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We develop a stochastic model for Lagrangian velocity as it is observed in experimental
and numerical fully developed turbulent flows. We define it as the unique statistically
stationary solution of a causal dynamics, given by a stochastic differential equation. In
comparison with previously proposed stochastic models, the obtained process is infinitely
differentiable at a given finite Reynolds number, and its second-order statistical properties
converge to those of an Ornstein–Uhlenbeck process in the infinite Reynolds number
limit. In this limit, it exhibits furthermore intermittent scaling properties, as they can be
quantified using higher-order statistics. To achieve this, we begin with generalizing the
two-layered embedded stochastic process of Sawford (Phys. Fluids A, vol. 3 (6), 1991,
pp. 1577–1586) by considering an infinite number of layers. We then study, both
theoretically and numerically, the convergence towards a smooth (i.e. infinitely
differentiable) Gaussian process. To include intermittent corrections, we follow similar
considerations as for the multifractal random walk of Bacry et al. (Phys. Rev. E, vol. 64,
2001, 026103). We derive in an exact manner the statistical properties of this process,
and compare them with those estimated from Lagrangian trajectories extracted from
numerically simulated turbulent flows. Key predictions of the multifractal formalism
regarding the acceleration correlation function and high-order structure functions are
also derived. Through these predictions, we understand phenomenologically peculiar
behaviours of the fluctuations in the dissipative range, that are not reproduced by our
stochastic process. The proposed theoretical method regarding the modelling of infinitely
differentiability opens the route to the full stochastic modelling of velocity, including the
peculiar action of viscosity on the very fine scales.

Key words: homogeneous turbulence, isotropic turbulence, turbulence theory

1. Introduction

Stochastic modelling of Lagrangian velocity and acceleration has a long history in the
literature of turbulent flows (see Pope 1990; Pope & Chen 1990; Sawford 1991; Borgas &

† Email address for correspondence: laurent.chevillard@ens-lyon.fr
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900 A27-2 B. Viggiano and others

Sawford 1994; Wilson & Sawford 1996; Pope 2002; Beck 2003; Friedrich 2003; Mordant
et al. 2003; Reynolds 2003; Sawford et al. 2003; Reynolds et al. 2005; Lamorgese
et al. 2007; Minier, Chibbaro & Pope 2014, and references therein). Typical modelling
approaches consist of proposing a random process in time for the velocity v(t) of a tracer
particle advected by a turbulent flow begins with reproducing the expected behaviour
given by the standard phenomenology of turbulence. At very large Reynolds number, in a
sustained, statistically stationary, turbulent flow of characteristic large integral length scale
L, (i) Lagrangian velocity itself is a statistically stationary process of finite variance 〈v2〉 =
σ 2 and is correlated over a large time scale T ∝ L/σ , (ii) it is non-differentiable (i.e.
rough) such that the velocity increment variance 〈(δτ v)2〉, where δτv(t) = v(t + τ) − v(t),
is proportional to τ as the scale τ becomes smaller. This is the standard dimensional
picture of Lagrangian turbulence at infinite Reynolds numbers (Monin & Yaglom 1971;
Tennekes & Lumley 1972). Nonetheless, at a finite Reynolds number, let us stress that
v is regularized at small scales by viscosity, and an appropriate modelling must produce
differentiable kinematic quantities.

From a stochastic point of view, we could wonder whether a random process v(t) with
t ∈ R, and its respective dynamics ensuring causality could be built with the capability
of reproducing these aforementioned statistical properties. More precisely, rephrased in
terms inherited from the mathematics of stochastic differential equations, we would like
to define such a process v(t) as the solution of an evolution equation forced by a random
force. Henceforth, we will attribute the causality property to a given random process
v(t) if its infinitesimal increment dv(t) ≡ v(t + dt) − v(t) over dt is governed by the
history of v(t) (or any functionals of it) up to time t, and additional non-anticipative
filtering of the Wiener process (see for instance the textbook of Nualart (2000)). In this
context, the simplest linear and Markovian stochastic evolution is given by the so-called
Ornstein–Uhlenbeck (OU) process that reads

dv(t) = − 1
T

v(t) dt +
√

2σ 2

T
W(dt), (1.1)

where W(dt) is an instance of the increment over dt of a Gaussian Wiener process. It
can be understood in a heuristic way as a collection of independent realizations of a
zero-average Gaussian random variable of variance dt (i.e. a white noise). The statistical
properties of the unique solution v(t) of this evolution (1.1) are precisely reviewed in
§ 2.1. We can nonetheless notice that since v is defined as a linear operation on a
Gaussian random force, it is necessarily Gaussian itself, and is indeed consistent with
a finite-variance process 〈v2〉 = σ 2 and the linear behaviour of its respective second-order
structure function 〈(δτ v)2〉 with τ representing the time delay (see the discussion in § 2.1
and (2.7)).

Going beyond this simple phenomenology, and its respective stochastic modelling, we
would like to include finite Reynolds number effects, and in particular acquire a stochastic
description of the related acceleration process a(t) = dv(t)/dt. Notice that the stochastic
evolution of v(t) using a OU process (1.1) is typical of a non-differentiable process, and
thus fails to reproduce proper statistical behaviours for a. To do so, we have to replace
the white noise term W(dt) entering in (1.1) by a finite-variance random force, correlated
over a non-vanishing time scale τη, that eventually depends on viscosity, known as the
dissipative Kolmogorov time scale. If we furthermore assume that this random force is
itself defined as the solution of an OU process of characteristic time scale τη, we recover
the two-layered embedded stochastic model of Sawford (1991). We review its statistical
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-3

properties in § 2.2.1. This model is appealing since it incorporates, in a simple way, the
additional necessary time scale τη implied by the finite value of viscosity, or equivalently,
the finite value of the Reynolds number. Both velocity and acceleration are statistically
stationary and of finite variance in this framework, and the predicted acceleration
correlation function reproduces in a consistent way the fact that it has to cross zero in the
vicinity of τη, before decaying towards 0 over T . Nonetheless, whereas the model gives
an appropriate description of the velocity correlation function in both the inertial and
dissipative ranges, further comparisons with numerical data (see respective discussions
in Sawford (1991), Lamorgese et al. (2007)) underlined its limitations regarding the
behaviour of the acceleration correlation function in the dissipative range, i.e. for time
lags smaller than this zero-crossing time scale.

Obviously, in the model of Sawford (1991), whereas velocity is differentiable, leading
to a finite-variance acceleration process, it is not twice differentiable: the obtained
acceleration process is not a differentiable random function. This observation has strong
implications on the shape of the acceleration correlation function. In particular, in the
dissipative range, as observed in numerical data for both velocity and acceleration, and
expected from the physical point of view when viscosity is finite, correlation functions of
differentiable random functions are parabolic (or smoother) in the vicinity of the origin,
whereas the predicted acceleration correlation function of Sawford (1991) behaves linearly.
Modelling Lagrangian velocity by a two-layered embedded OU process, hence, appears to
be too simplistic to reproduce the correlation structure of acceleration in the dissipative
range.

For this reason, we found it relevant and original to develop and generalize the model of
Sawford (1991) in order to provide a meaning and answer to the following question: can
we construct a causal stochastic process which is infinitely differentiable at a given finite
Reynolds number, or equivalently at a given finite dissipative time scale τη, consistent
with the standard aforementioned phenomenology of turbulence in the inertial range
(i.e. for scales τη � τ � T), and that converges towards an OU process (1.1) at infinite
Reynolds numbers (or equivalently as τη → 0)? We indeed develop in §§ 2.2.2 and 2.3
such a process. It is obtained as the generalization of the framework of Sawford (1991) to
n layers, the first layer corresponding to a Langevin process of characteristic time scale
T , and then n − 1 layers corresponding to the dynamics of the random forcing term given
by Langevin processes of characteristic time scale τη. Infinite differentiability is attained
while iterating this procedure for an infinite number of layers n → ∞, while properly
normalizing the small time scale τη by a factor

√
n to ensure a non-trivial convergence, as

is rigorously done in § 2.3. We eventually end up with an infinitely differentiable causal
random process, which is Gaussian, and derive in an exact manner its statistical properties
(listed in Proposition A.2). We furthermore propose a first numerical illustration of this
process in § 2.4, through the simulation of a time series of velocity and its respective
acceleration, and comparison with theoretical expressions.

As mentioned, since its dynamics is made of embedded linear operations on a Gaussian
white noise, it is itself Gaussian. Such a Gaussian framework, in particular for acceleration,
is at odds with experimental and numerical investigations of Lagrangian turbulence
(see Yeung & Pope 1989; Voth, Satyanarayan & Bodenschatz 1998; La Porta et al.
2001; Mordant et al. 2001, 2002, 2003; Chevillard et al. 2003; Friedrich 2003; Biferale
et al. 2004; Toschi & Bodenschatz 2009; Pinton & Sawford 2012; Bentkamp, Lalescu
& Wilczek 2019, and references therein). As correctly predicted by Borgas (1993), the
observed level of intermittency in the Lagrangian framework is found much higher than in
the Eulerian framework (Frisch 1995).
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900 A27-4 B. Viggiano and others

To reproduce these highly non-Gaussian features of Lagrangian turbulence, we propose
then to extend the construction of the current infinitely differentiable process to include
the intermittent, i.e. multifractal, nature of the fluctuations. To do so, we first revisit
the construction of the so-called multifractal random walk of Bacry, Delour & Muzy
(2001) that was shown in Mordant et al. (2002) to reproduce several key aspects of
Lagrangian intermittency. Compared with previously published investigations, we include,
in an original way, the notion of causality in this non-Gaussian random walk. We design
a stochastic evolution for the probabilistic model of the intermittency phenomenon (i.e.
the multiplicative chaos) in § 3.1. We then proceed with deriving in a rigorous way its
statistical properties, and list them in Proposition A.3 and § 3.1. Finite Reynolds number
effects, and the implied infinite differentiability, are then included in a similar fashion as in
the first part of the article. Developments on this intermittent and infinitely differentiable
process are proposed in § 3.2, and we highlight its statistical properties in Propositions
A.4–A.6. As we explain in § 3.1, including intermittency implies the introduction of a
non-Markovian step, that is necessary to reproduce the high level of roughness (that we
define precisely) implied by the multifractal structure of the trajectories. This, then, asks
for the design of a novel numerical algorithm able to simulate in an efficient way its
time series. We propose in § 3.3.1 such an algorithm in which efficiency is based on its
formulation in the Fourier space, allowing optimal consideration given its non-Markovian
nature. Simulations of the time series of velocity and acceleration are proposed in
§ 3.3.2, where we compare the numerical estimation of their statistical properties with
our theoretical predictions.

Section 4 is devoted to the comparison of the statistical properties of the infinitely
differentiable multifractal process with trajectories extracted from direct numerical
simulations (DNSs) of the Navier–Stokes equations (see details on the database in § 4.1).
To make this comparison transparent and reproducible, we explain in § 4.4.2 the chosen
procedure to calibrate the model parameters τη and T , and their link to the physical
parameters of the DNS data. Overall, we find good agreement between the statistical
properties of the DNS data, and of those predicted by our theoretical approach. We
nonetheless underline some discrepancies on the flatness of velocity increments in the
dissipative range: As detailed in § 4.5, the model does not reproduce the observed rapid
increase of the flatness in the dissipative range, a behaviour which is known to be related
to the very peculiar differential action of viscosity on the final damping of the singularities
developed by the flow.

This motivates the final investigation that we propose in § 5 where we derive the
corresponding predictions as they are obtained from the multifractal formalism (Frisch
1995). As far as we know, this has never been done for the acceleration correlation
function, and we take special care to quantify precisely the respective prediction for the
Reynolds number dependence of acceleration variance (see § 5.2.3). Compared with the
previous approach, aimed at building a stochastic process as the solution of a causal
dynamical evolution, the multifractal formalism is not as complete from a probabilistic
point of view: we do not obtain the time series of velocity and acceleration, but only
model some of their statistical properties (i.e. their high-order structure functions). Once
again the calibration procedure is detailed (§ 5.3) and proceeded by the comparison with
DNS data. We observe also an excellent agreement between predictions and estimations
based on DNS data. In particular, which is our initial motivation, multifractal formalism,
and its modelling of a fluctuating dissipative time scale, is able to reproduce this rapid
increase of the flatness in the dissipative range.

