1<a<b<wu,1<k<uw,andintegers 1 < iy < ... <wvgand 1 <3} < ... <ip <y
such that

(1) mj; = my; for all j & {a, b},
(2) mj, = myq if i & {i1,... 0}, and mj, , = my, for all t € {1,... k}, and
(3) ml, =my if i & {d},...,d,.}, and mé;,b =m,,, forall t € {1,... k}, and
Note that there are a total of (%)-many (a,b;k)-exchanges of m. We let £, € M**

denote the set of all exchanges of m (i.e., for all a,b, and k).

EXAMPLE 3.2.1.1. Let u = (4,3,2,1), and (a,b;k) = (2,3;2). If m = (my;) is given

by
alblcld]
el flg
h|i
L]
then there are three (2,3;2)-exchanges of m, and they are as follows:
alc|bld] alc|bld] alblfld]
elglf elflt elcl1
hli hlg hlg
L7 7] 7

If M is an R-module, then there is an R-module Schur” (M) together with a morphism
@ : M — Schur”(M) of R-modules such that
(1) ¢ is R-multilinear,
(2) ¢ is alternating with respect to the columns of Yy; i.e., if m = (m;;) € M*" and
if there is some j and some 1 < i < ¢’ < v; such that m;; = my;, then p(m) = 0.
(3) for all m € M>", o(m) = co p(m).
and if M’ is an R-module with ¢ : M** — M’ a morphism of R-modules satisfying (1),
(2), and (3), then there is a unique morphism of R-modules ¢’ : Schur"(M) — M’ such

that ¢ = ¢/ o .
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By the universal properties for alternating product and tensor product, conditions (1)
and (2) imply that Schur”(M) is a quotient of of the R-module A" (M)®g...®@rA"1 (M).
In particular, if {mq,...,my} C M and if T" = (¢;;) is a tableau on Y,, with values in
{1,...,k}, then we may consider the image of the element (m;, A... Amy, ) ® ... ®

(miy,, Ao Ay, ) in Schur*(M); we denote this element by mr.

EXAMPLE 3.2.1.2. (1) When u = (n) (so that Y, consists of a single row of n-

many bozxes), condition (2) imposes no restrictions and condition (3) says that
@ 1s symmetric; in this case, Schur(M) = Sym"(M).

(2) When u = (1,...,1) (i.e., Y, consists of a single column of n-many bozes),
condition (3) imposes no restrictions and condition (2) says that ¢ is alternating;
in this case, Schur"(M) = A"(M).

(3) We now describe the Schur functor associated to the partition u = (2,1) of n = 3.
In this situation, the exchange condition (3) is the following: for m € M*" with
m = (M1, Ma1;Mi2), (M) = (Mg, Mar; M) + @(Mmar, mag; mar). Concretely,
Schur®Y (M) is the quotient of A2(M) @z M by the sub-R-module generated by
elements of the form (a Ab)®@c— (cAb)®a— (aNc)®b.

The following is theorem 1 of §8.1 in [Ful97]:

PROPOSITION 3.2.1.3. If M is a free R-module of finite rank with basis (eq, ..., eq),
then Schur"(M) is a free R-module (which is nonzero if d > r) with basis (er),., where

T ranges over all tableauz on 'Y, with values in {1,... d}.

The universal property of Schur“(-) implies that Schur* : R-Mod — R-Mod is

functorial, and we just saw that it sends free modules to free modules.

PROPOSITION 3.2.1.4. If E is a field of characteristic 0 and if V is a finite-dimensional
E-vector space together with an operator f 'V — V', and if A1, ..., \q are the eigenvalues
of T counted with multiplicity, then the eigenvalues of the operator induced by f on
Schur*(V) are the elements of the form Ap = 3 r . yAv,, where T ranges over all

tableauzr on u with values in 1, ..., d.
The functor Schur"(—) is compatible with extension of scalars:

PROPOSITION 3.2.1.5. If R — R’ is a ring morphism and if M is an R-module, then
Schur(R' ®g M) = R’ @g Schur"(M).

3.2.2. Direct sums. If M = M’ & M" is a direct sum of free R-modules, then
Sym™ (M) = @, ., Sy’ (M) @ Sym(M") and A"(M) = @, ,,_, N'(M)@r\Y(M");
these two isomorphisms are special cases of the following more general result, which
appears in (20) of §8.3 of [Ful97]:



52 3. SCHUR FUNCTORS

PropoOSITION 3.2.2.1. If W and W' are free R-modules, then we have a functorial
decomposition
Schur(W & W’) ~ @(Schur* (W) @ Schur* (W) #%
A

where Ciu > (0 denotes the Littlewood-Richardson number.
The above, together with the following lemma, will be used in part 2:

LEMMA 3.2.2.2. If u is a partition of an integer n > 1 and if R > r(u), then for all
1 < d < R, there are sub-shapes Yy and Y, of Y, such that d > r(A) and R—d > T, and
such that ¢, # 0.

Note that the above lemma is obvious for the partitions u = (n) or u = (1,...,1) of

n. Here are two more examples.

ExAMPLE 3.2.2.3.
(1) For R =5, u = (5,4,4,2,1), and d = 3, the following factorisation shows that
A= (2,1) and p = (5,4,4) satisfy the conditions of the lemma:

L[1]1]1]1]
20222
313[3[3 L[1]1]1]1]
414 414] 12]2]2]2
H _ 5/ .[3/3[3]3

(2) For R = 4, uw = (3,3,2,2), and d = 2, the following factorisation shows that
A= (3,2) and p = (3,2) satisfy the conditions of the lemma:

171171
212]2
313 213[3] [1]1]1]
414 =144 1212
PROOF OF THE LEMMA. Label Y, with the standard tableau with valuesin {1,..., R}.

Draw a horizontal line L between row d and row d + 1 in Y.

If the shape above this line is not a rectangle, then denote it by A (so that d = r(}))
and denote the shape below this line by p. If Ty (resp. 7,) denotes the tableau of entries
on A (resp. p) inherited from the standard tableau on Y, then 7}, - Tj is the standard
tableau on Y.

Suppose now that the shape above the line between row d and row d+1 is a rectangle.
Let z denote the entry in the rightmost column of row d of the standard tableau on Y,.
If T}, is the tableau obtained from bumping = (see the previous section for the definition

of the bumping operation) into the diagram below the line L, and if T} is the tableau on
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the shape A obtained by removing the rightmost box in row d from the shape above the

line L, then d = r(\) and T}, - T} is equal to the standard tableau 77 on Y,,. O
3.2.3. Schur functors applied to B-pairs. If W = (W, Wf) is a B@E—pair,

then Schur"(W) = (Schur"(W,), Schur"(W)) is a Bﬁ(E—pair by 13.2.1.3| and [3.2.1.5,

If V is an E-linear representation of G, then we have an isomorphism of B&E—pairs

Schur (W (V)) = W (Schur*(V)).







Part 2

Admissible tensor products & Schur objects






CHAPTER 4

Notation and generalities

4.1. Notation and generalities

4.1.1. Notation. Let Qp be an algebraic closure of Q, and let C, be the p-adic
completion of Qp. Let Q)" denote the maximal non-ramified sub-extension of Qp /Qp. If

F/Q, is a finite extension, then we let F© denote the Galois closure of F' in Qp. Let

Bar, Bjr, Bais, and By, denote Fontaine’s rings as in [Fon94a] and let B, = Bfrizsl. In
this part, £/Q, and K/Q, denote finite extensions. If B is any of the above rings or any
Galois sub-extension of Qp /Qp, then By will denote the ring B ®q, £ endowed with the
action of Gx = Gal(Q,/K) defined by g(b®e) = g(b) @ e for all g € G. If W is a free
Bg-module of finite rank endowed with a semi-linear action of G, then we refer to W

as a Bg-representation of G.

4.1.2. Decomposing representations with coefficients. If F'/Q, is a finite ex-
tension and if B € {C,, Bgr} or if B is any Galois sub-extension of Qp /Q, containing
F', then the map

Bwq, F~ P B
(1) h:F—Q,

(b f) = (b-h(f))n

(where h runs over the embeddings of F' into Qp) is an isomorphism of B-algebras, and
it is Gg-equivariant if K > F&al.

If W is a Bp-module, then for each embedding h : F' — Qp, let W}, denote the sub-
B-module of W coming from the h-factor map (b ® f) — b-h(f): B®q, I’ — B in the
isomorphism ({1]) above.

PROPOSITION 4.1.2.2. Let W be a Br-module and let W), denote the B-module cor-
responding to the embedding h : F — Qp.