We gather conclusions and perspectives in § 6.
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-5

2. Ordinary and embedded Ornstein–Uhlenbeck processes as statistically stationary
models for Lagrangian velocity and acceleration

2.1. Ordinary single-layered Ornstein–Uhlenbeck process
Standard arguments developed in turbulence phenomenology (Tennekes & Lumley 1972)
lead to the consideration of, as a stochastic model for velocity of Lagrangian tracers, the
OU process. In particular, such a process reaches a statistically stationary regime in which
variance is finite and exponentially correlated. Let us denote such a process by v1(t), and
define it as the unique stationary solution of the following stochastic differential equation,
also called Langevin equation,

dv1(t) = − 1
T

v1(t) dt + √
qW(dt), (2.1)

where T is the turbulence (large) turnover time, W(t) is a Wiener process and W(dt)
its infinitesimal increment over dt (i.e. independent instances of a Gaussian random
variable, zero average and of variance dt). It obeys the following rule of calculation (cf.
Nualart 2000): any appropriate deterministic functions f and g, which follow particular
integrability conditions such that, 〈∫

A
f (t)W(dt)

〉
= 0, (2.2)

and 〈∫
A

f (t)W(dt)
∫
B

g(t)W(dt)
〉

=
∫
A∩B

f (t)g(t) dt, (2.3)

where 〈·〉 stands for ensemble average, and A ∩ B is the intersection of the two ensembles
A and B.

The unique statistically stationary solution of the stochastic differential equation (SDE)
provided in (2.1) can be written conveniently as

v1(t) = √
q
∫ t

−∞
e−(t−t′)/TW(dt′). (2.4)

Since v1 is defined as a linear operation on the Gaussian white noise W(dt), it is Gaussian
itself. Following the rules given in (2.2) and (2.3), it is thus fully characterized by its
average and correlation function. In particular, v1 is a zero-average process, i.e. 〈v1〉 = 0,
and is correlated as

Cv1(t1 − t2) ≡ 〈v1(t1)v1(t2)〉 = q
∫ min(t1,t2)

−∞
exp(−(t1 + t2 − 2t)/T) dt = qT

2
e−|t1−t2|/T .

(2.5)

Notice that v1 is a finite-variance process 〈v2
1〉 = qT/2 (consider the value of the

correlation function (2.5) at equal times, t1 = t2), and behaves at small scales as a
Brownian motion, as is required by the dimensional arguments developed in the standard
phenomenology of turbulence at infinite Reynolds number (Tennekes & Lumley 1972).
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900 A27-6 B. Viggiano and others

To see this, define the velocity increment as

δτv1(t) ≡ v1(t + τ) − v1(t), (2.6)

and notice that 〈
(δτ v1(t))2〉 = 2

[〈
v2

1

〉− Cv1(τ )
] ∼

τ→0
q|τ |. (2.7)

The scaling behaviour given in (2.7) is typical of non-differentiable processes. Hence,
the respective acceleration process a1(t) ≡ dv1/dt is ill-defined (actually it is a random
distribution). To circumvent this pathological behaviour, Sawford (1991) has proposed
introducing the dissipative Kolmogorov time scale τη, which will be discussed in the
following section.

2.2. Embedded Ornstein–Uhlenbeck processes

2.2.1. Two layers: the Sawford model
Here, we follow the approach developed by Sawford (1991). We consider the following

embedded OU process v2(t):

dv2

dt
= − 1

T
v2(t) + f1(t), (2.8)

where f1(t) in an external random force that obeys itself an ordinary OU process, as
discussed in § 2.1, but exponentially correlated over the small time scale τη. It is thus
defined as the unique solution of the following SDE

df1(t) = − 1
τη

f1(t) dt + √
qW(dt). (2.9)

Hence, it is a zero-average Gaussian process, and its correlation function is given by

Cf1(τ ) ≡ 〈 f1(t)f1(t + τ)〉 = qτη

2
e−|τ |/τη . (2.10)

The unique statistically stationary solution of (2.8) is once again given by

v2(t) =
∫ t

−∞
e−(t−t′)/T f1(t′) dt′,

showing that v2 is a zero-average Gaussian process, and correlated as

Cv2(τ ) ≡ 〈v2(t)v2(t + τ)〉 =
∫ t

−∞

∫ t+τ

−∞
exp(−(2t + τ − t1 − t2)/T)Cf1(t1 − t2) dt1 dt2.

(2.11)
Assuming without loss of generality τ ≥ 0 (recall that the correlation function of a
statistically stationary process is an even function of its argument), splitting the integral
entering in (2.11) over the dummy variable t2 into the two sets [−∞, t] and [t, t + τ ], and
performing the remaining explicit double integral, we obtain the following expression:

Cv2(τ ) = qτ 2
η T2

2(T2 − τ 2
η )

[
Te−|τ |/T − τηe−|τ |/τη

]
, (2.12)

which is in agreement with the formula given by Sawford (1991).
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-7

The respective acceleration process a2(t) ≡ dv2(t)/dt, obtained from (2.8), is
accordingly a zero-average Gaussian process, and its correlation function is given by

Ca2(τ ) ≡ 〈a2(t)a2(t + τ)〉

= − d2

dτ 2
〈v2(t)v2(t + τ)〉 = qτ 2

η T2

2(T2 − τ 2
η )

[
− 1

T
e−|τ |/T + 1

τη

e−|τ |/τη

]
. (2.13)

Notice that the function Cv2 (2.12) is indeed twice differentiable at the origin, contrary to
the function Cv1 (2.5), such that a2 has finite variance given by Ca2(0) (2.13).

2.2.2. Generalization to n layers
By iterating the aforementioned procedure, we can consider similarly n additional layers

instead of a single one, as proposed in the embedded Ornstein–Uhlenbeck process (2.8)
by Sawford. Here, acceleration is a well-defined random process and so are the velocity
derivatives of order n. Once again, these additional layers will eventually be modelled as
OU processes. A similar type of procedure has been adopted in Arratia, Cabana & Cabana
(2014) in a different context. The obtained embedded structure is defined using a set of n
coupled stochastic ordinary differential equations (ODEs), with n ≥ 2, that reads

dvn

dt
= − 1

T
vn(t) + fn−1(t), (2.14)

dfn−1

dt
= − 1

τη

fn−1(t) + fn−2(t), (2.15)

· · · (2.16)

df2

dt
= − 1

τη

f2(t) + f1(t), (2.17)

df1 = − 1
τη

f1(t) dt + √
q(n)W(dt). (2.18)

The remaining free parameter q(n) can be eventually chosen such that

〈v2
n〉 = σ 2, (2.19)

independently of τη and/or the number of layers n, as is required by the standard
phenomenology of Lagrangian turbulence (Tennekes & Lumley 1972).

We present in Proposition A.1 the explicit computation of the correlation functions
of velocity vn and the respective acceleration an in the statistically stationary regime,
obtained from the set of (2.14)–(2.18) as t → ∞. Their expressions are especially simple
in the spectral domain, and read, considering n ≥ 2 to ensure that acceleration is a
well-defined process,

Cvn (τ ) = q(n)

∫
R

e2 iπωτ T2

1 + 4π2T2ω2

[
τ 2
η

1 + 4π2τ 2
η ω2

]n−1

dω, (2.20)

and

Can (τ ) = q(n)

∫
R

4π2ω2e2 iπωτ T2

1 + 4π2T2ω2

[
τ 2
η

1 + 4π2τ 2
η ω2

]n−1

dω, (2.21)
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900 A27-8 B. Viggiano and others

where the multiplicative factor q(n) (defined in (A 6)) enforces the prescribed value of
velocity variance (2.19). Let us notice that taking n = 2 layers, the respective correlation
of the process v2 coincides with the one proposed in Sawford (1991), as recalled in § 2.2.1.

It is interesting to consider the limiting process v or a when the number of layers n
goes towards infinity from a physical point of view, which would give an example of a
causal infinitely differentiable process, if such a process exists. It is indeed possible to
show rigorously that the correlation function of vn (2.20) loses its dependence on the
time scale τ . We then have Cvn (τ ) → σ 2 for any τ ≥ 0 as n → ∞. Thus, asymptotically,
the limiting process does not decorrelate, which is at odds with the expected behaviour.
We will see in the following § 2.3 that by considering the re-scaled dissipative time scale
τη/

√
n − 1 instead of τη, the system of equations will converge towards a proper process

with an appropriate correlation function as n → ∞.

2.3. Towards an infinitely differentiable causal process
Consider the following system of embedded differential equations:

dvn

dt
= − 1

T
vn(t) + fn−1(t), (2.22)

dfn−1

dt
= −

√
n − 1
τη

fn−1(t) + fn−2(t), (2.23)

· · · (2.24)

df2

dt
= −

√
n − 1
τη

f2(t) + f1(t), (2.25)

df1 = −
√

n − 1
τη

f1(t) dt + √
αnW(dt), (2.26)

with

αn =
(

n − 1
τ 2
η

)n−1
2σ 2e−τ 2

η /T2

Terfc
(
τη/T

) , (2.27)

where we have introduced the error function erf(t) = (2/
√

π)
∫ t

0 e−s2 ds, and its respective
complementary erfc(t) = 1 − erf(t). The chosen white noise weight αn (2.27) ensures that
the variance of the limiting process v is finite with 〈v2〉 = σ 2.

We summarize and derive in appendix A (see Proposition A.2) the statistical properties
of the unique statistically stationary solution of the set of embedded differential
(2.22)–(2.26). In particular, the velocity correlation function now reads

Cvn (τ ) = 2σ 2e−τ 2
η /T2

Terfc
(
τη/T

) ∫
R

e2 iπωτ T2

1 + 4π2T2ω2

⎡⎢⎢⎣ 1

1 + 4π2τ 2
η ω2

n − 1

⎤⎥⎥⎦
n−1

dω. (2.28)

Whereas the function provided in (2.20) does not converge towards a correlation
function of a well-behaved stochastic process as the number of layers goes to infinity,
(2.28) does. In other words, through iteration of the set of embedded differential
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-9

equations, (2.22)–(2.26), over an infinite number of layers n → ∞, we obtain an infinitely
differentiable and causal Gaussian process, in which the velocity correlation function
reads, in the stationary regime,

Cv(τ ) = σ 2 e−|τ |/T

2erfc(τη/T)

[
1 + erf

( |τ |
2τη

− τη

T

)
+ e2|τ |/Terfc

( |τ |
2τη

+ τη

T

)]
. (2.29)

Let us notice that indeed Cv(0) = 〈v2〉 = σ 2. Furthermore, taking the second derivatives
of (2.29) and multiplying by the factor −1/2, we obtain the respective acceleration
correlation function

Ca(τ ) = σ 2

2T2erfc(τη/T)

[
2T

τη

√
π

exp

(
−
(

τ 2

4τ 2
η

+ τ 2
η

T2

))
− e−|τ |/T

(
1 + erf

( |τ |
2τη

− τη

T

))

−e|τ |/Terfc
( |τ |

2τη

+ τη

T

)]
. (2.30)

2.4. A first numerical illustration
A first numerical illustration is proposed to observe numerically how the statistical
characteristics of the Gaussian process vn , typically its correlation function and the one of
the associated acceleration for a given set of values of the parameters τη and T go towards
the limiting process v (and given in Proposition A.2) as the number of layers n increases.
This limiting process v, being Gaussian and of zero average, is completely characterized by
its correlation function (2.29) in the statistically stationary regime, and could be obtained
as a linear operation on the white Gaussian noise. Performing such a simulation is possible,
although a causal kernel would need to be found such that the correlation function is
consistent with (2.29). Although interesting, this is not a simple task and this perspective
is kept for future investigations. Furthermore, in subsequent numerical simulations, the
convergence towards the statistically steady state while solving the transient regime is
observed. For these reasons, the set of stochastic differential equations (2.22)–(2.26) for a
given finite number of layers n will be solved, and thus give a numerical estimation of the
process vn and its statistical properties.

We perform a numerical simulation of the set of (2.22) to (2.26) using n = 9 layers,
and for τη = T/10. Choose, for instance, T = 1, which is equivalent to dimensionalized
time scales in units of T . Time integration is performed with a simple Euler discretization
scheme. The choice for dt is dictated by the smallest time scale of the system; here,
τη/

√
n − 1. Presently for n = 9, we found the value dt = τη/100 small enough to

guarantee the appropriate behaviour. We take σ 2 = 1, and the respective weight α9 of
the white noise is given in (2.27). Trajectories are then integrated over 104T and results
are shown in figure 1. We could have chosen to perform a simulation using more layers,
although the simulation gets heavier, and as we will see, the statistical properties of the
obtained process are observed very close to the asymptotic ones (as n → ∞). Also, recall
that the white noise weight αn+1 (2.27) increases as nn , so from a numerical point of
view, if n is chosen large, it may introduce additional rounding errors related to the
double-precision floating-point format.

We display first in figure 1(a) an instance of the obtained processes v9(t) and its
derivatives a9(t), over 5T after numerically integrating the (2.22)–(2.26). As claimed in
Proposition A.2, the process v9 (which correlation function is given in (2.28)) is 8-times
differentiable. Its first derivative a9(t) is consequently 7-times differentiable; resulting in
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FIGURE 1. Numerical simulation of the set of (2.22)–(2.26) using n = 9 layers, for τη = T/10
and σ 2 = 1 (see text). (a) Typical time series of the obtained processes v9(t) (dashed line)
and a9(t) (solid line), as a function of time t. (b) Respective velocity correlation functions Cv9 ,
estimated from numerical simulations (dots), theoretically derived from (2.28) (solid line), and
the correlation function of the asymptotic process Cv , of which the expression is provided in
(2.29). (c) Acceleration correlation functions Can using n layers, n ranging from 2 to 9 (from left
to right), using σ 2 = 1 and αn = α9 (2.27). Numerical estimations from time series are displayed
with dots, respective theoretical expressions from (2.28) are represented with solid lines, and the
asymptotic correlation function Ca (2.30) is shown with a dashed line. For the sake of clarity, all
curves are normalized by their values at the origin (i.e. the respective variances). (d) Similar plot
as in (c), but only the layer n = 9 is displayed, over a shorter range of time lag τ .

a smooth profile correlated over τη. We could have performed a similar simulation using
additional layers, although its estimated correlation functions of velocity and acceleration
will eventually be close to the asymptotic ones of v (and provided in Proposition A.2).

In figure 1(b), we present three curves corresponding to (i) the estimated correlation
function Cv9 (dots), (ii) its theoretical expression (solid line), obtained when performing the
integral entering in (2.28) using a symbolic calculation software, and (iii) the asymptotic
correlation function Cv given in (2.29) (dashed line). The profiles collapse, making it
difficult to distinguish between these three curves. The velocity correlation functions Cvn

depend weakly on n (not shown). This can be understood easily since the dependence on n
is only really crucial at the dissipative scales; scales that are solely highlighted by a small
scale quantity such as acceleration.

In this context, we present in figure 1(c) the corresponding estimated and theoretical
curves Can for n ranging from 2 to 9 to observe and quantify the convergence of
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-11

the acceleration correlation function towards its asymptotic regime. Recall that Ca2

corresponds to the prediction of Sawford (1991) (see (2.13)), which is characteristic of
the correlation function of a non-differentiable process (Ca2 is not twice differentiable at
the origin). A perfect agreement between the numerical estimation based on random time
series, and the theoretical expressions is observed and also derivable from (2.28). As the
number of layers n increases, the acceleration correlation functions become more and
more curved at the origin, guaranteeing finite variance of higher-order derivatives. We
superpose on this figure the associated asymptotic correlation function Ca using a dashed
line. Its explicit expression is given in (2.30); Ca9 is indeed very close to Ca, as shown in
figure 1(d). This shows that considering n = 9 layers is enough to reproduce the statistical
behaviours of the asymptotic process, at least for velocity and acceleration, which are our
main concern.

3. An infinitely differentiable causal process, asymptotically multifractal in the
infinite Reynolds number limit

We now elaborate on the system proposed in (2.22)–(2.26) in order to include
intermittent, i.e. multifractal, corrections. We have to introduce more elaborate
probabilistic objects to do so in the spirit of the multifractal random walk (Bacry et al.
2001), applied to the Lagrangian context by Mordant et al. (2002, 2003). Recall that the
zero-average process v(t), obtained as the limit when n → ∞ of the causal system defining
vn ((2.22)–(2.26)), is Gaussian, thus fully characterized by its correlation function (given
in Proposition A.2). To go beyond this Gaussian framework, where linear operations on
a Gaussian white noise W(dt) are involved, we will consider in the sequel a nonlinear
operation while exponentiating a Gaussian field X(t). Such a logarithmic correlation
structure guarantees multifractal behaviours (specified later). The so-obtained random
field is ‘eγ X’, where γ is a free parameter of the theory that encodes the level of
intermittency. This can be seen as a continuous and stationary version of the discrete
cascade models developed in turbulence theory (see Meneveau & Sreenivasan 1987;
Benzi et al. 1993; Frisch 1995; Arneodo, Bacry & Muzy 1998 and references therein)
and is known in the mathematical literature as a multiplicative chaos (Rhodes & Vargas
2014). For recent applications of such a random distribution to the stochastic modelling
of Eulerian velocity fields, see for instance Pereira, Garban & Chevillard (2016) and
Chevillard et al. (2019). The purpose of this section is to generalize such a probabilistic
approach to a causal context, and to include finite Reynolds number effects that guarantee
differentiability below the Kolmogorov time scale τη.

3.1. A causal multifractal random walk
Let us here review the stochastic modelling of the Lagrangian velocity proposed by
Mordant et al. (2002, 2003), which is based on the multifractal process of Bacry et al.
(2001). This process can be considered as an OU process (2.1) forced by a non-Gaussian
uncorrelated random noise, and is called the multifractal random walk (MRW). Its
dynamics reads

du1,ε(t) = − 1
T

u1,ε(t) dt + √
q exp(γ X1,ε(t) − γ 2〈X2

1,ε〉)W(dt), (3.1)

where a new random field X1,ε is introduced. This random field is Gaussian, zero average
and taken independent of the white noise instance W(dt), and is thus fully characterized by
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900 A27-12 B. Viggiano and others

its correlation function. To reproduce intermittent corrections, as they have been observed
in Lagrangian turbulence (see Yeung & Pope 1989; Voth et al. 1998; La Porta et al. 2001;
Mordant et al. 2001, 2002, 2003; Chevillard et al. 2003; Biferale et al. 2004; Toschi &
Bodenschatz 2009; Pinton & Sawford 2012; Bentkamp et al. 2019, and references therein),
we demand the Gaussian field X1,ε to be logarithmically correlated (Bacry et al. 2001).
Such a correlation structure implies in particular that the variance of X1,ε diverges as
ε → 0, making it difficult to give a proper mathematical meaning to such a field. This
divergence is even amplified when considering its exponential, as is proposed in (3.1).
Instead, we rely on an approximation procedure, at a given (small) parameter ε, that will
eventually play, loosely speaking, the role of the small time scale τη of turbulence. Such
a logarithmic correlation structure has to be truncated over the large time scale T in order
to ensure a finite variance. These truncations are well understood from a mathematical
perspective (Rhodes & Vargas 2014), and a proper limit as ε → 0 leads to a well-defined,
canonical, random distribution.

Nonetheless, nothing is said in Bacry et al. (2001) about causality. Causal
representations of multifractal random fields have been previously made by Schmitt
& Marsan (2001) and Bacry & Muzy (2003), yet these propositions are not defined
as solutions of some stochastic evolutions. In order to include this important physical
constraint, we define the field X1,ε as the unique statistically stationary solution of a
stochastic differential equation, that will eventually be consistent with both truncations
over the time scales ε and T , and a logarithmic behaviour in between. Being Gaussian, and
independent of the white noise W(dt) entering in (3.1), such dynamics has to be defined as
a linear operation on an independent instance of the Gaussian white noise, call it W̃(dt),
such that 〈W(dt)W̃(dt′)〉 = 0 at any time t and t′. In this context, such a linear stochastic
evolution has been proposed by Chevillard (2017) and Pereira, Moriconi & Chevillard
(2018), and reads

dX1,ε(t) = − 1
T

X1,ε(t) dt − 1
2

∫ t

−∞
[t − s + ε]−3/2 W̃(ds) dt + ε−1/2W̃(dt). (3.2)

It can be seen as a fractional Ornstein–Uhlenbeck process of vanishing Hurst exponent
(Chevillard 2017; Pereira et al. 2018). Remark also that the underlying integration over
the past with a rapidly decreasing kernel that enters in the dynamics of X1,ε (3.2)
implies that we are dealing with non-Markovian processes. A precise and comprehensive
characterization of the statistical properties of the fields X1,ε and its asymptotical
log-correlated version X1 ≡ limε→0 X1,ε can be found in Proposition A.3.

Let us focus on the statistical properties of the MRW that now includes a causal
definition for the field X1. We will work as much as possible, for the sake of presentation,
in the asymptotic regime where we have taken the limit ε → 0. We keep in mind
that the pointwise limit of such a process u1(t) = limε→0 u1,ε(t), where u1,ε(t) is the
unique statistically stationary solution of the SDE given in (3.1), is not straightforward
to acquire, since the random field exp(γ X1,ε(t) − γ 2〈X2

1,ε〉) becomes distributional in this
limit (Rhodes & Vargas 2014). We will thus be mainly concerned with statistical quantities
of the asymptotic random process u1, but will perform standard calculations using the
classical field u1,ε(t) if necessary and convenient. Because we want to quantify the
intermittent corrections implied by the this random distribution, we propose to compute
the structure functions of the aforementioned stochastic model. Define thus the velocity
increment as

δτ u1,ε(t) = u1,ε(t + τ) − u1,ε(t). (3.3)
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-13

Accordingly, define the respective asymptotic structure functions as

Su1,m(τ ) = lim
ε→0

〈(
u1,ε(t + τ) − u1,ε(t)

)m〉
. (3.4)

In the following, we focus on the scaling properties of the structure functions of the
causal MRW u1. As a general remark, let us recall that the log-correlated field X1 and the
underlying white noise W entering in the dynamics of u1,ε are taken independently. This
implies that all odd-order structure functions vanish, namely Su1,2m+1 = 0 with m ∈ N.
Regarding the second-order structure function, it is the same as the one obtained from the
OU process v1 (2.1), and given by

Su1,2(τ ) = Sv1,2(τ ) = qT
[
1 − e− |τ |

T

]
∼

τ→0+
qτ. (3.5)

On the contrary, the fourth-order structure function is impacted by intermittency, and we
get, under the condition 4γ 2 < 1,

Su1,4(τ ) ∼
τ→0

3
1 − 6γ 2 + 8γ 4

q2τ 2
( τ

T

)−4γ 2

e4γ 2c(0), (3.6)

where the constant c(0) is given in (A 18). More generally, it is then possible to obtain an
estimation of the (2m)th-order structure functions that reads, for 2m(m − 1)γ 2 < 1,

Su1,2m(τ ) ∝
τ→0

qmτm
( τ

T

)−2m(m−1)γ 2

, (3.7)

indicating that the causal MRW exhibits a log-normal spectrum. We gather all the proofs
of these propositions in appendix B.

3.2. An infinitely differentiable causal multifractal random walk
Our proposition is herein made of a causal stochastic process representative of the
statistical behaviour of Lagrangian velocity in homogeneous and isotropic turbulent flows
at a given finite Reynolds number (equivalently for a finite ratio τη/T). We are demanding
a statistically stationary process, correlated over a large time scale T , that is infinitely
differentiable (giving meaning to the respective acceleration process), acquiring rough and
intermittent behaviours as the small time scale τη goes to zero, i.e. in the infinite Reynolds
number limit.