(1) We have a direct sum decomposition W = @@, W), of B-modules.

(2) If W is free of rank d as a Bp-module, then W), is free of rank d as a B-module.

(8) If W' is another Bp-module and if T : W — W' is a morphism of Bp-modules,
then T' (viewed as a morphism of B-modules) sends Wy, to W} for allh : F' — Qp.
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In particular, if K D F%! then a Bp-representation W of G decomposes into a
direct sum W = @, .q, W, as a B-representation of Gk, and rankg W}, = rankg, W.

Note that if K D F®! then a Bgg p-representation W of G is de Rham if and
only if the Bgg-representations W}, are de Rham for each embedding h : F' — Qp and a
C, r-representation W of G is Hodge-Tate if and only if the Cp,-representations W), are
Hodge-Tate for all embeddings h : F' — Qp.

PROPOSITION 4.1.2.3. Let W and W' be Bp-representations of G with K D F&al
and let W =@, Wy, and W' = @, W}, be the decompositions as described above.

(1) The Bp-representation W ®@g, W' decomposes as @h:F_@p (W), @ W}).
(2) The Bp-representation W & W' decomposes as @h:Faép(Wh e W;).
3) If W' C W s a sub-Bp-module, then the Bp-representation W/W' decomposes
(3) 1f : P p
as WIW' = @y.pq,(Wa/W;)

COROLLARY 4.1.2.4. Letn > 1 and let u = (uy,...,u,) be a partition of n as defined
in paragraph of chapter 3. If W is a Bp-representation of G and if W = @, Wy,
then the Br-module Schur*(W) decomposes into Schur*(W) = €P,,.p_,q Schur(W3) as

a B-representation of Gg.

4.2. Sen’s theory for representations with coefficients

4.2.1. Generalized Hodge-Tate weights. Let £ and K denote finite extensions
of Q,. In what follows, a C, g-representation of Gk is a free finite rank C, g-module
W endowed with a C,-semi-linear E-linear action of G, such that the action of G is
continuous when W is viewed as a C,-representation of rank [E : Q] - rankg, ,(W). For
example, if V' € Repp(Gk), then C, ®q, V is a C,, g-representation of Gg. Similarly, if
Wis a B@E—pair, then W := Wi /tWi is a C, g-representation of G .

If W is a C, g-representation of Gx of rank d, then Dy, (W) = (WHx )i (see §2.3.1)
is a K p-module, and implies that the I'g-equivariant operator © : Dge, (W) —
Dgen(W) is Koo g-linear. It turns out that Dy, (W) is in fact free of rank d as a K p-
module; by 4.1.2 of [BerCol02], there is a finite extension L/K such that De,(Wla,) =
Lo ®K., Dsen(W) is free as a Lo, g-module and since the ring extension L g/ Koo g is

faithfully flat, Dge, (1) is necessarily free as a K g-module.

PROPOSITION 4.2.1.1. Let W be a C, g-representation of Gk .
(1) Deen(W) is a free Ko g-module of rank d = rankc, ,(W) on which I'x acts

Ko-semi-linearly and E-linearly.

(2) The operator ©p_ (w) is Ko p-linear.
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The characteristic polynomial Pe g(X) = det(X -1d —©) has coefficients in (K ®q, )
since © commutes with the action of I'y on D. Let Pg € K[X] denote the characteristic
polynomial of © : D — D when viewed as a K-linear operator (as in paragraph
of chapter 2).

The following is a more precise version of proposition for representations with

coefficients:

PROPOSITION 4.2.1.2. Let W and W' be C, g-representations of Gk .

(i) If W' is a sub-representation of W, then ©Ow|w+ = Owr and Oy is the canon-
ical operator induced by Oy . In particular, if 0 = W' — W — W"” — 0 is an
exact sequence of Cy, g-representations, then Pe,, = Po,, Po,,, -

(i) If F/E is a finite extension, then Deen(F @ W) = F ®@g Dsen(W) and O pgw is
the F'-linearisation of Oy .

(i) We have a natural isomorphism Dsen(W ®c, , W') = Deen(W) @k 5 Dsen(W')
of Koo p-representations of I'x and the Sen operator on Dge,(W ®c, & W’ is
Ow ® Id +1d @Oy-.

(i) If L/ K is a finite Galois extension, then Dgen(W g, ) = Loo @k, Dsen(W) as an

L g-representation of I'r,, and @W|GL is the Lo -linearization of Oy .

Recall that the set of generalized Hodge-Tate weights of W is the set of roots of Pg
in Qp counted with multiplicity. In what follows, we explain two ways to recover the
generalized Hodge-tate weights of W from the polynomial Pg g(X).

4.2.1.3. Weight combinatorics 1. Let D € Repy_ ,(I'x) be a nonzero object, let ©
be Sen’s K, g-linear operator on D, and let Pg g € (K ®q, E)[X] be its characteristic
polynomial. For all j : E — Q,, let Pop;(X) € (K - ES)[X] be the polynomial
obtained from Pg g by applying the map K ® £ — K - E defined by z ® e — zj(e) to
the coeflicients of Pg g(X). We now explain how to recover the generalized Hodge-Tate
weights of D from Pg g(X).

PROPOSITION 4.2.1.4. Let L D E® with L/Q, finite. If D € Rep, _,(z) and if
D= @j:Eﬁ@ Dy, is the decomposition of D as an L., -representation of I'r,, then
(1) ®|Dj = @Dj
(2) Po(X) = 1,54, Fo.p, in LIX].

PROOF. Assertion (1) is an immediate consequence of proposition [2.3.2.5 Asser-
tion (2) is an immediate consequence of assertion (1) since Pp__ g ; is the characteristic

polynomial of ©p,. U
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Let K and E be finite extensions of Q, as before (i.e., we are not assuming that
K D E%) and let W € Repg, ,(Gk). Part (2) of the above proposition shows that
the generalized Hodge-Tate weights of D = Dg,(W) may be decomposed into subsets
corresponding to the embeddings j : E — Q,; more precisely, if L = K - E%! then the
Sen operator on D' = Deey(Wg,) = (Loo ®k., D)|r, is just the L.-linearization of ©
on D; in particular, Pe, = Pe,, and Pe, r = Pe,, r. By the above proposition, we
therefore have Po,, =[]z g, Pop.p in LIX], where L = K - EGal,

With this in mind, if W € Repc, ,(Gx), then we may partition the multiset Wt(W) =
|—|j:E—>§p Wt;(W), where Wt;(WW) is the set of roots of Pe r; in Q, counted with mul-
tiplicity. If L/K is a finite extension such that L > E% and if W = @ ; Wj is the
decomposition as a Cp-representation of G, as in proposition , then Wt,;(W) may
be interpreted as precisely the set of generalized Hodge-Tate weights of W; € RepCP(G K)-

Here is a description of the sets Wt; (W) for the example in paragraph .

EXAMPLE 4.2.1.5. Let K/Q, be a finite extension and let m € O be a uniformizer.
If Xz : Gk — O is the character attached to a Lubin-Tate formal module for w, then
Wt;(K(xx)) = {1} if j is the inclusion K C Q, and Wt;(K(x=)) = {0} for any of the
other [K : Q) — 1 embeddings j : K — Q.

Propositions [4.1.2.3 and [4.2.1.2] tell us how the sets Wt;(WW') behave with respect to

various operations:

PROPOSITION 4.2.1.6. Let W', W be nonzero C, g-representations of Gk and let j :
E— Qp be an embedding.

(1) If0 = W' — W — W" — 0 is an ezstension of C, g-representations of Gk, then
Wt,;(W) = Wt,; (W )UWt;(W"). In particular, Wt;(W") = Wt;(W) — Wt,; (W)
(this is a multiset difference with multiplicity).

(2) If Wt;(W) = {ou,...,aq} and Wt;(W') ={a,...,a)y} (enumerated with mul-
tiplicity), then Wt;(W ®c, , W') = {a; + a1 <i < d, 1 <i' < d'}.

(3) If F/E is a finite extension, then for all embeddings j' : F — Qp such that

(4) If L/K is a finite extension, then Wt;(W|q,) = Wt;(W).

Similarly, propositions [4.1.2.3| and [4.2.1.2| together with [3.2.1.4] from part I imply the

following:

COROLLARY 4.2.1.7. Let W be a C, g-representation of G of rank d. If j : £ — Qp
is an embedding and if a1 ;, ..., aq; denote the elements of Wt;(W), then the elements of
Wt;(Schur®(W)) are the elements ar = 3, ; ay,, j for any tableau T = (t;1,) on the Young

diagram of u with values in {1,...,d}.
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4.2.1.8. Weight combinatorics II. Suppose now that £/Q, is finite Galois and K C E.
Let D € Repg_, (I'x) be a nonzero object, let © be Sen’s K, g-linear operator on D, and
let Po p € (K®q, )| X] be its characteristic polynomial. For each embedding h : K — E,
let P& g € E[X] be the polynomial obtained by applying the map K ®q, £/ — E defined
by A ® e + h(A)e to the coefficients of Pg . Let Wt"(1W) denote the multiset of roots
of Pg, g in Qp, counted with multiplicity.

The following proposition relates the sets Wt"(1W) to the sets Wt;(W) from the

previous paragraph.

PROPOSITION 4.2.1.9. Let h : K — E and let j : E — E be an embedding lifting h.
We have an equality j(Peo ;1) = PS p-

In particular, we see that if h : K — E and if j : E — F is an embedding lifting h,
then we have a bijection Wt"(W) = Wt,;—1(W) of multisets given by o — j~!(a). For
example, the above proposition and 4.2.1.5| show the following:

EXAMPLE 4.2.1.10. Let K/Q, be a finite extension and let x. : Gk — O be the
Lubin-Tate character coming from ©. If E/Q, is finite Galois and if E D K, then the
h-weight of E(xx) ts 1 for h the inclusion K C E, and the h-weight is O for all other

embeddings.
Here are some formal properties of h-weights.

PROPOSITION 4.2.1.11. Let W, W’ € Repg, ,(Gk) and let h : K — E be an embedding
(1) If0 - W' = W — W” — 0 is an ezact sequence in Repg, ,(Gk), then
Wt (W) = Wt (W') U Wt"(W") as multisets.
(2) Wt"(W @ W') = {a + o/|a € Wt (W), o’ € Wt" (W)}
(38) If F/E is a finite extension, then Wt"(F @5 W) = Wt"(W).
(4) If L/ K is a finite sub-extension of E/K, then Wt"(W|q,) = Wt"(W).
PROOF. Assertions (1) and (2) are immediate consequences of propositions
and Assertions (3) and (4) follow immediately from [4.2.1.2] O

COROLLARY 4.2.1.12. Let W be a C,, g-representation of Gx of rankd. Ifh: K — E

is an embedding and if ayp, ..., aqn denote the elements of Wth(W), then the elements
of Wt"(Schur"(W)) are the elements ap = > ik Qtyn for any tableau T = (ti) on the
Young diagram of w with values in {1,...,d}.

Characters with prescribed weights. Let K/Q, be a finite extension and let x, : Gx —
O be the Lubin-Tate character associated to a uniformizer 7 € Og. Let E/Q, be a
finite Galois extension with K C FE. For each embedding h : K — FE, the h-weight of
E(xk) is 1 if h is the inclusion of K in E, and 0 otherwise.



62 4. NOTATION AND GENERALITIES

THEOREM 4.2.1.13. Let hq,. .., h, denote the embeddings of K into E and let wy, ..., w,
be elements of E. There exists a finite Galois extension F/E and a character p : Gg —
F* such that Wt" (F(p)) = {w;} fori=1,...,r.

PROOF. Let xx : Gx — Oy be the character associated to a Lubin-Tate module over
Ok.
If we E, then w = p "W’ for some w' € O, and some integer n > 0. Consider
X

the topological factorisation O = [kj] x (1 + mg). Consider a topological factorisation
of the Z,-module 1 4+ mg into Z/p*Z x Z, where a > 0 and r = [K : Q,]. Let (xx)

y 2
denote the projection of x onto the submodule Z7 in this factorisation. If {yi,...,y.}
is a Zy-basis of Z,, and if F /E is a finite extension which is Galois over Q,, and contains
21,..., 2% € 1+ mp such that 22" = y;, then the map pu(y® ... - yo) = 22 % . . 220

composed with (xx) is a character whose h-weight is p~"w’ = w when h = id and 0
otherwise. We denote this character by (xx)* : Gx — OF.

Given wy, ..., w, € E, the product of characters [[(h; " (xx))** has h;-weight equal to
w; for each 1 <7 < r, where h; 1. F — F is the inverse of an automorphism h; : F — F
extending h; : K - E C F. O



CHAPTER 5

Tensor products and Schur B-pairs of Hodge-Tate type

5.1. Hodge-Tate and de Rham tensor products of B-pairs

Let W = (W,,W}) be a B&E—pair. We say that W is de Rham if the Bggr-
representation Wy of G is de Rham. We say that W is Hodge-Tate if the C, g-
representation W = Wik /tWik of G is Hodge-Tate.

PROPOSITION 5.1.0.14. If W and W' are C,-representations of G with Sen weights
in Z such that W ®@c, W' is Hodge-Tate, then W and W' are Hodge-Tate.

If W and W' are Bgr-representations of Gk with de Rham weights in Z such that
W @B, W' is de Rham, then W and W' are de Rham.

ProOF. Let W and W’ be Bggr-representations of G with de Rham weights in Z.
By Fontaine’s theorem [Fon04| 3.19], W and W’ admit unique decompositions W =~
D._, Bar[{0};d;]% and W' ~ @5;1 B4r[{0}; d;]eé'. The Bggr-representations W and W’
are de Rham if and only if all of the d; and d} are equal to zero. If W ®g,, W' is de
Rham, then B4r[{0}; ;] @B, Bar[{0}; d;] is de Rham for every 1 <4 <rand 1 <j <7’
Suppose, for example, that W is not de Rham, so that we may assume d; > 0. Let
U = Bar[{0}; di] ®B,, Bar[{0}; d], let v; = 1®1, and let (v1,va,...,vs) be a K-basis of
Dgr(U) = UK where f = (d;+1)(d}+1). If U is de Rham, then the element X ® 1 € U
(where X =logt in Bqr[{0};d;]) may be written as asum X ® 1 =0(1®1) + ZLQ bie;
with b; € Bgg forall 1 <i < f. Since g(X®1) = X®1+log(x(g9))(1®1) for all g € Gk, we
have g(b1)—b1 = log(x(g)) for all g € Gk. If by € B, then g(6(b1))—6(b1) = log x(g) for
all g € Gk, which is impossible since g — log x(g) is a generator of the one-dimensional
K-vector space H' (G, C,). If by € t"Blz\t"™' By for some h < 0, then b; = "0/ for a
unique b’ € BI;\tBi; and x(g)"g(b') =V € t "B}y C tBl, so that reducing modulo ¢
would imply that 0(V') € C,(h)¢% = {0}, a contradiction. We therefore see that W and
W’ must be de Rham.

The same arguments together with Fontaine’s theorem [Fon04, 2.14] show that if
W and W' are C,-representations of G with Sen weights in Z such that W ®@c, W' is
Hodge-Tate, then W and W' are Hodge-Tate. U
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THEOREM 5.1.0.15. Let W and W' be nonzero B%E—pairs. If the B%E—pair W oW’ is
Hodge-Tate, then there is a finite extension F/E and a character u : G — F* such that
the Bﬁ’f-paz’rs W(p™") and W'(n) are Hodge-Tate. If, moreover, W @ W' is de Rham,
then so are W (u™t) and W'(u).

PROOF. Let W and W’ be B%E—pairs and suppose that the B%E—pair W e W is
Hodge-Tate. By extending scalars if necessary, we may suppose that £/Q, is finite
Galois and contains K, so that the methods of paragraph apply.

Let r = rank(W) and let v = rank(W’). For each embedding h : K — E, let
aip,--.,a., denote the h-weights of the C, g-representation W and let all,hv .. ,a;/ﬁ
denote the h-weights of W’. Part (iii) of proposition implies that if h: K — F is
an embedding, then the h-weights of W @ W’ are the elements a;, + aj, for 1 <@ <r
and 1 < j <7’ which are integers since the C,, g-representation W @ W' =W ®¢, , W’
is Hodge-Tate. By lernma there is a finite Galois extension F'/E and a character
i Gxg — F* such that for all embeddings h : K — E C F, the h-weight of the
C, r-representation W(F(u)) is ai .