Assume n ≥ 2 and consider the following system of embedded differential equations

dun,ε

dt
= − 1

T
un,ε(t) + exp

(
γ Xn,ε(t) − γ 2

2
〈X2

n,ε〉
)

fn−1(t), (3.8)

dfn−1

dt
= −

√
n − 1
τη

fn−1(t) + fn−2(t), (3.9)

· · · (3.10)

df2

dt
= −

√
n − 1
τη

f2(t) + f1(t), (3.11)

df1 = −
√

n − 1
τη

f1(t) dt +
√

βnW(dt), (3.12)
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900 A27-14 B. Viggiano and others

with

βn =
(

n − 1
τ 2
η

)n−1 σ 2
√

4πτ 2
η

T
∫ ∞

0
e− h

T e−h2/(4τ 2
η )eγ 2CX(h) dh

. (3.13)

In the system above, the causal process Xn,ε obeys the set of stochastic differential
equations

dXn,ε

dt
= − 1

T
Xn,ε(t) +

√
β̃n f̃n−1,ε(t), (3.14)

df̃n−1,ε

dt
= −

√
n − 1
τη

f̃n−1,ε(t) + f̃n−2,ε(t), (3.15)

· · · (3.16)

df̃2,ε

dt
= −

√
n − 1
τη

f̃2,ε(t) + f̃1,ε(t), (3.17)

df̃1,ε = −
√

n − 1
τη

f̃1,ε(t) dt − 1
2

∫ t

−∞
[t − s + ε]−3/2 W̃(ds) dt + ε−1/2W̃(dt), (3.18)

with

β̃n =
(

n − 1
τ 2
η

)n−1

. (3.19)

where W and W̃ are two independent copies of the Wiener process.
Similar to the Gaussian infinitely differentiable process v established in the first part,

we show in the following Proposition A.5 that the process u, obtained once the procedure
depicted in the set of embedded differential equations ((3.8)–(3.12)) is iterated an infinite
number of times n → ∞, and when the small parameter ε goes to zero, converges to
a well-defined limit. Once again, the choice made for the white noise weight βn (3.13)
ensures that the variance of the limiting process u is finite with 〈u2〉 = σ 2. Its precise value
will become evident when we compute the correlation function Cf (τ ) = 〈 f (t)f (t + τ)〉 of
the force f when n → ∞ (see (A 29)).

Similarly, the precise choice for the coefficient β̃n (3.19) entering in the dynamics of
Xn,ε (3.14) is dictated by the necessity that, in an asymptotic way, when both ε → 0
and τη → 0, and for any number of layers n, Xn becomes logarithmically correlated
in an appropriate manner. As far as the process Xn,ε is concerned, these limits can be
taken in an arbitrary way since they commute. The small parameters ε and τη have a
similar physical interpretation, they mimic finite Reynolds number effects. We define
them a priori as separate entities and seek for limits independently for the sake of
generality. More precisely, ε is taken to be finite to make sense of the dynamics of f̃1,ε

as it is proposed in (3.18). Remark finally that the multiplicative chaos entering into the
dynamics of un,ε (3.8) is renormalized by a smaller constant exp((γ 2/2)〈X2

n,ε〉) than in
its non-differentiable version u1,ε (3.1), where there typically exists a larger normalization
constant exp(γ 2〈X2

n,ε〉). It is related to the finite correlation of the of the term fn−1 entering
in (3.8), contrary to the dynamics proposed in (3.1), where a white noise W(dt) enters.

As a general remark, notice that the dynamics depicted by the set of embedded
differential equations ((3.8)–(3.12)) coincides with the dynamics of the Gaussian process
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-15

vn ((2.22)–(2.26)) when we consider the particular value γ = 0. In other words, the
non-intermittent limit of the process un,ε is Gaussian, and coincides with the process vn of
§ 2.3.

Before establishing the statistical behaviour of the asymptotic process u, let us first focus
on the statistical properties of Xn,ε that we gather and derive in Proposition A.4. Keeping in
mind that whatever the ordering of the limits n → ∞ and ε → 0, the correlation function
of Xn,ε converges towards a well-defined function CX(τ ) (A 21), the value of which at the
origin diverges logarithmically with τη as τη → 0 (A 24). Actually, in this limit of infinite
Reynolds numbers, CX(τ ) converges towards CX1(τ ) (A 25), as expected.

We now proceed with the covariance structure of the limiting process u. We summarize
and demonstrate in Proposition A.5 the main second-order statistical properties of velocity
u and acceleration a. We first derive the exact velocity correlation function Cu(τ ) in the
joint commuting limit ε → 0 and n → ∞ (A 28). This shows that, whereas Cu(τ ) depends
weakly on intermittent corrections in the dissipative range, it loses this property as τη/T →
0 and coincides with the correlation function of the OU process Cv1(τ ) (A 30). Similarly,
the acceleration correlation function Ca(τ ) can be derived (A 32). From there, we show
that acceleration variance diverges as T/τη as the Reynolds number increases (A 34).

Let us remark that the proposed stochastic model of velocity, u, that we claim to
be intermittent in a precise way and defined in Proposition A.6, predicts that, as far
as the covariance of u is concerned, it is similar to an Ornstein–Uhlenbeck process
at infinite Reynolds number, independently of any intermittency corrections. This is
consistent with the standard phenomenology of Lagrangian turbulence. The predicted
acceleration variance (A 34) does not exhibit either intermittent corrections: this precise
behaviour of acceleration variance with respect to the Reynolds number is at odds with the
extrapolations that can be made from numerical simulations (cf. Ishihara et al. (2007) and
the discussion that we propose in § 5.3). We will see and develop in § 5 that the multifractal
formalism allows the understanding of how the velocity correlation does not get impacted
by intermittency at infinite Reynolds numbers, whereas the acceleration variance does.

Let us now present the intermittent, i.e. multifractal, properties of the velocity process
u, as they can be seen on higher-order structure functions (see Proposition A.6). As shown
previously, the correlations of u and the OU process v1 coincide as τη → 0. The same
goes for the second-order structure function (A 37). Whereas showing that the fourth-order
structure function of u coincides with that of the causal MRW process u1 as first ε → 0
and then τη → 0 is obvious (A 38), the reversed order of limits is more involved. We
nonetheless propose an approximation procedure that confirms that u and u1 possess the
same intermittent properties (A 39). All statements and proofs can be found in Proposition
A.6 and appendix C.

3.3. A second numerical illustration

3.3.1. An efficient algorithm under the periodic approximation
In this section we propose a numerical algorithm able to reproduce in a realistic and

efficient fashion the statistical behaviour of the process u, which statistical properties
are detailed in Propositions A.5 and A.6. As we have seen, the process u, contrary to
the Gaussian process v of § 2.3, obeys a non-Markovian dynamics. More precisely, for
the process X(t) at a given time t, the limiting solution, as the number of layers n goes
to infinity and the small parameter ε goes to 0, of the system of embedded stochastic
differential equations (3.14)–(3.18), requires the knowledge of its entire past. It is thus
tempting to use the discrete Fourier transform to solve its dynamics. We will incidentally
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900 A27-16 B. Viggiano and others

generate periodic solutions of this non-Markovian dynamics. Since we will consider in the
sequel very long trajectories, of order 105 times the largest time scale T of the process, all
aliasing effects will be negligible. This periodic approximation is well justified. As argued
in § 2.4, simulations of the limiting process with n → ∞ require the causal factorization
of covariance functions of underlying Gaussian components, a procedure which is not
simple. Furthermore, the limit ε → 0 is also complicated to obtain from a numerical point
of view, and therefore, we will perform simulations for a finite n number of layers, and for
a finite ε > 0.

Consider first an estimator for the discrete process X̂n,ε[t] of the continuous solution
Xn,ε(t) of the coupled system (3.14)–(3.18). Let us introduce the convolution product ∗,
which is defined as, for any two functions g1 and g2,

(g1 ∗ g2) (τ ) =
∫

R

g1(t)g2(τ − t) dt,

with the corresponding shorthand notation,

g∗n = g ∗ g ∗ · · · ∗ g︸ ︷︷ ︸
n

.

In the statistically stationary regime, the continuous expression of the Gaussian process
Xn,ε(t) reads

Xn,ε(t) =
√

β̃n

(
gT ∗ g∗(n−1)

τη√
n−1

∗ (hε + ε−1/2δ
) ∗ W̃

)
(t), (3.20)

where the multiplicative factor β̃n is given in (3.19), and recall that gτ (t) = e−t/τ 1t≥0. We
also include hε(t) = − 1

2(t + ε)−3/21t≥0 and δ(t) stands for the Dirac delta function.
Now in the discrete setting, call N the number of collocation points, Ttot the total

length of the simulation and Δt the time step. As already mentioned, make sure that
Ttot = NΔt � T to prevent aliasing errors. In the aforementioned periodic framework,
the discrete estimator X̂n,ε[t] of the continuous solution Xn,ε(t) (3.20) reads

X̂n,ε[t] =
√

β̃nDFT−1
(

DFT (gT) DFTn−1
(

g τη√
n−1

)
DFTc (hε) DFT

(
W̃
))

[t] × (Δt)n,

(3.21)

where we have introduced the discrete Fourier transform (DFT). It also enters in the
expression given in (3.21), properly discretizing and periodizing forms of the continuous
functions gτ (t) at various time scales τ and hε(t). Notice that in the continuous framework,∫

R
hε(t) dt = −ε−1/2 is the value at the origin of frequencies of the Fourier transform

(FT) of hε , such that FT(hε + ε−1/2δ)(ω) = FT(hε)(ω) − FT(hε)(0). This justifies the
shorthand notation DFTc(hε)[ω] = DFT(hε)[ω] − DFT(hε)[0] in (3.21). Finally, we have
noted W̃[t] an instance of the white noise field, comprised of N independent Gaussian
random variables of zero average and variance Δt. The (Δt)n factor originates from the
convolution by the kernel gT(t) and (n − 1) convolutions by the kernel gτη/

√
n−1.

In a similar manner, the numerical, discretized and periodized estimator ûn,ε of the
continuous solution un,ε of the coupled system (3.8)–(3.12) in the statistically stationary
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-17

regime, which reads

un,ε(t) =
√

βn

⎛⎜⎜⎝gT ∗ g∗(n−1)
τη√
n−1

∗

⎛⎜⎜⎝ eγ X̂n,ε

exp
(

γ 2

2
〈X̂2

n,ε〉
)W

⎞⎟⎟⎠
⎞⎟⎟⎠ (t), (3.22)

can be written as

ûn,ε[t] =
√

βnDFT−1

⎛⎜⎜⎝DFT (gT) DFTn−1
(

g τη√
n−1

)
DFT

⎛⎜⎜⎝ eγ X̂n,ε

exp
(

γ 2

2
〈X̂2

n,ε〉
)W

⎞⎟⎟⎠
⎞⎟⎟⎠ [t]

× (Δt)n−1, (3.23)

where βn is provided in (3.13), and recall that the white noise W is independent of W̃ that
enters in (3.21). The fact that we multiply by (Δt)n−1 the overall expression 3.23, instead
of (Δt)n (as in (3.21)), originates from the white (i.e. distributional) nature of W, whereas
W̃ is already smoothed out by the kernel hε .

The time step Δt has to be chosen to be smaller than the smallest scale of motion, that
is τη/

√
n − 1. Furthermore, we are interested in performing a realistic simulation of the

limiting process u, obtained in the limit ε → 0, at a given finite τη. A convenient choice
for ε is to take it proportional to Δt, such that both of them go to zero in the continuous
limit. In subsequent simulations, we find it appropriate to choose

Δt = τη

200
√

n − 1
and ε = 5Δt. (3.24a,b)

This choice gives numerical stability and a proper illustration of the exact statistical
quantities provided in Propositions A.5 and A.6 for the range of investigated values of
τη (see the following § 3.3.2). To prevent aliasing errors, we work with a large number of
collocation points N = 232, such that Ttot = NΔt is always much larger than T .