We now show that the B/ -pairs W(u~") and W’(u) are Hodge-Tate. If h : K —
E C F is an embedding, then (ii) and (iii) of proposition imply that the h-weights
of W(u™') are the integers a;; — ayy, (for 1 < i < r) and the h-weights of W'(u) are
the integers ay + aj,, for 1 < j < ¢'. Since being Hodge-Tate is the same as being
potentially Hodge-Tate, it suffices to show that the B‘F -pairs W(u™1)|g, and W'(u)|q,
are Hodge-Tate. Let W(u=1) = @, W(p1), and W (u) = @,.pp W' (1), be
the decompositions of C, p-representations of G as described in paragraph |4.1.2 The
C,-representations W and W’—() have weights in Z for every h. The isomorphism

W eW (-~ @ W), ®c, Wk,
h:F—F
of C,-representations of Gr as in lemma implies that mh ®c, W’—(,u)h is
Hodge-Tate for each embedding h : F — F. By proposition , mh and
W(1), are Hodge-Tate for each embedding h : F — F, and therefore W (p~1) and W' ()
are Hodge-Tate. Therefore, the B%F—pairs W(p™') and W’(p) are Hodge-Tate.

Suppose now that F / Q, is a finite Galois extension and that W and W’ are BF}){E—
pairs such that the B‘ w -pair W @ W' is de Rham. By the above, there is a finite
Galois extension F'/E and a character p : Gxg — F* such that the B®F pairs W(u™1)
and W’ (u) are Hodge-Tate. We now show that W (™) and W'(u) are de Rham. It
suffices to show that the restrictions of W(u™') and W'(u) to Gp are de Rham. Let
W Har = Bppp W Darn and W (i)ar = Dy.pp W (i)ar,n be the decomposi-
tions of Byr-representations of G as in paragraph[{.1.2] For each embedding h : F — F,
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the Bggr-representations W (u )ar and W/ (u)ar, have de Rham weights in Z. By
lemma the Bggr-representation W (u™')qrn @B,z W (1t)ar,n is de Rham for each
embedding h : F — F, and therefore so are W (u1)ar and W’ (pu)ar,n by proposition
5.1.0.14] Therefore, the B%F—pairs W(u=t) and W (u) are de Rham. O

COROLLARY 5.1.0.16. Let E/Q, and K/Q, be finite extensions, and let V and V'
be nonzero E-linear representations of Gi. If V ®g V' is Hodge-Tate, then there is a
finite extension F/E and a character p : Ggx — F* such that V(u™) and V'(u) are
Hodge-Tate. If, moreover, V ®@g V' is de Rham, then so are V(u™') and V'(u).

5.2. Hodge-Tate and de Rham Schur B-pairs

In what follows, let n > 1 be an integer and let u = (uy,...,u,) denote an integer
partition n = uy + ... + u, (u; > ujp; > 1) of n. Ifuy = ... = u,, put r(u) = r + 1.
Otherwise, put r(u) =r.

PROPOSITION 5.2.0.17. If W s a C,-representation of G having Sen weights in Z
such that dime, (W) > r(u) and Schur"(W) is Hodge-Tate, then W is Hodge- Tate.

If W is a Bar-representation of G having de Rham weights in Z such that dimg,, (W)
r(u) and Schur®(W) is de Rham, then W is de Rham.

v

ProOF. Let W be a Bggr-representation of Gk having de Rham weights in Z such
that dimp,, (W) > r(u). If W is not de Rham, then Fontaine’s theorem [Fon04, 3.19]
gives a decomposition W = Bgr[{0}; d] & W' for some d > 0, so that

Schur*(W) ~ @(Schur’\(BdR[{O}; d]) @B, Schur®(W')) P45
A p

as a Bgr-representation of G g, where 3, =0 denotes the Littlewood-Richardson num-
ber. By lemma there are A and p such that ¢ , and Schur®(Bar[{0}; d]) @B,y
Schur”(W’) are nonzero, and such that d + 1 > ().

The Bgg-representations Schur®(Bgag[{0}; d]) and Schur*(1W’) have de Rham weights
in Z by lemma [4.2.1.2, If Schur*(W) is de Rham, then so is Schur*(Bq4r[{0}; d]) @B,
Schur”(W') and proposition implies that Schur*(Bgr[{0};d]) is de Rham. Let
X =logtin Bqr[{0};d], so that (1, X, X2 ..., X%)is the standard Byr-basis of B4r[{0}; d].
If T3 is the standard tableau defined in then the element ey, € Schur®(Bgg[{0};d])
is such that g(er,) = eq, for all g € Gi. Let T” be the tableau with values in {1,...,d+1}
which is obtained from T} by adding 1 to the value in the bottom-most cell of the right-
most column of Y); this tableau 7" exists since d + 1 > r(A). A calculation shows that

gler) = er + vlogx(g)er,, where v is the length of the right-most column of Y,. If
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Schur®(Bar[{0}; d]) is de Rham, then it admits a basis of the form (er,,eq, ..., ef) (re-
call that ey, is an element of Schur*(Bgr[{0};d]) defined by the standard tableau on
Yy, as in paragraph [3.2.1)), such that for all i = 2,..., f, g(e;) = ¢; for all g € Gg. If
bi,...,bs € Bgg are elements such that epr = bier+) -, bie;, then g(b1) —b; = vlog x(9)
for all ¢ € Gk, which is impossible. Therefore, W and W’ must be de Rham.

One can prove the claim for C,-representations by using Fontaine’s theorem [Fon04,

2.14] and applying the same arguments. U

THEOREM 5.2.0.18. Let W be a Bﬁ(E—pair such that rank(W) > r(u). If the BS{E—
pair Schur*(W) is Hodge-Tate, then there is a finite extension F/E and a character
i G — F* such that the B@F—paz’r W (u™t) is Hodge-Tate. If, moreover, Schur"(W)

is de Rham, then W(u™') is de Rham.

PROOF. Let W be a B&E—pair such that d = rank(W) > r(u) and suppose that
Schur" (W) is Hodge-Tate. By extending scalars if necessary, we may suppose that E/Q,
is finite Galois and contains K.

If h: K — E is an embedding, then let a;p,...,aqsn denote the h-weights of W.
By corollary 4.2.1.7 the h-weights of the C, g-representation Schur®(W) = Schur® (W)
are the elements of the form ar, = ) ay,, for any tableau T' = (t;;) with values in
{1,....,d} on the Young diagram of u. Since Schur"(W) is Hodge-Tate, the elements ar,
are in Z. Considering the tableaux 77,...,7y; as in proposition [3.1.1.1] we see that for
all i € {2,...,d}, there is a j € {1,...,d} such that ar,, —ar,_,, = ain — a1 € Z,
and therefore a;j, — a1, € Z for all 1 < i < d. By lemma [£.2.1.13] there is a finite Galois
extension F//E and a character y : Gxg — F* such that the Bﬁ’f—pair W(F(p)) has ayp,
as its h-weight for each embedding h : K — F C F.

We now show that the BE{F -pair W (u~') is Hodge-Tate. It suffices to show that the
restriction of W(u™!) to Gp are Hodge-Tate. Let W(u=') = @B,.p.p W(p"), be the
decomposition as a C,-representation of G as described in paragraph . The C,-
representation 1 (u~1), has Sen weights in Z for each embedding  : F — F. By lemma
4.1.2.4] the C,-representation Schur" (Wh) of G is Hodge-Tate for each embedding
h : F — F. Since dimg, W (1), = rank(W) > r(u), proposition implies
that W(u~1), is Hodge-Tate for each embedding h : F — F. The B@F—pair W(p™') is
therefore Hodge-Tate.

Suppose now that W is a B@E—pair such that rank(W) > r(u) and Schur*(W) is
de Rham. There is a finite Galois extension F'/E and a character u : Gx — F* such
that the BjF-pair W(u™') is Hodge-Tate. We now show that W(u™') is de Rham.
Let W(p1)ar =~ D5 p W ar,n be the decomposition as a Bgg-representation of
G as described in paragraph . The Bgr-representation W(ufl)dRﬁ has de Rham
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weights in Z for each embedding h : F — F. By lemma [4.1.2.4) Schur"(W(u!)ar.n)
is a de Rham Bgr-representation of G for each embedding h : ' — F and therefore
proposition [5.2.0.17 implies that W (u')4r, is de Rham for each embedding h since
dimp,, W(u ars = rank(W) > r(u). Therefore, the B@F—pair W(u=1)isde Rham. O

COROLLARY 5.2.0.19. Let n > 1 be an integer, let u be a partition of n, and let V be
an E-linear representation of G such that dimg(V) > r(u). If Schur* (V') is Hodge-Tate,
then there is a finite extension F/E and a character p: Gx — F* such that V(u™') is
Hodge-Tate. If, moreover, Schur®(V') is de Rham, then V is de Rham.

We now show that the bound on rank(1/) in theorem is optimal. Suppose
r(u) = r, so that Y, is non-rectangular. In this case, Schur*(W) = 0 for any B%E-pair
W such that rank(W) < r(u) = r, and optimality is clear in this situation. Otherwise,
r(u) = r+1 (ie., Y, is rectangular, and u; = ... = u,). Let W be a B%E—pair. If
rank(W) < r, then Schur*(W) = 0. If rank(W) = r, then Schur*(W) = );_, det(W).
To show optimality in the r(u) = r+ 1 case, it therefore suffices to find a BS(E -pair which
is not Hodge-Tate up to a twist, but such that det(1') is Hodge-Tate. Let V' be the
Q,-module of polynomials in X = log(t) of degree < r, viewed as a representation of
Gq,, so that C, ®q, V = C,[{0};r]. Considering W = W (V), we see that det(W) is
the trivial 1-dimensional representation of Gq, and therefore Schur”(W) is trivial, and
therefore Hodge-Tate. On the other hand, there is no character p : Gq, — E* (with
E/Q, finite) such that V(u) is Hodge-Tate; such a character would necessarily have
Hodge-Tate weights in Z, and would imply that V' is Hodge-Tate (which is not

the case).






CHAPTER 6

Tensor products and Schur B-pairs of semi-stable type

6.1. Semi-stable B-pairs

Let W = (W, W3;) be a B@E—pair. We say that W is crystalline if the Beie-
representation (Beis,z) ®B, , We of G is trivial. Similarly, we say that W is semi-stable
if the By-representation (Bg, g) @B, We of Gk is trivial. We say that W is potentially
crystalline (or potentially semi-stable) if there is a finite extension L/K such that the
BﬁE—pair Wg, is crystalline (or semi-stable). Note that if V' is an E-linear representa-
tion of Gk, then V is crystalline (or semi-stable) if and only if the B%E-pair W(V) is
crystalline (or semi-stable).

Let L/K be a finite Galois extension and let Ly = L N Q). If W is a B%E—pair
which is semi-stable when restricted to G, then Dy (W) = (Bs g ®B, , W) is a
free Lo g-module such that rankp, ,(Dg,(W)) = rank(W), and it is endowed with an
injective additive self-map ¢ that is F-linear and semi-linear for the absolute Frobenius
automorphism o on Ly, an Ly g-linear nilpotent endomorphism N such that Ny = ppN,
and an E-linear and Lg-semi-linear action of Gal(L/K') which commutes with ¢ and N.
The following follows from [Fon94b) 4.2.6, 5.1.5].

PROPOSITION 6.1.0.20. Let W be a potentially semi-stable Bﬁ’(E -pair, semi-stable when
restricted to G where L/K 1is finite and Galois. The B“%{E-pair W is semi-stable if and
only if the inertia group Ir i acts trivially on Dy (W), and W is crystalline if and only
if it is semi-stable and N =0 on Dg ,(W).

6.2. Semi-stable tensor products

THEOREM 6.2.0.21. Let W and W' be nonzero potentially semi-stable B[%{E—pairs. If
the B@E-pair W @W' is semi-stable, then there is a finite extension F'/E and a character
w:Gg — F* such that the B@F-paim W(p™") and W (p) are semi-stable. If, moreover,
W @ W' is crystalline, then so are W(u™t) and W' (u).

PROOF. Let L/K be a finite Galois extension such that W and W’ are semi-stable
as BF%E—pairs. By an E-linear analogue of [Fon94bl, 5.1.7], we have an isomorphism of
E-(¢,N,Gal(L/K))-modules:

Dyt (W @ W') & Dy ,(W) ®1, , Det, . (W').
69
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Let &€ C Dy (W) and & C Dy (W') be Lo pg-bases, so that the set £ ® £ of
elementary tensors is a basis of Dg (W @ W'). For all g € Gk, let U, = Mat(g|&) €
GL4(Lo,z) and let U, = Mat(g|&') € GLy(Log). By proposition , I K acts
trivially on Dy (W @ W), and we have Mat(g|& ® £') = U, ® U; = 1d for all g € Ik,
so that Uy = 1, 1d and U} = 5, Id with 1, € (Lo,g)*. The relation ¢g = g on Dy (W)
translates to the matrix relation Mat(p|€)-0(U,) = Uy-g(Mat(p|€)) for all g € Gal(L/K),
so that for all g € Ik, we have n, € (LOE)":1 = E and therefore n, € E.

We now show that there is a finite extension F'/E such that the character n: I /x —
E* can be extended to a character pu : Gal(L/K) — F*. Let w € Gal(L/K) be such
that its residual image generates the cyclic group Gal(kr/kk). If g € Gal(L/K), then we
can write g = g'w’ for a unique ¢’ € Ik and unique 0 < i < f — 1, where f = [ky : kg].
Let € € Qp be an f root of n(w’). Since n(wg'w™) = n(g’) for all ¢’ € Ik, putting
F = E(§) and u(g) :=n(g" )¢ defines a homomorphism u : Gx — F*.

The B%F—pairs W (p™') and W’ () are semi-stable, by proposition [6.1.0.20, If, more-
over, W ® W' is crystalline, then the BS(F -pair W (u~1) @ W'(u) is crystalline as well and

by the isomorphism of F'-(¢, N, Gal(L/K))-modules recalled above, we have :
Do p(W(p™") @ W'(p)) < Dt (W(n™")) @1y 1 Dot n (W' (1))

The monodromy operator N ® Id+Id ® N’ is zero, and therefore the matrices of N and
N’ are scalar multiples of the identity. Since N and N’ are nilpotent, these scalars are
necessarily zero since Lo r is reduced, and thus W(u™') and W'(u) are crystalline by
6.1.0.20l U

COROLLARY 6.2.0.22. Let V and V' be nonzero potentially semi-stable E-linear rep-
resentations of Gi. If V. @g V' is semi-stable, then there is a finite extension F/E and
a character u : G — F* such that the F-linear representations V(u™') and V'(u) are
semi-stable. If, moreover, V @g V' is crystalline, then so are V(u™') and V'(u).

6.3. Semi-stable Schur B-pairs

In this paragraph, n > 1 is an integer and v = (uy, ..., u,) denotes an integer partition
n=1u + ...+ u, such that u; > u;41 > 1 for each i € {1,...,r — 1}.

LEMMA 6.3.0.23. Let L/ K be a finite Galois extension and let D be an E-(p, N, Gal(L/K))-
module such that rank(D) > r(u). If Ik acts trivially on Schur"(D), then there is a
finite extensio E'JE such that Ik acts on D wia a character n : Iy — E™.If
N =0 on Schur*(D), then N =0 on D.

n [DiM13], we mistakenly neglect to point out that one should extend scalars.
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PROOF. By extending scalars if necessary, we may suppose that £ D L. We have
an isomorphism of rings, Lo g 5 D, Lo—Q, E on which Ik acts trivially on both sides.
We therefore see that D decomposes as an E-linear representation of Iy x into D ~
D, Dy, where Dy, is the E-linear representation of Ir/x coming from the h-factor map
(A,e) — h(Ne : Lo g — E. The corresponding decomposition of Schur"(D) is given by
Schur(D) ~ €, Schur(Dy), and by assumption Iy x acts trivially on each E-linear
representation Schur”(Dy). Let Ir/x act Qp—linearly on D, = Qp ®Rg Dy. Let g €
I k. Since Iy /i is finite, there is a Qp-basis & = (eih, e eih) of D}, and elements
Moo N € Q, such that g(el),) = N el), foralli € {1,...,d}. Consider the Q,-basis
of Schur"(Dy) consisting of elements ef,,, where T' ranges over all tableaux on Y, with
values in {1,...,d}. By proposition , one has g(e7.;,) = A},,e7,, where A}, =
H?Zl()\f’h)m'f(i) and mr(i) denotes the number of times that i appears in the tableau
T. Since dimap Dy, = rank(D) > r(u), there are tableaux 71,...,7Ty as in proposition
. Since Ir/k acts trivially on Schur”(D), one sees that )\QTJL = 1 for all g and
all tableaux 7" and in particular, for all i € {2,...,d}, there is a j € {1,...,d} such

that 1= X7, - (A7, )" = A),(M,1,) 7" (again, by proposition . In particular,
My =A== A, = AJ, and therefore g(2) = Ajz for all z € Dy. If E'/E denotes
the extension generated by the A for all g and all A, then we see that for each embedding
h:Ly— E, Ik acts on Dy, by a character nn Iy — E', which translates to saying
that Ir/x acts on D (and therefore on E’ ®p D) by a character 7 : Ik = (Log)”,
which takes values in £ since pg = gy for all g € I,k and since (Lo g/ )°=' = E.
Moreover, since N is an Ly p-linear map, the factors in the decomposition D ~ &, D;,
are N-stable. We let NV again denote the E-linear nilpotent map induced on D). Since
N = 0 on Schur*(D) = €@, Schur"(Dy), we see that N = 0 on Schur"(Dj) for each
embedding h : Ly — Q,. Let (€}, ....€y,) denote a Jordan canonical basis for N on
Dy,. Suppose that N # 0, so that we may suppose N(eyy,) = €y, If T is the tableau on
Y, in which 7 appears in all boxes of the i-th row, except in the right most column where
i+ 1 appears, then a calculation shows that N(ery) = eq ,, where 7" is another tableau,
therefore contradicting the fact that N = 0 on Dj. We therefore see that N = 0 on each
Dy, so that N =0 on D and thus N = 0 on D. U