3.3.2. Numerical results and comparisons with theoretical predictions
Without loss of generality, we take T = 1. We numerically perform the (discrete)

Fourier transforms as they are detailed in (3.21) and (3.23), using six values for T/τη,
that is 10, 20, 50, 100, 200 and 500. Keeping in mind that τη is a fairly good representation
of the Kolmogorov time scale, these values correspond to an extended range of Reynolds
numbers. Choosing for Δt and ε the values depicted in (3.24a,b), working with N = 232

collocation points and n = 9 layers, we find in the worst scenario corresponding to the
smallest τη a total time of simulation Ttot = NΔt ≈ 104T , preventing any aliasing effects.
As will be precisely quantified when we discuss intermittent corrections, we find the
particular value

γ 2 = 0.085, (3.25)

representative of the level of intermittency seen in numerical simulations of the
Navier–Stokes equations, consistent with previous estimations (see Mordant et al. 2002;
Chevillard et al. 2003; Biferale et al. 2004; Chevillard et al. 2012 and references therein).
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FIGURE 2. Numerical simulation, in a periodical fashion, of the set of (3.8)–(3.12) using n = 9
layers, for 6 values of τη, that is T/τη = 10, 20, 50, 100, 200, 500 and σ 2 = 1. See the
description of the algorithm in § 3.3.1, and the choice made for other parameters in § 3.3.2.
(a) Typical time series of the obtained processes u9(t) (dashed line) and a9(t) (solid line), as a
function of time t, for T/τη = 10. For the sake of comparison, all time series are normalized
by their standard deviation. (b) Similar time series as in (a), but for T/τη = 500. (c) Respective
velocity correlation functions Cu9 for the six different values of τη, estimated from numerical
simulations (dots), compared with their asymptotic theoretical prediction Cu (A 28) (solid line).
(d) Respective acceleration correlation functions Ca9 compared with the asymptotic correlation
function Ca (A 32). For the sake of clarity, all curves are normalized by their values at the origin
(i.e. the respective variances).

Forthcoming statistical quantities are averaged over three independent instances of these
trajectories.

For the sake of clarity, we omit the hat on the simulated discrete version of u9,ε , and
display in figure 2(a,b) two instances of this stochastic process for the largest τη = T/10
(lowest Reynolds number) and the smallest τη = T/500 (highest Reynolds number) ratios
of the small over the large time scales. Velocity is represented using a dot-dashed line,
whereas the respective acceleration with a solid line. All time series are divided by their
respective standard deviation for the sake of comparison. In the low Reynolds number case
(figure 2a), we observe that indeed velocity is correlated over t, whereas acceleration is
correlated over a shorter time scale τη. In the highest Reynolds number case (figure 2b),
we can definitely observe the scale decoupling between the large T and the small τη

time scales. Also, notice that the statistics of acceleration are evidently non-Gaussian.
This is a manifestation of the intermittency phenomenon, which is modelled by the
multiplicative chaos that enters into the construction. These non-Gaussian fluctuations
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FIGURE 3. Illustration of the behaviour of higher-order statistics of the processes studied in
figure 2. (a) Logarithmic representation of the second-order structure function, estimated from
the times series of the six different values of τη (solid lines), and compared with their asymptotic
prediction provided in (A 37) (dashed line). (c) Similar logarithmic process as in (a), but for the
flatness of velocity increments. We superimpose the theoretical prediction based on (3.6) (see
the devoted discussion in § 3.3.2). (b) Estimation of the probability density functions of velocity
increments for scales logarithmically spanning the accessible range of scales displayed in (a,c),
and for τη/T = 1/10. (d) Similar plot as in (b) but for τη/T = 1/500.

would be enhanced by a higher value of γ (data not shown) than the one chosen presently
(3.25). We will come back to this point while discussing figure 3.

We present in figure 2 the velocity (c) and acceleration (d) correlation functions. Results
from the numerical simulation of (3.21) and (3.23) for the six values of τη are displayed
using dots; we superimpose the theoretical expressions provided in (A 28) and (A 32).
Concerning the velocity correlations (figure 2c), we can notice the striking agreement
between the numerical estimation based on time series of u9,ε and the limiting theoretical
expression (A 28), as was already observed in the Gaussian case (figure 1). Furthermore, as
expected, the dependence on τη is very weak. This can be easily understood by realizing
that the velocity is a large scale quantity, mostly governed by the physics taking place
at T . In this regard, acceleration correlation functions will highlight the physics ruling
phenomena which occur at τη and are displayed in figure 2(d). All curves are normalized by
the respective value at the origin (i.e. the acceleration variance). The low Reynolds number
case (largest τη) is easily recognizable; this is the curve going the most negative after the
zero crossing. As τη decreases, Ca(τ ) is closer to 0. This is consistent with the constraint
that the integral of this curve has to vanish, as a consequence of statistical stationarity.
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Once again, the collapse of the numerically estimated Ca9(τ ) (dots) onto the limiting
theoretical expression given in (A 32) (solid line) is excellent.

Let us now focus on the precise quantification on the intermittency phenomenon. We
display in figure 3(a,c) the behaviour across scales τ of the structure functions Sun,ε ,m =
〈(δτ un,ε)

m〉 of the simulated process un,ε . We then compare them with our theoretical
predictions (Proposition A.6) obtained in the asymptotic regime n → ∞, ε → 0, τη → 0
and finally τ → 0 (limits are taken in this order).

We present in figure 3(a) the scaling behaviour of the second-order structure function
Su9,ε ,2(τ ) = 〈(δτ u9,ε)

2〉 (solid lines) for the 6 values of τη that we formerly detailed. Notice
that, in this representation, Su9,ε ,2(τ ) is normalized by 2〈u2

9,ε〉, such that it goes to unity
at large arguments τ � T . We recover at small scales τ � τη the dissipative behaviour
Su9,ε ,2(τ ) ∝ τ 2, which is a consequence of the differentiable nature of the process. In
the inertial range τη � τ � T , as expected by our theoretical prediction (A 37), we get a
behaviour similar to an OU process, that is Su9,ε ,2(τ ) ∝ τ . We superimpose using a dashed
line the expected behaviour from an OU process, namely Su1,2(τ ) = 2〈u2

1〉(1 − e−|τ |/T). We
indeed observe that it describes with great accuracy the scaling behaviour of Su9,ε ,2(τ ) in
the inertial range and at larger scales. The second-order statistics of u9,ε are well described
by our asymptotic predictions in this range of scales. Similar conclusions were obtained
while describing velocity correlation function in figure 2(c).

As mentioned in Proposition A.6, only fourth-order statistics and higher are impacted
by intermittency. To check this, we represent in figure 3(c) the scaling behaviour of the
flatness of velocity increments, that is Su9,ε ,4/S2

u9,ε ,2 (solid lines), for the 6 different values
of τη, in a logarithmic fashion. As shown, flatnesses are normalized by 3, i.e. the value
obtained for Gaussian processes. As we can observe, flatnesses are close to 3 at large
scales τ ≥ T , and then increase in the inertial range as a power law, before saturating
in the dissipative range τ ≤ τη. This saturation is typical of differentiable processes: a
Taylor series of increments makes the dependence on τ disappear. We superimpose on this
plot, using a dashed line, the theoretical prediction that we made for MRW (3.6) without
the unjustified additional free parameter. We indeed see that the power-law exponent is
given by −4γ 2, and that the multiplicative constant is close to the one derived for the
non-differentiable MRW (3.6). This theoretical prediction seems to be more and more
representative of the intermittent properties of u9,ε as τη gets smaller and smaller. This
indicates that the constant cγ,4 which is tedious to compute in an exact fashion (but
easily accessible in the approximate framework developed in appendix C) for the infinitely
differentiable MRW (A 39) is the same as in the non-differentiable case (3.6). This shows
that the limits ε → 0 and τη → 0 commute at the fourth order too ((A 38) and (A 39)).
This remains to be done on rigorous grounds.

Finally, to illustrate the intermittent behaviour of the process u9,ε , we display in
figure 3(b,d) the probability density functions (PDFs) of velocity increments at various
scales, from large to small: (b) τη/T = 1/10 and (d) τη/T = 1/500. We indeed observe
the continuous shape deformation of these PDFs as the scale τ decreases in length, being
Gaussian at large scales τ ≥ T , and strongly non-Gaussian in the dissipative range. In a
manner consistent with the behaviour of the flatnesses (figure 3c), the acceleration PDF,
obtained when τ � τη, is less and less Gaussian as τη diminishes in size.

4. Comparison with direct numerical simulations

4.1. Description of the datasets
We consider in this article two sets of data that have been made freely accessible to
the public. We focus our attention on statistically homogeneous and isotropic numerical
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Origin Resolution Rλ τK TL Number of trajectories dt Duration

Turbase 5123 185 0.0470 0.7736 126 720 4.10−3 17.063 TL
JHTDB 10243 418 0.0424 1.3003 32 768 2.10−3 7.692 TL

TABLE 1. Summary of relevant physical parameters of the two sets of DNS data. Resolution of
the Eulerian fields, Taylor based Reynolds number Rλ and Kolmogorov dissipative time scale
τK (4.2) are provided in relevant publications (see text). The Lagrangian integral time scale TL
is defined in (4.1) and is computed from our statistical estimation of the velocity correlation
function.

flows obtained by solving the Navier–Stokes equations in a periodic box. Lagrangian
trajectories are then extracted from the time evolution of the Eulerian fields while
integrating the positions of tracer particles, initially distributed homogeneously in space.
The first set concerns a direct numerical simulation (DNS) at a moderate Taylor based
Reynolds number Rλ = 185, referenced in Bec et al. (2006), Bec et al. (2011), which
can be downloaded from https://turbase.cineca.it/. The second dataset concerns a higher
Taylor based Reynolds number Rλ = 418, hosted at Johns Hopkins Turbulence Database
(JHTDB) (see http://turbulence.pha.jhu.edu). Details on this DNS and how to extract the
Lagrangian trajectories can be found in Li et al. (2008) and Yu et al. (2012). Relevant
parameters and specificities of these datasets and of the Lagrangian trajectories are given
in table 1.

4.2. Definition and estimation of the Lagrangian integral time scale
Let us now make a connection between the present modelling approach, and its parameters,
and numerical investigations. To do so, we have to consider quantities that can be extracted
from DNS data, and show how to relate them to the free parameters entering in the
definition of the stochastic process u, which are at a given Reynolds number τη, T and γ .

Call TL the Lagrangian integral time scale, defined as the integral of the velocity
correlation function, i.e.

TL =
∫ ∞

0

Cu(τ )

Cu(0)
dτ, (4.1)

where u stands for any Lagrangian velocity components extracted from DNS data, or the
present stochastic model.

On the one hand, the definition of TL (4.1) is appealing because it can be applied to
and estimated from velocity time series coming indifferently from DNS or the model. On
the other hand, it requires proper statistical convergence of the velocity correlation Cu(τ )

that is especially difficult to get from DNS at large time scales τ close to the velocity
decorrelation time scale. This is even more true when considering experimental data (see
a recent discussion on this by Huck, Machicoane & Volk (2019)) in which the duration
of trajectories are usually shorter. Moreover, on the entire accessible statistical sample,
made of tens (even one hundred in the moderate Reynolds number case) of thousands of
trajectories for each of the three velocity components, we have observed a non-negligible
level of anisotropy for both sets of data, the standard deviation of the variance of the
three velocity components is of the order of 20 % of the average variance. We found this
level of anisotropy surprising given the isotropic and periodic boundary conditions of the
advecting flow. We are forced to reach the conclusion that, in both cases, trajectories are
not long enough to guarantee statistical isotropy. This has consequences for the estimation
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of TL. Nonetheless, and because we expect ultimately that the flow, and incidentally its
Lagrangian trajectories, are isotropic, we average the velocity correlation function over
the three components, keeping in mind that the lack of statistical convergence can imply
a non-negligible error in the estimation of this large time scale. We gather our findings
in table 1. Notice that this observed anisotropy on the velocity variance has weak impact
on the acceleration correlation function once normalized by its value at the origin (data
not shown). This can be understood by realizing that acceleration is governed by the small
scales of the flow, and velocity by the large ones.