THEOREM 6.3.0.24. Let W be a potentially semi-stable B@E—paz’r such that rank(W) >
r(u). If the B%E-pair Schur (W) is semi-stable, then there is a finite extension F/E and
a character p : Gx — F* such that the B%F—pair W(u™') is semi-stable. If, moreover,
Schur®(W) is crystalline, then so is W(u™").
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PROOF. Let L/K be a finite Galois extension such that 1 is semi-stable as a BSE -
pair, so that [Fon94bl, 5.1.7] implies that we have an isomorphism of E-(¢, N, Gal(L/K))-
modules

Schur(Dy.,(W)) = D, .(Schur(W))

If Schur* (W) is semi-stable, then proposition implies that Ik acts trivially
on Schur(Dg; 1. (W)). Lemma implies that there is a finite extension E’/E such
that 1,k acts on Dy (E' ®g W) via a character n : I)x — E'*. By the same reasoning
as in the proof theorem [6.2.0.21] there is a finite extension F//E and a character p :
Gal(L/K) — F* such that u[;, . = n. By proposition W (™) is semi-stable.

If Schur® (W) is crystalline, then N = 0 on Schur(Dg,,(W)). Lemma[6.3.0.23]implies
that N = 0 on Dy (W), which implies the same for Dy (W (u™1)), so that W(u™!) is
crystalline. U

Theorem [6.3.0.24] implies the following.

COROLLARY 6.3.0.25. Let V' be a potentially semi-stable E-linear representation of
G such that dimg V' > r(u). If the E-linear representation Schur®(V') of G is semi-
stable, then there is a finite estension F/E and a character u : Gxg — F* such that
the F-linear representation V(u™') of Gx is semi-stable. If, moreover, Schur®(V) is

crystalline, then so is V(u™').
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Triangulable tensor products






CHAPTER 7

Triangulable tensor products

7.1. Notation and generalities

7.1.1. Notation. Let Qp /Q, be an algebraic closure and let C, be the p-adic com-

pletion of Qp. Let Q" denote the maximal non-ramified sub-extension of Qp /Qp. Let

Bar, Bz, Bais, and By, denote Fontaine’s rings as in [Fon94a] and let B, = Bfﬂ:sl. In
this chapter, £/Q, and K/Q, denote finite extensions. If B is any of the above rings
or any Galois sub-extension of Qp /K, then Bg denotes the ring B ®q, £ endowed with
an action of G defined by g(b® e) = g(b) ® e for all g € Gx. If W is a free Bg-
module of finite rank endowed with a semi-linear action of G, then we refer to W as a

Bg-representation of Gg.

7.1.2. The ring B, g. The ring B may be viewed as a Gk-stable sub-ring of
Bgr, and therefore the same is true for B,. We therefore have a G g-equivariant map
B.r — Bar g, where the actions of Gk on these two rings are defined as in paragraph
above. On the other hand, there is an injective morphism of rings Bis® g, £ — Bar
which is Gg-equivariant if K D E%! and therefore we have an injective morphism
B.r — Bgr which is Gg-equivariant if K D E%! One has B, N BY; = Q, and
B. NtBX; = {0}. We will use the following generalization (see §8.7 of [Col02]).

PROPOSITION 7.1.2.1. If E/Q,, is finite, then B, p N Blz = E.
As pointed out in paragraph of chapter 2, we also have the following.

PROPOSITION 7.1.2.2. If E/Q, is a finite extension, then Be g is a principal ideal

domain.
In this chapter, Fiz denotes the field Frac(B. ).

PROPOSITION 7.1.2.3. If E/Q, is finite, then B, = E*, and if A € B. g generates
a Gk-stable Be p-module of rank 1, then A € E*.

PROOF. For £ = Q,, this is lemma 1.1.8 of [Ber08|. Suppose now d = [E : Q,] > 1.
For each embedding 7 : £ — Qp, we have an injective morphism ¢, : Be g — Bgr. If
A € Blp, then Nmg/q,(A) = [, t-(A) € B = Q. Therefore, since v;(A) = v;(¢,()))

75
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for all 7, we have v;(\) = 0 (here v; denotes the t-adic valuation of Bgg). Therefore
A€ BepN (Bl —tBgg) = £ and thus B}, = E*.

Suppose now that A € B g generates a Gg-stable B, g-module of rank 1. For all
9€ Gk, gN)/N€Blp=FE*andu: Gg — E* given by g — g())/Ais a linear character.
Let L/K be a finite extension such that L D E. The element N = Nm(\) € B, — {0}
is a period for the character n = Nmpg/q,(1) : G — Q). Applying lemma 1.1.8 of
[Ber08]|, we deduce that \" € Q,, so that we again have v;(\) by the same reasoning as
above, and therefore A € B, p N (Bl — tB1;) = E*. d

In particular, the above proposition immediately implies the following.

COROLLARY 7.1.2.4. If X is a semi-linear B, g-representation of Gk, then there is a
linear character n: G — E* such that X = Be ().

PROPOSITION 7.1.2.5. If E/Q, is a finite extension, then Frac(B.) ®q, E is a field.

ProoOF. It suffices to show that if P € Q,[T] is monic and irreducible, then P remains
irreducible when viewed as a polynomial in Frac(B,)[T]. To that end, let Frac(B.) be
viewed as a sub-field of Bqr and suppose that P = AB with A, B € Frac(B.)[T] C Bqr[T]
monic and non-constant. The relations between roots and coefficients of a polynomial
imply that there is a finite extension £’/ Qp inside Q, C By, such that A, B € E'[T]. We
now show £’ N Frac(B.) = Q,. Let A = ¢ € £/ N Frac(B.) — {0} with a,b € Be, b # 0,
and (a,b) = 1. Let K/Q, be a finite extensmn containing ', We have g(a) = \g(b)
for all ¢ € Gk and therefore, since B, is principal, blg(b) in B, for all ¢ € Gk so
that g(a) = (g(b)/b)a for all ¢ € Gk, and thus a generates a G g-stable Be-module of
rank 1, so that implies a € Q. Similarly, b € Q) and therefore, we see that
Frac(B.) N E' = Q,. In particular, both A and B have coefficients in Q,, and therefore
one of them is a nonzero constant since P is irreducible in Q,[7], which contradicts the

assumption that both A and B are non-constant. O

In particular, Fi := Frac(B. g) = Frac(B.) ®q, £ and F may be interpreted as the
compositum of Frac(B,) and E inside Bggr, and this interpretation is compatible with
the action of Gk on Bgg when K D E¢l

7.1.3. Triangulability. Recall that Fp := Frac(B.g) = Frac(B.) ®q, £. If W =
(We, W&"R) isa B S(E pair of rank r, then X = Frp®p, Wk is a semi-linear Fp-representation
of Gk and dimp, X = .

PROPOSITION 7.1.3.1. Let W be a B@E-paz’r and let X = Fr®g, , W, be the associated

semi-linear Fg-representation of G .
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(1) If X' C X is a Gg-stable sub-Fg-vector space, then there is a saturated sub—Bﬁ(E—
pair W' C W such that X' = Fg ®s, , W{. In particular, rank(W’') = dimp, X'.

(2) If X" is a quotient of X in the category of semi-linear Fg-representations of
G, then there is a B%E—paz’r W" such that W" is a quotient of W and X" =
Fp ®p, , W/

e

PrOOF. The sub-B, g-module W/ = X' N W, of W, is stable by the action of Gk.
Since B, g is a principal ideal domain, W/ is a free B, g-module, and a basis of W/ may
be extended to a basis of W.. In particular, rankg, , W! = dimp, X".