4.3. Statistical analysis of the DNS datasets
We display in figure 4(a,c) the numerical estimation of velocity and acceleration
correlation functions based on the Lagrangian trajectories extracted from DNS, at
moderate Reynolds number Rλ = 185 (using open circles ) and at high Reynolds number
Rλ = 418 (using open squares ). As Cu(τ ) is concerned (figure 4a), we normalize time
lags τ by a large time scale T coming from the adopted calibration procedure of our model,
and that we properly define in § 4.4.2. At this level of discussion, keep in mind that T is
very close to TL (4.1). Concerning Ca(τ ) (figure 4c), we normalize time lags τ by the
Kolmogorov time scale τK that reads

τK =
√

ν

〈ε〉 , (4.2)

where ν is the kinematic viscosity and 〈ε〉 the average viscous dissipation per unit of mass.
Interestingly, we observe that, in this representation, where scales are normalized by τK ,
Ca(τ ) crosses zero at a Reynolds number independent time scale. Call such a scale τ0,
thus defined by Ca(τ0) = 0. Indeed, this was already observed in numerical and laboratory
flows (Yeung et al. 2007; Huck et al. 2019): the zero-crossing time scale of acceleration has
a universal (i.e. Reynolds number independent) behaviour with respect to the Kolmogorov
time scale τK (4.2), such that

τ0 ≈ 2.2 τK, (4.3)

in the range of investigated Kolmogorov time scales. In our case and to be more precise,
we find τ0 = 2.11 τK at Rλ = 185, and τ0 = 2.14 τK at Rλ = 418, indeed very close to
previous findings of Yeung et al. (2007) (4.3). In the sequel, we will use this fact to fully
calibrate our model, in particular while relating its free parameter τη to the characteristics
of the numerical flows. We will revisit this point in § 4.4.2.

Similarly, we display the scaling behaviour of the second-order structure function Su,2

(figure 4b) and of the flatness of the velocity increments (figure 4d). We can easily observe
the three expected ranges of scales: the dissipative one with Su,2(τ ) ∝ τ 2, the inertial one
with Su,2(τ ) ∝ τ and the saturation towards 2〈u2〉 at larger scales. Concerning the flatness,
similar behaviour is observed, saturation at the Gaussian value 3 at large scales, and a
power-law behaviour in the inertial range, reminiscent of the intermittency phenomenon.
We furthermore observe a more rapid increase in the intermediate dissipative range, and
then a Reynolds number dependent saturation towards the flatness of acceleration. This is
a known effect of the fine structure of turbulence, linked to subtle differential action of
the viscosity that depends on the local regularity of the velocity field (Chevillard et al.
2003; Chevillard, Castaing & Lévêque 2005; Chevillard et al. 2006; Arneodo et al. 2008;
Benzi et al. 2010; Chevillard et al. 2012). This phenomenon is well reproduced by the
phenomenology of the intermittency phenomenon developed in the framework of the
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FIGURE 4. Comparison of DNS data with model predictions. (a) Estimation of the velocity
correlation function from DNS data (using for Rλ = 185 and for Rλ = 418. We superimpose
theoretical predictions using (A 28), for the set of values of the parameters τη and T given by
our calibration procedure presented in § 4.4.2, and for a prescribed value for γ (3.25). Time lags
are normalized by the calibrated time scale T . (b) Same plot as in (a) but for the second-order
structure function. (c) Similar plot as in (a,b) but for the acceleration correlation function,
normalized by its value at the origin. Superimposed theoretical predictions are based on the
exact expression (A 32). (d) Similar plot as in (a,b) but for the flatnesses of velocity increments.
Theoretical prediction are obtained thanks to a numerical estimation of velocity time series of
the model, in the spirit of § 3.3.2, with the values of the free parameters obtained from our
calibration procedure presented in § 4.4.2 and for a prescribed value for γ (3.25).

multifractal formalism (Paladin & Vulpiani 1987; Frisch 1995). We will develop these
ideas in § 5.

4.4. Discussion on the Reynolds number dependence of the zero-crossing time scale of
the acceleration correlation function

4.4.1. Model predictions of the zero-crossing time scales
From previous developments, the present model, both for its Gaussian version v

(Proposition A.2 and figure 1d) and for its intermittent generalization u (Proposition
A.5 and figure 2d), predicts this aforementioned zero-crossing time scale τ0 of the
acceleration correlation function, as a function of its parameters τη and T . At this level
of discussion, we neglect the influence of the intermittency parameter γ in this picture.
Indeed, even if in the intermittent framework the parameter enters explicitly in the form of
the correlation function (A 32), it has only a weak influence on its overall shape, even in
the dissipative range (data not shown). Thus, given the low value of γ (3.25) that makes
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the predicted intermittent acceleration correlation function (A 32) indiscernible from its
Gaussian approximation (2.30), we pursue further theoretical discussions neglecting these
non-Gaussian effects. It is moreover convenient since in this case, Ca(τ ) has an explicit
form (2.30), that makes its dependence present on τη and T .

Further inspection of the numerical results presented in figure 2(d) when τη is varying
shows that this predicted zero-crossing time scale depends in a non-trivial way on τη.
Actually, keeping only the leading terms entering in (2.30) as τη, we can observe that,
asymptotically, this time scale behaves as

τ0 ∼
τη→0

2τη

√
log
(

T√
πτη

)
. (4.4)

Taking into account the empirical fact that the zero-crossing time scale is proportional to
the Kolmogorov time scale τK in a universal way (4.3), this shows that τη, up to logarithmic
corrections, has the same Reynolds number dependence as τK , and thus can be considered
as a dissipative time scale. Interestingly, for the process proposed by Sawford (§ 2.2.1),
named here v2, such a zero-crossing time scale can be exactly derived from (2.13). In this
case, we obtain

τ0 = τη

log(T/τη)

1 − τη

T

.

The present prediction for τ0 (4.4) made with an infinitely differentiable process can be
seen as an improvement of the model by Sawford, since the parameter τη is closer to τK .

4.4.2. The proposed calibration procedure of models parameters
As explained in the preceding section, we can neglect in this discussion all possible

intermittent effects, and work in a convenient way with the explicit second-order statistical
properties of the Gaussian process v (Proposition A.2). To determine the free parameters
of the model τη, given the characteristic scales of the DNS τK and TL, we solve the
nonlinear system of coupled equations

TL = T
e−τ 2

η /T2

erfc
(
τη/T

) , (4.5)

Ca(ατK) = 0, (4.6)

where the exact expression of TL in (4.5) can be easily obtained from (A 8), the explicit
expression of Ca is provided in (2.30), with α being equal to 2.11 at Rλ = 185, and 2.14
at Rλ = 418. This is our calibration procedure. Using a standard numerical solver of
nonlinear equations and the values of (τK, TL) provided in table 1, we look for the solution
of the system of (4.5) and (4.6), and get (τη/τK, T/TL) = (0.6335, 0.9562) for Rλ = 185,
and (0.5759, 0.9791) for Rλ = 418.

4.5. Comparison of model predictions with DNS data
Having performed the calibration procedure depicted in § 4.4.2, and obtained the
respective values for the free parameters τη and T , we compare the predictions of the
present model with data. We represent theoretical second-order statistics in figure 4(a,b)
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using solid lines. We indeed observe an almost perfect collapse with the statistical
estimations based on DNS data.

We focus now on the acceleration correlation function (figure 4c). At a moderate
Reynolds number Rλ = 185, we can see that the agreement is excellent in the dissipative
range, i.e. for scales smaller that the zero-crossing time scale τ0. We can also observe
a slight disagreement above τ0. This can be due to the lack of statistical convergence at
large scales that induces an overestimation of the integral time scale TL, as we discussed in
§ 4.2. Only a specially devoted DNS simulation, that would be run over several tens of large
turnover time scales could show us whether the model predictions can be improved. At the
current level of precision, we can consider that overall agreement with the second-order
statistics is satisfactory at this Reynolds number. At a higher Reynolds number Rλ = 418,
further discrepancies can be seen in the dissipative range. This is very probably due to
intermittency effects, that are negligible in the model, but not in the DNS. To see this
more clearly, let us focus on the flatness of velocity increments.

We superimpose in figure 4(d) using solid lines the theoretical predictions that can be
made from the model for flatnesses using the prescribed value γ 2 (3.25). To get these
theoretical predictions, that are tedious to obtain in an analytical fashion, we perform
additional numerical simulations of time series of the model, as is done in § 3.3.2, for
the calibrated values of the parameters τη and T obtained in § 4.4.2. We observe a very
good agreement in the inertial range, showing that the chosen value for the intermittency
coefficient γ (3.25) is realistic of DNS. Unfortunately, as we already noticed in § 4.3, the
model is unable to reproduce the rapid increase of intermittency in the dissipative range.
To go further in this direction, we propose deriving the predictions of the multifractal
formalism in the following § 5 concerning the behaviour of the flatnesses in this range of
scales.

5. Predictions of the multifractal formalism regarding the acceleration correlation
function

An alternative method of modelling the velocity and acceleration correlation functions
consists in directly proposing their functional forms. We will thus construct models of
the statistical behaviours of the velocity, that will take into account the various range
of scales pointed out by the phenomenology of turbulence, namely the inertial and
dissipative ranges (with additional intermittent corrections). Doing so, we will end up
with an explicit form of the velocity correlation function, or equivalently the second-order
structure function, without building up the underlying stochastic process. Compared with
the previous construction of a stochastic process, from which we deduced its statistical
behaviour, this approach appears only partial from a probabilistic point of view: we model
the velocity correlation function (from which we deduce the acceleration correlation
function) and higher-order moments of the velocity increments, but we do not characterize
completely the velocity process itself. In this regard, the following probabilistic description
is not complete, but will allow us, in particular, to understand in detail the rapid increase
of the velocity increment flatness across the dissipative range, which is depicted in
figure 4(d).

5.1. The Batchelor parametrization of the second-order structure function
We begin by proposing a simple model for the velocity correlation function, or
equivalently a model of the second moment of the velocity increments. Concerning the
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Eulerian framework, Batchelor (1951) proposed a simple form for the second-order
structure function that includes the inertial behaviour 〈(δ
u)2〉 ∼ 
2/3 and the dissipative
behaviour 〈(δ
u)2〉 ∼ 
2, with an additional polynomial interpolation relating these two
behaviours across the Kolmogorov dissipative length scale (see for instance

Meneveau (1996) and Chevillard et al. (2006, 2012) for developments on this matter and
references therein). A similar procedure can be adapted to the Lagrangian framework, that
would include the respective inertial behaviour 〈(δτ v)2〉 ∼ τ and the dissipative behaviour
〈(δτ v)2〉 ∼ τ 2, as was considered by Chevillard et al. (2003), Arneodo et al. (2008), Benzi
et al. (2010) and Chevillard et al. (2012). Such a form reads, assuming τ � T ,

S2(τ ) = 〈(δτ v)2〉 = 2σ 2

τ

T[
1 +

(
τ

τη

)−δ
] 1

δ

,

where τη is the typical dissipative (Kolmogorov) time scale, and σ 2 = 〈v2〉. The additional
free parameter δ governs the transition between the inertial and dissipative ranges of
scales. For instance, as far as the Eulerian framework is concerned, the value δ = 2 was
chosen by Batchelor (1951). We will see that the value δ = 4 will eventually reproduce
in an appropriate manner the behaviour of the statistical quantities in the Lagrangian
framework, as was chosen in Arneodo et al. (2008). At large scales, τ of the order of T
and larger, we could think about multiplying the proposed form (5.1) by a cutoff function
of characteristic time scale T , as was proposed in Bos et al. (2012). Such a procedure
is necessary to ensure a smooth transition towards decorrelation. It is indeed required
that S2(τ ) goes to 2σ 2 = 2〈v2〉 as τ → ∞. Incidentally, it will also make the integral
of the velocity correlation function Cv(τ ) ≡ σ 2 − S2(τ )/2 converge, as is required when
assuming stationary statistics. Recall furthermore that we will be interested in looking at
the second derivatives of S2 in order to describe the acceleration correlation, for which
statistical stationarity implies that its integral over time lags τ vanishes. In this regard,
multiplying by a cutoff function of characteristic time scale T turns out to be too schematic.
Instead, we will be using the following ad hoc form, for any time lags τ ≥ 0,

S2(τ ) = 〈(δτ v)2〉 = 2σ 2 1 − e− τ
T[

1 +
(

τ

τη

)−δ
] 1

δ

. (5.1)

Correspondingly, the acceleration correlation function is given by (half) the second
derivatives of (5.1), and we get, written in a convenient form,

Ca(τ ) ≡ 1
2

d2S2(τ )

dτ 2
. (5.2)

5.2. Including intermittency corrections using the multifractal formalism
The multifractal formalism (Frisch 1995) provides a convenient theoretical framework to
generalize the approach of Batchelor (5.1) such that inclusion of intermittent corrections
is possible, and consistent with high-order structure functions. Mostly developed for the
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Eulerian framework, it has then been adapted to the Lagrangian framework by several
authors and compared with great success with experimental and numerical data (see
Borgas 1993; Chevillard et al. 2003; Biferale et al. 2004 and references therein). Here,
we follow mainly the approach reviewed in Chevillard et al. (2012), where we furthermore
include the smooth behaviour at large scales that was motivated in § 5.1.

5.2.1. Second-order structure function and implied acceleration correlation using the
language of the multifractal formalism

In few words, arguments developed in this context concern the probabilistic modelling
of the Lagrangian velocity increment, defined by δτv(t) = v(t + τ) − v(t). In a similar
spirit as the Batchelor parametrization of the second-order structure function (5.1), taking
into account expected behaviours in the inertial and dissipative ranges, we get the
following explicit expression for τ ≥ 0:

S2(τ ) = 〈(δτ v)2〉 = 2σ 2
∫ hmax

hmin

(
1 − e− τ

T
)2h[

1 +
(

τ

τη(h)

)−δ
] 2(1−h)

δ

P (τ )

h (h) dh, (5.3)

which can be regarded as a generalization of the parametrization used in (5.1) to a
non-unique exponent h that eventually fluctuates according to its probability density
P (τ )

h at a given scale τ . Actually, we can recover exactly (5.1) while assuming a unique
(non-fluctuating, i.e. deterministic) exponent h = 1/2, that corresponds to a distribution
of density P (τ )

h equal to the Dirac delta function centred on this unique value 1/2. Remark
also that we included in such a generalization (5.3) a possible dependence of the dissipative
scale τη(h) on this fluctuating exponent h, that remains to be determined.

The dissipative time scale entering in this formulation (5.3) has a natural dependence on
the exponent h. Following the arguments developed for the Eulerian framework by Paladin
& Vulpiani (1987), Nelkin (1990) and adapted to the Lagrangian one in Borgas (1993) (and
reviewed in Chevillard et al. (2012) with corresponding notations), we assume that

τη(h) = T
(τη

T

) 2
2h+1

, (5.4)

where, to simplify notations, we call τη ≡ τη(1/2) the value of the fluctuating dissipative
time scale τη(h) (5.4) at the very particular value h = 1/2. Finally, the fluctuating exponent
h is characterized by its probability density function at a given scale τ , namely

P(τ )

h (h) = 1
Z(τ )

(
1 − e− τ

T
)1−DL(h)[

1 +
(

τ

τη(h)

)−δ
](DL(h)−1)/δ

(5.5)

normalized in an appropriate manner using

Z(τ ) =
∫ hmax

hmin

(
1 − e− τ

T
)1−DL(h)[

1 +
(

τ

τη(h)

)−δ
](DL(h)−1)/δ

dh. (5.6)

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

U
N

Y 
St

on
y 

Br
oo

k,
 o

n 
11

 A
ug

 2
02

0 
at

 1
5:

03
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

49
5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.495


900 A27-28 B. Viggiano and others

In addition to the two obvious free parameters T and τη of this model of the second-order
structure function (5.3) that will be calibrated in units of TL and τK in a similar fashion as is
presented in § 4.4.2, the multifractal formalism (Frisch 1995) requires the introduction of a
parameter function DL(h). It acquires the status of a singularity spectrum asymptotically at
infinite Reynolds number (i.e. when τη goes to 0) and then, at vanishing scales, τ → 0. It
eventually governs the level of fluctuations of the exponent h around its average value, that
we expect to be 〈h〉 = 1/2. Several forms have been proposed in the literature (see Frisch
1995). We make a simple quadratic choice for DL(h), which is known as a log-normal
approximation, parametrized by the intermittency coefficient γ 2 (3.25), that reads

DL(h) = 1 − (h − 1/2 − γ 2)2

2γ 2
, (5.7)

such that we enforce a linear behaviour of S2(τ ) with τ in the inertial range (in the
appropriate infinite Reynolds number limit). To make a connection with the notations
chosen in Chevillard et al. (2003), Chevillard et al. (2012), this corresponds to cL

1 =
1/2 + cL

2 for cL
2 = γ 2.

Correspondingly, the correlation function of acceleration Ca(τ ) can be defined as (half)
the derivatives of the second-order structure function (5.8). Using the notation

S2(τ ) = 1
Z(τ )

∫ hmax

hmin

Q(h, τ ) dh, where Q(τ, h) =
(
1 − e− τ

T
)2h+1−DL(h)[

1 +
(

τ

τη(h)

)−δ
](2(1−h)+DL(h)−1)/δ

,

(5.8)
we get

Ca(τ ) =
(Z ′(τ )2

Z(τ )3
− 1

2
Z ′′(τ )

Z(τ )2

)∫ hmax

hmin

Q(h, τ ) dh − Z ′(τ )

Z(τ )2

∫ hmax

hmin

∂Q(h, τ )

∂τ
dh

+ 1
2Z(τ )

∫ hmax

hmin

∂2Q(h, τ )

∂τ 2
dh. (5.9)

The form given in (5.9) can be then considered as a model for the correlation function of
acceleration, at a given Reynolds number (which can be estimated as the value of (T/τη)

2),
and that includes intermittent corrections (using a non-vanishing value for γ 2). Remaining
integrals entering in (5.9) are evaluated numerically using standard numerical integration
algorithms.

5.2.2. Higher-order structure functions and their scaling behaviour
Let us give the corresponding prediction for the structure function S2m(τ ) of order 2m,

that will eventually enter into the expression for the velocity increment flatness. Note that
statistics of the increment are expected and observed to be symmetrical, making odd-order
moments vanish. It reads

S2m(τ ) = 〈(δτ v)2m〉 = (
√

2σ)2m (2m)!
m!2m

∫ hmax

hmin

(
1 − e− τ

T
)2mh[

1 +
(

τ

τη(h)

)−δ
] 2m(1−h)

δ

P (τ )

h (h) dh, (5.10)
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Lagrangian velocity/acceleration turbulent flow modelling 900 A27-29

where the additional combinatorial factor originates from the moment of order 2m of a
zero-average unit-variance Gaussian random variable that enters in the more complete
probabilistic description detailed in Chevillard et al. (2012).

In the dissipative range, such that τ � τη, S2m(τ ) (5.10) behaves in a consistent manner
with its Taylor development, that is S2m(τ ) = 〈a2m〉τ 2m + o(τ 2m). In the inertial range, i.e.
for τη � τ � T , we recover the standard prediction of the multifractal formalism, that
relates the power-law behaviour of the structure functions to the functional shape of the
parameter function DL(h) through a Legendre transform (Frisch 1995). We have, in the
proper ordering of limits,

lim
τη→0

S2m(τ ) ∼
τ→0

cγ,2m(
√

2σ)2m (2m)!
m!2m

( τ

T

)minh[2mh+1−DL(h)]
, (5.11)

where the remaining multiplicative constant could be computed while pushing forward the
underlying steepest-descent calculation techniques that we develop in § 5.2.3. Assuming
then a quadratic form for the parameter function DL(h) (5.7), once again this could be
done for other choices (Frisch 1995), we obtain the following intermittent behaviour

lim
τη→0

S2m(τ ) ∼
τ→0

cγ,2m(
√

2σ)2m (2m)!
m!2m

( τ

T

)(1+2γ 2)m−2γ 2m2

, (5.12)

which power-law exponent ζ2m ≡ (1 + 2γ 2)m − 2γ 2m2 corresponds exactly to the one
obtained for the infinitely differentiable multifractal random walk of § 3.2 (where the
scaling behaviour of its structure functions at infinite Reynolds number can be found in
Proposition A.6).

5.2.3. Derivation of the Reynolds number dependence of the acceleration variance
We now give the Reynolds number dependence, or equivalently the dependence on the

free parameters τη and T , of the acceleration variance, and the scaling behaviour of S2m(τ )

with τ at infinite Reynolds number (i.e. for τη → 0). As detailed in Chevillard et al. (2012),
or simply deduced from (5.10) using S2(τ ) = 〈a2〉τ 2 + o(τ 2), we have

〈a2〉 = 2σ 2

T2

1
Z(0)

∫ hmax

hmin

(τη

T

)2 2(h−1)+1−DL(h)

2h+1
dh, (5.13)

with

Z(0) =
∫ hmax

hmin

(τη

T

)2 1−DL(h)

2h+1
dh. (5.14)

Follow then a steepest-descent procedure. Compute first the minimum and the minimizer
of the exponents entering in (5.13) and (5.14), using for DL the expression provided in
(5.7). Notice that minh((1 − DL(h))/(2h + 1)) = 0 and assume γ 2 < 2 − √

3 to guarantee
the positivity of these real-valued minimizers, a condition which is fulfilled by the
empirical value of the intermittency coefficient (3.25). To get an estimation of the
remaining multiplicative constant following this steepest-descent calculation, perform
a Taylor series of the exponents entering in (5.13) and (5.14) around their respective
minimizer up to second order, and finally approximate the remaining Gaussian integrals
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900 A27-30 B. Viggiano and others

extending the integration range over h ∈ R. We eventually obtain the following exact
equivalent as the Reynolds number goes to infinity:

〈a2〉 ∼
τη→0

2σ 2

T2

[
1 − 4γ 2 + γ 4

] 1
4√

1 + γ 2

(τη

T

) γ 2−1+
√

1−4γ 2+γ 4

γ 2
. (5.15)

We can see that the multifractal prediction of acceleration variance (5.15) does exhibit an
intermittent correction, as was already derived in a very similar way by Borgas (1993)
and Sawford et al. (2003). For a more detailed comparison with DNS data, we invite
the reader to § 5.3. At this stage, we notice that, whereas structure functions at infinite
Reynolds number obtained from the multifractal formalism (5.12) and from the infinitely
differentiable MRW (Proposition A.6) behave in a very similar way, predicted acceleration
variances differ by intermittent corrections (compare (5.15) and (A 34)).

5.3. Calibration of the free parameters and comparisons with DNS data
We adopt the same calibration of the free parameters τη and T as depicted in § 4.4.2.
We numerically solve the nonlinear problem consisting of obtaining τη and T from the
empirical value of TL and the appropriate zero crossing of acceleration time scale given in
units of τK . It is thus very similar to solving the system of (4.5) and (4.6), but notice there
that, moreover, the integral time scale TL predicted from the model has to be computed
numerically using a standard integration scheme of the expression provided in (5.3). To
give a hint to the numerical algorithm that looks for zeros of functions, as is required while
solving this nonlinear problem, we can make a simple prediction for the zero crossing of
acceleration time scale τ0. Using Batchelor’s parametrization of the second-order structure
function (5.1), and the corresponding prediction of the acceleration correlation function
(5.2), we expect that a good approximation of τ0 would be given by

τ0 ≈
τη→0

τη

(
δ − 1

2

)− 1
δ

, (5.16)

showing that, indeed, the free parameter τη is expected to be proportional to the
Kolmogorov dissipative time scale τK .

Using the physical parameters of the DNS data provided in table 1, assuming
furthermore γ 2 = 0.085 (3.25) and δ = 4, we look for the solution of this aforementioned
nonlinear system of equations (similar to (4.5) and (4.6)). We finally retrieve
(τη/τK, T/TL) = (2.7596, 0.9927) for Rλ = 185, and (2.6106, 0.9983) for Rλ = 418.

Having in hand the calibrated values for the parameters τη and T , we now compare
with DNS data. Similar to figure 4(a–c) we represent in figure 5(a–c) the predictions of
the velocity correlation function Cv(τ ), the second-order structure function S2(τ ) and the
acceleration correlation function Ca(τ ), all based on the multifractal parametrization of the
second-order structure function (5.3), and its second derivative (5.9). As far as velocity is
concerned, we observe a perfect agreement between predictions and DNS data, for both
correlation (figure 5a) and second-order structure function (figure 5b).