The sub-Bf, g-module Wi = Wi N Wi is a Gg-stable B, -lattice of Wi,
and W' = (W/,W'%;) is a saturated sub-Bﬁ){E-pair of W. In particular, the quotient
W/W' = (W /W, Wik /W) is a B%E—pair of rank equal to rank(WW) — rank(W").

If f: X — X" is a surjective morphism of Fg-representations of G, then (2) follows
from (1) by considering X’ = ker(f : X — X”) and taking W’ = W/W". 0

If B € {Fg,Bcg}, then we say that a semi-linear B-representation W of G is

triangulable if it is a successive extension of rank 1 semi-linear B-representations.

COROLLARY 7.1.3.2. Let W = (W,, W) be a B@E-paz’fr’. The following conditions

are equivalent.
(1) W is triangulable in the category of B%E-pairs.
(2) W, is triangulable in the category of semi-linear B, gp-representations of G .
(3) X = Fg®s, , Wk, is triangulable in the category of semi-linear Fg-representations
Of GK .

ProOOF. Showing that (1) implies (2) and that (2) implies (3) is straightforward.
Proposition [7.1.3.1] allows one to construct a triangulation of W from a triangulation of
X. O

In particular, if V' € Repp(Gg), then V is split trianguline if and only if the semi-

linear Fg-representation Fr ®p V of Gk is triangulable.

7.1.4. Semi-stable B-pairs. In §2.4 of [BelChe09], it was shown that if V' €
Repy(Gq,) is crystalline, then V' is trianguline. Using similar arguments, we can show

the following.

ProroSITION 7.1.4.1. If W is a semi-stable Bﬁf—pair, then there is a finite extension
F/E such that the B@F—pair F @ W is triangulable.

ProoOF. If E'/E is a finite extension, then E' @y W is a semi-stable Bﬁ(El—pair; we
may therefore assume without loss of generality that £ D Ky. If f = [Kj : Q,] and if
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o : Ky — K, denotes the absolute frobenius, then {Id, ¢,02, ..., 0/71} are the distinct
embeddings of Ky into Q,. The E-(¢, N)-module D = Dy x(W) decomposes as an
E-vector space into Dg (W) = @{:_01 D,i, where D,: is the sub-E-vector space coming
from the i-th projection in the isomorphism of E-algebras Koz — € E. One
has Dyi = ¢'(Dra).

The operators ¢/ and N on Dy k(W) are both Ky g-linear, and they therefore both
stabilize the sub-FE-vector spaces D,: (for each ¢ € {0,...,f — 1}) when viewed as E-

Ui:K()—>K()

linear operators. The relation N/ = p/@fN implies that there is a finite extension
F/E and an F-basis £ = (ey,...,eq) of Diq such that Mat(¢/|€) and Mat(N|E) are
simultaneously upper-triangular. If i € {1,...,d} and if v; = e; ® p(e;) B ... ® ! ~1(e;),
then V = (vq,...,v,4) is a Ko p-basis of Dg (W). For each i € {1,...,d}, the sub-K p-
module D; = @;:1 Koy r - v; is stable by ¢ and by IV, and K ®g, D; inherits a filtration
from the filtration on K ®p, D x(W); in particular, D; is a filtered F'-(¢, N)-module
over K.

For each ¢ € {1,...,d}, the sub-BF?{F—pair W(D;—1) € W(D;) is saturated, and
W(D;)/W(D;-) is a B@F—pair of rank 1. By proposition 2.3.3 of [Ber08|], we have
W (D xk(W)) = W, and therefore we have a triangulation

0CW(Dy) C... CW(Dgpxg(W)) =W
. F _
in the category of B| 7 -pairs. O

If W is a de Rham B&E -pair, then it is potentially semi-stable (see theorem 2.3.5 of
[Ber08]). We therefore have the following.

COROLLARY 7.1.4.2. If W is a de Rham B&E-paz’n then there are finite extensions
F/E and L/K such that the B“%F—pair (F @ W)l|q, is triangulable.

7.2. Semi-linear algebra

In this section, F' denotes a field and G denotes a group that acts on F' by field

automorphisms.

7.2.1. Semi-linear representations. We say that a semi-linear F-representation
V of G is irreducible if its only G-stable sub-F-vector spaces are {0} and V.
If X is a semi-linear F-representation of GG, then X is said to be triangulable if there

is a filtration of G-stable sub-F-vector spaces

{O}:X()CXlC...CXd:X
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such that X;/X; 1 is of dimension 1 for all 1 < i < d. We say that X is triangulable
by characters if there are linear characters ny,...,74 : G — (F%)* C F* such that
Xi/Xifl = F(T}Z) for all 7.

LEMMA 7.2.1.1. If0 - X' — X — X” — 0 is an exact sequence of semi-linear
F-representations of G, then X is triangulable if and only if X' and X" are triangulable.

7.2.2. The trace form. If V is a semi-linear F-representation of GG, then the F-
vector space Endp (V) equipped with the action g.f : z — g(f(¢g ' .x)) is a semi-linear
F-representation of G of dimension (dimg V)2 If  : G — F* is a 1-cocycle (for example,
a linear character j1 : G — (F%)*), then let Endz(G)(p) denote Endp(G) @p F(u), where
F(u) = F - e with g(e) = p(g)e is the 1-dimensional semi-linear F-representation of G
defined by p. For all f € Endp(V)(1) and all g € G, we have Tr(g.f) = u(g)g(Tr(f)).
In particular, Wy = {f| Tr(f) = 0} C Endp(V)(r) is a G-stable sub-F-vector space.

The map

(=) Endp(V) (1) x Endp(V)(1) = F(1?)
(h, 1) — Tr(ho })

satisfies the following properties:

(1) (-,-) is F-bilinear,
(2) (-,-) is symmetric,
(3) {g-h, g.b) = u*(g)g((h, ).
In particular, if W C Endr(V)(p) is a G-stable sub- F-vector space, then W+ = {h| Tr(ho
h') =0 for all ¥’ € W} C Endp(V) (1) is a G-stable sub-F-vector space.
The trace form (-,-) is, in particular, a bilinear form; therefore, if Wy N W3- = {0},
then Endp (V) = Wy @ Wyt as F-vector spaces, and in this case Endp(V)(u) = Wy ® Wy

is a decomposition into G-stable sub-F-vector spaces.
LEMMA 7.2.2.1. If char(F) = 0, then Wy N Wy = {0}.

PROOF. If h € Wy N W3k, then Tr(h o h) = 0 and thus h? € W,. We therefore have
Tr(h*) = 0 for all k > 1. Since char(F) = 0, h is therefore nilpotent. Let £ = (ey, ..., eq)
be a Jordan canonical basis for h, so that Mat(h|E) is a direct sum of r x r blocks of
the form J,(0) = (a;;)1<ij<r With a;; = 1if j =i+ 1 and a;; = 0 otherwise. If h # 0,
then we may suppose that h(e;) = 0 and h(e2) = e;. Let ' : V. — V be the F-linear
map defined by h'(e;) = e; and h'(e;) = 0 for all j # 1. Note that Tr(h') = 0, but that
Tr(hoh) =1 # 0, which contradicts h € W;-. We must therefore have h = 0. O
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7.2.3. Triangulable tensor products.

LEMMA 7.2.3.1. If F is of characteristic 0, if X and X' are irreducible semi-linear
F-representations of G, and if n : G — (F%)* C F* is a linear character, then every
short ezact sequence 0 — kergo — X @p X' 5 F(n) — 0 is split in the category of

semi-linear F'-representations of G.

PrROOF. The G-equivariant F-linear map ¢ is non-zero, and therefore gives an iso-
morphism of semi-linear representations x +— (' — ¢(x ® 2)) : X LR (X"*(n). We
therefore have an isomorphism @ : X ®p X' ~ (X™* @p X')(n) ~ Endp(X’)(n) of semi-
linear F-representations of G which sends a ®b to the endomorphism f : w — ¢'(a @ w)b.
If € X ®p X', then a calculation reveals that = € ker ¢ if and only if Tr(®(z)) = 0.
The sub-F-vector space Wy C Endp(X’)(n) is G-stable. The map (-,-) : Endp(X’)(n) x
Endr(X')(n) — F(n?) given by (h,h') — Tr(h o k') is a G-equivariant symmetric F-
bilinear form, so that W~ = {h € Endp(X")(n)| Tr(hoh') = 0 for all h € W} is G-stable.
Moreover, by lemma we have Wy N W3- = {0}, so that Endp(X")(n) = Wy & W5t
and therefore X®@p X' = ker & f (W) = ker o F () as a semi-linear F-representation

of GG. O

COROLLARY 7.2.3.2. If F is of characteristic 0, if X and X' are irreducible semi-

linear F-representations of G, and if X ®p X' is triangulable by characters ny,...,ng :
G — (FO)* C F*, then X ®p X' ~ @, F(n:).

PRrOOF. Let {0} = Xy C X; C ... C Xy = X ®r X' be G-stable sub-F-vector spaces
such that X,;/X; 1 ~ F(n;) for all i € {1,...,d}. For each i, let ¢; : X; — F(n;) denote
the quotient morphism. By lemma [7.2.3.1] the exact sequence 0 — X, 1 — X ®@p X' —
F(n4) — 0is split, and therefore X®@p X' ~ X, 1B F(ny) as semi-linear F-representations
of G.

Suppose that we have an isomorphism X ®p X' ~ X, @ F(n;+1) @ ... ® F(n4) of
semi-linear F-representations of G, with j € {1,...,d—1}. If p; : X ®p X' — X is
the natural G-equivariant F-linear projection and if ¢; = ¢; o p;, then lemma
implies that the exact sequence 0 — ker(¢;) - X ®@p X’ Y (n;) — 0 is split. Since
ker(pjop;) = Xjo1 ® F(njq1) @ ... ® F(n4), we therefore see that X ®@p X' ~ X;_; &
F(n;) ® F(njt1) ® ... ® F(n4). The claim therefore follows by induction. O

7.3. Triangulable tensor products

7.3.1. Triangulable tensor products. In this section, let £/Q, and K/Q, be fi-
nite extensions. By proposition|7.1.2.5, Frac(B.)®q, F is a field and therefore Frac(B.)®q,
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E = Fg. In particular, if E'/E is a finite extension, then Fp®gE’ = Fp and if K D B¢

then Fg is isomorphic as a G g-ring to the compositum of Frac(B,.) and E inside Bgg.

LEMMA 7.3.1.1. Let YY" be irreducible semi-linear Fg-representations of Gg. If
there are linear characters my,...,n, : Gx — E* such that Y ®p, Y' = @._, Fe(n:),
then ny 'n; is of finite order for alli € {1,...,n}.

PROOF. Foreachi € {1,...,n}, let ¢; : Y ®p, Y’ — Fgr(n;) denote the surjective G -
equivariant projection coming from the direct sum decomposition. Since Y and Y’ are
irreducible, we have isomorphisms of semilinear Fg-representations o; : Y — (Y')*(n;)
sending y — (v — ¢y ®y')) and 7; : Y/ — Y*(n;) sending v/ — (y — &i(y @ ).
Therefore, for each j € {1,...,n} we have a composite isomorphism 77 o 0; : Y — Y (1)
for each j, where u; = ny'n; : Gxg — E*. In particular, taking determinants gives
rise to an element A\ = \; € Fp — {0} such that g(A) = pfj(g)\ for all g € Gk, where
r =dimpg, Y.

In particular, taking determinants gives rise to an element A = \; € Fg — {0} such
that g(\) = uj(g)A for all g € Gk, where r = dimp, Y. Since B, g is a principal ideal
domain, we may write A = z/y with z,yB. g and (z,y) = 1, so that y|g(y) in B g and
the relation g(z) = ug(g)%x shows that = generates a Gg-stable B, g-module of rank 1,
so that x € E* by proposition . Similarly y € E*, and therefore we have pi;(g) = 1
for all g € Gk. O

THEOREM 7.3.1.2. If W and W' are B%’(E-paz’rs such that the B@E-pair W e W' is
triangulable, then there are finite extensions E'/E and L/K such that the BﬁEl—paim

(E'®@p W), and (E' @ W)|q, are triangulable.

PROOF. The semi-linear Fg-representations X = Fg ®p, , W, and X' =Fg ®B, 5 w!
of G admit filtrations {0} = Xy C X; C ... X; = X and {0}:X’ C X} C CX’,:
X' by sub-Fg-representations of Gy such that the quotients X;/X,; ; and X/ / _, are
irreducible for all 1 <i < d and 1 < j < d'. The semi-linear Fg-representation X ®p, X’
is triangulable by , and therefore 1emma implies that X;/X; 1 ®@p, Xj/ X} 4
is triangulable for all 1 <i<dand 1 <j <d'.

Fix i€ {l,...,d} and j € {1,...,d'}. Let Y = X;/X; ; and Y' = X}/ X} |, and let
r = dimp, Y and r’ = dimpg, Y'. By lemma|(7.1.3.1] there are B‘%{ -pairs U and U’ such
that Y = Fg ®p, , U. and Y' = Fg ®B_ U’

er

By corollary [7.2.3.2) Y ®p, Y/ = @' i1 Y}, where Y; is a 1-dimensional semi-linear

Fg-representation of G for each j. By lemmas[7.1.3.1] and [2.5.2.1] there are characters

Ny s+ Gg — E* such that Y; = Fg(n;), and lemma [7.3.1.1] implies that n; 'n;
is of finite order for each j. If K'/K is a finite extension such that n 'n;|q,, = 1 for
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all j and K’ D ES then Y @5, Y'(n,') = @;Zl Fg as semilinear Fp-representations
of Gk and extending scalars by the Gk-equivariant map B, p — Fr — Bgr g shows
that Bar,g ®8,., U @ U'(n, 1) admits a Bgg p-basis of G gs-invariants, and therefore the
Bﬁf—pair U ® U'(n;') is de Rham, and thus potentially semi-stable. Let L/K’ be a
finite extension such that U @ U’(n;"') is a semi-stable B&E—pair. By theorem |5.1.0.15|
there is a finite extension F’/E and a character u : G, — E'” such that the B&El—pairs
(B'®@U)|g, (n™") and (E' @ U'(n;"))|g, (1) are semi-stable, and therefore triangulable
by corollary [7.1.4.2] Since triangulability is insensitive to twisting by characters, we see
that Fr @p, Yle, and Fg ®p, Y'|¢, are triangulable by corollary [7.1.3.2]

Therefore, for finite extensions E'/E and L/K big enough, (Fr ®p, X)|g, and

(Fr ®py, X')|e, are successive extensions of triangulable Fp/-representations of G, and

therefore are themselves triangulable by lemma |7.2.1.1] By corollary [7.1.3.2, the BFEE/-
pairs (E' @ W)l|g, and (E' @ W')|g, are triangulable.

g

COROLLARY 7.3.1.3. If V and V' are linear E-representations of G such that V&gV’

is trianguline, then V and V' are potentially trianguline.

7.3.2. Quaternions. Let (g denote the group of quaternions. If p > 0 is a prime
congruent to 3 mod 4, then there is an octic Galois extension K/Q, such that Gal(K/Q,) =
Qs; for the construction of such extensions, see p. 466 of [Jen89]. There are six non-
isomorphic Galois extensions K/Qy with Gal(K/Qz) isomorphic to Qg, four of which
are totally ramified; for the construction of such extensions, see chapter 3, section 1 of
[HSVTO09], or [JenYui8§].

let £/Q, be a finite extension containing Q,(y/—1), and let K/Q, be an octic Galois
extension such that Gal(K/Q,) is isomorphic to the group Qs. If Qs = {£1d, £i, £j, ¢} C
GLy(E) is the sub-group generated by the matrices i = ({ %), = (%), and £ = (9}),
then we have an isomorphism Gal(K/Q,) = Qs. Let (V,p) denote the E-vector space
V =FE-e;®FE-e; endowed the E-linear action of Gq, defined as follows: if g € Gq, and
if g denotes the image of g in Qs, then the matrix of g acting on (eq, es) is g.

The representation (V, p) is potentially trivial, and thus potentially trianguline. On
the other hand, the relation i = j?> = €2 = {j¢ = — Id implies that that the semi-linear
Fg-representation X = Fp @p V of Gq, is irreducible (for any £ D Q,(v/—1)), and
therefore V' is not trianguline by corollary [7.1.3.2]

On the other hand, (e; ®e;+es®eg,61@e1 —eaReg, 61 Res+e3R e, 61 R e —ea®eq)
is a basis of V ®p V consisting of simultaneous eigenvectors for the p(g) with eigenvalues

in {1}, so that V ®g V' is a direct sum of characters of G, and therefore trianguline.
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