Concerning the acceleration correlation function Ca(τ ) (figure 5c), we observe that
predictions overestimate slightly the observed negative values after the zero crossing.
Interestingly, we observed an opposite behaviour with the former depicted infinitely
differentiable process (figure 4c). Below the zero-crossing time scale, predictions
overestimate the decrease of correlation, although the dependence on the Reynolds number
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FIGURE 5. Comparison of DNS data with model predictions, similar to figure 4, but for
multifractal predictions. (a) Estimation of the velocity correlation function from DNS data
( and as in figure 4). We superimpose theoretical predictions based on the multifractal
parametrization of the second-order structure function (5.3), for the set of values of the
parameters τη and T given by our calibration procedure presented in § 5.3, and for a prescribed
value for γ (3.25) and δ = 4. Time lags are normalized by the calibrated time scale T . (b) Same
plot as in (a) but for the second-order structure function. (c) Similar plot as in (a,b) but for the
acceleration correlation function, normalized by its value at the origin. Superimposed theoretical
predictions are based on the exact expression given in (5.9). (d) Similar plot as in (a,b) but for
the corresponding flatnesses of velocity increments. Theoretical predictions are obtained from
the expression given in (5.10).

goes in the good direction. Compared with the performance of the stochastic process
depicted in § 3.2, and displayed in figure 4(c), we can see that predictions based on
the multifractal formalism do not perform as well. As we will see, the strength of the
multifractal formalism lies in the possibility of understanding and modelling the rapid
increase of the flatness in the intermediate dissipative range. We are thus led to the
conclusion that this rapid increase, coming from the differential action of viscosity, does
not explain the discrepancies that we can observe between DNS and models.

We now focus on the intermittency corrections, as is well quantified by the flatness of
velocity increments. We compare in figure 5(d) the flatness of increments, based on DNS
and on the current multifractal model using the expression given in (5.10). We can see that
multifractal predictions reproduce accurately the overall shape of the flatness, including
the rapid increase in the intermediate dissipative range, for both Reynolds numbers.
Recall that this very dissipative behaviour is not reproduced by the stochastic approach
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of § 3.2, and displayed in figure 4(d), We can notice furthermore a slight shift between
the numerical and theoretical curves: this indicates that the large time scale associated
with intermittent corrections is slightly larger than the one associated with the velocity
correlation time scale. This could be included in the expressions of structure functions
((5.3) and (5.10)) at the price of introducing another ad hoc free parameter of order unity,
without further justifications (data not shown). Nonetheless, we can see that, overall, the
present multifractal model reproduces in good agreement DNS data, both in the inertial
and dissipative ranges.

Going back to the predicted variance of the acceleration (5.15) and its comparison
with data, we will articulate this discussion around the compilation of DNS data at
various Reynolds numbers performed by Ishihara et al. (2007), and the comparison with
an empirical form proposed by Hill (2002). To make the discussion short and simple,
we use the prescribed value for γ (3.25), and write the predicted variance (5.15) as
〈a2〉 ∝ (σ/T)2(τη/T)−1−0.155, which is the standard non-intermittent phenomenological
prediction, enhanced by an intermittent correction of order (τη/T)−0.155. The calibration
procedure used here confirms that τη has, to a good approximation, the same Reynolds
number dependence as τK . Furthermore, T is very close to TL, such that T ∝ L/σ , where
L is the large length scale of the flow, and recall that σ is the velocity standard deviation.
Using 〈ε〉 ∝ σ 3/L, we can rewrite the empirical form for 〈a2〉 proposed by Ishihara
et al. (2007) (see their equation 5.10 and the respective discussion) in units of (σ/T)2.
This empirical form of Ishihara et al. (2007) consists in the sum of two power laws, a
dominant one at large Reynolds numbers of order (σ/T)2(τη/T)−1.25, and a subdominant
one of order (σ/T)2(τη/T)−1.11. We can see that the present theoretical prediction, i.e.
(σ/T)2(τη/T)−1.155, using (5.15) with the prescribed value for γ (3.25) lies in between
these two power laws. As we noticed in § 5.2.3, such a prediction of the multifractal
formalism has already been derived by Borgas (1993) and Sawford et al. (2003), and
compared with a compilation of DNS data in Sawford et al. (2003) and Yeung et al.
(2006): derived in a very similar way as we do, although based on a different choice
for the parameter function DL(h) (5.7), the acceleration variance was predicted to behave
as (σ/T)2(τη/T)−1.135, which is very close to the present prediction, and was shown to
reproduce accurately the trends observed in DNS. We are led to the conclusion that,
given the available range of Reynolds numbers accessible in DNS, corrections to standard
phenomenological arguments for the acceleration variance as they are observed in DNS
data are consistent with implied corrections by the intermittency phenomenon.

5.4. Further considerations regarding the prediction of the multifractal formalism
Here, we develop the model of the differential action of viscosity and the implied
dependence of the dissipative length and time scales on the local exponent h, as is proposed
in particular in Paladin & Vulpiani (1987), Nelkin (1990) and Borgas (1993). Rephrased
in terms of time scales, similar arguments could be developed for length scales, we can
estimate the extension of the range on which the dissipative time scale τη(h) varies.
Actually, it will turn out to be more appropriate to estimate this range in a logarithmic
fashion. This is due to the fact that the probability density function of log(τη(h)/T) is
eventually very close to a Gaussian function as τη/T → 0, and is thus well characterized
by its average and standard deviation. Using (5.4), we get

log
(

τη(h)

T

)
= 2

2h + 1
log
(τη

T

)
, (5.17)
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such that the respective moments of order q ∈ N are given by,〈(
log
(

τη(h)

T

))q〉
= 1

Z(0)

∫ hmax

hmin

(
2

2h + 1

)q (τη

T

) 2[1−DL(h)]
2h+1

dh logq
(τη

T

)
, (5.18)

where the normalization constant Z(0) is defined as the limit when τ → 0 of the
expression given in (5.6). To simplify expressions, and work with explicit functions instead
of integrals, assume for this discussion hmin = −1/2 and hmax = +∞. Make the change of
variable x = (2h + 1)/2 to obtain〈(

log
(

τη(h)

T

))q〉
= 1

Z(0)

∫ ∞

0

1
xq

(τη

T

) 1−DL(x−1/2)

x

dx logq
(τη

T

)
. (5.19)

Assuming then for DL a quadratic approximation (5.7) with given parameter γ 2, using a
symbolic calculation software, we obtain as τη/T → 0〈

log
(

τη(h)

T

)〉
= 1

1 + γ 2
log
(τη

T

)
+ O(1), (5.20)

and 〈(
log
(

τη(h)

T

))2
〉

−
〈
log
(

τη(h)

T

)〉2

= γ 2

(1 + γ 2)3
log
(

T
τη

)
+ O(1). (5.21)

Keeping in mind that γ 2 = 0.085 (3.25) remains small compared with unity, these
former considerations show that, in a logarithmic representation, the dissipative time
scale fluctuates over an extended range, centred on a time scale close to log τη (5.20),
and of width proportional to

√
log(T/τη) (5.21), or equivalently proportional to

√
logRe.

The extension of such an intermediate dissipative range and its respective Reynolds
number dependence has been already predicted by similar, although different, arguments
in Chevillard et al. (2005). It is here re-derived based on the multifractal modelling using
(5.4). Although such a predicted extension of the intermediate dissipative range (a width
that behaves as

√
logRe in this logarithmic representation) can be considered as large,

it differs in nature from, and is narrower than, other predictions. For example, Yakhot
& Sreenivasan (2005) attributes a dynamical significance to length scales that behave
as R−1

e . Such small length scales, once reformulated in a Lagrangian context, have no
significance as far as variance of the logarithm of τη(h) is concerned, or equivalently at
this level of description, as given by the flatness of the velocity increments. Similarly, in
Dubrulle (2019), much emphasis is given to the scale obtained while taking h → −1/2 in
(5.4) corresponding to a vanishing time scale (or correspondingly in a Eulerian framework,
taking h → −1 in the multifractal parametrization of the Kolmogorov dissipative length
scale). Once again, the present derivation of the intermediate dissipative range gives no
significance to such a small time scale, i.e. its probability of appearance is vanishingly
small as the Reynolds number becomes large. Finally, it is claimed in Buaria et al. (2019),
based on the behaviour of the tails of the probability density functions of the velocity
gradients, that much smaller length scales are involved in the dynamics. Once again, the
implication of the existence of these very fine length or time scales cannot be quantified
using only the flatness of the velocity increments. Actually, extreme events of gradients (or
acceleration), as observed in the tails of their probability density, can be modelled using

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

U
N

Y 
St

on
y 

Br
oo

k,
 o

n 
11

 A
ug

 2
02

0 
at

 1
5:

03
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

49
5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.495


900 A27-34 B. Viggiano and others

the probabilistic approach of Castaing, Gagne & Hopfinger (1990), as reviewed and related
to the language of the multifractal formalism by Chevillard et al. (2012).

Let us conclude this digression by justifying our estimation of the width of the
intermediate dissipative range based on logarithmic scales (and, incidentally, the moments
of the logarithm of the dissipative time scales as given in (5.20) and (5.21)). Further
calculations, similar to the ones performed in (5.20) and (5.21) based on a quadratic
approximation for DL(h) (5.7), show that the respective flatness of log(τη(h)/T) (once
centred in an appropriate way) behaves as 3 + O(log−1(τη/T)), showing that the logarithm
of the fluctuating dissipative time scale behaves in an asymptotic way as a Gaussian
random variable, thus properly characterized by its mean and variance.

6. Conclusions and perspectives

Let us summarize our original findings in the context of the stochastic modelling of the
Lagrangian velocity and acceleration.

First, we have proposed, for the first time as far we know, a stochastic dynamics
which is causal, infinitely differentiable at a given Reynolds number, or equivalently to
a good approximation, for a given finite ratio of a dissipative time scale τη over a large
one T . This process, that we called u, is defined as the limit n → ∞ of the n-layered
embedded process un ((3.8)–(3.12)). Its second-order statistical properties are derived
analytically and results are gathered in Proposition A.5. We furthermore included in a
causal and exact way some intermittent properties, given an intermittent coefficient γ

(3.25). As intermittency disappears, i.e. if we take γ = 0, we recover a Gaussian process
that we noted by v, of which the causal dynamics is discussed in § 2.3, and of which
the second-order statistical properties are listed in Proposition A.2. At infinite Reynolds
number, i.e. when τη → 0, both processes converge towards a statistically stationary
and finite-variance causal process, which is a (Gaussian) Ornstein–Uhlenbeck process
concerning v and a multifractal random walk concerning u. As far as the multifractal
version u is concerned, we have computed in an exact fashion the intermittent behaviour
of its structure functions, and results are gathered in Proposition A.6. Using an efficient
algorithm designed in § 3.3.1, we have shown that such processes are easily to simulate,
and we have been able to compare with great success our theoretical predictions with
numerical simulations of the underlying dynamics.

We have then analysed Lagrangian trajectories extracted from a set of DNS of
the Navier–Stokes equations (see table 1 where important physical parameters of the
simulations are gathered) and compared their statistical properties with those of u in
figure 4. Following a calibration procedure (§ 4.4.2) that relates in a transparent and
reproducible way the free parameters of the model τη and T to the empirical values of the
Kolmogorov time scale τK and of the integral one TL, we are then able to reproduce with
great accuracy the statistical properties of the DNS trajectories. We nonetheless observed
some discrepancies below the zero-crossing time scale of the acceleration correlation
function (figure 4c), and the flatness of velocity increments at similar dissipative time
scales (figure 4d).

To push forward our understanding of the observed rapid increase of the flatness in the
intermediate dissipative range, and on the way explore some new types of prediction for
the acceleration correlation function, we have recalled and developed a phenomenological
procedure mostly based on the multifractal formalism (see § 5). This alternative approach
differs from building up a stochastic process, as was done for u. Instead, it proposed
the modelling of the some chosen statistical properties such as structure functions.
Nonetheless, it allows for the derivation of new predictions for the acceleration correlation
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function and flatness of the velocity increments, that reproduce in a very accurate
way DNS data (see the proposed discussions on the results displayed in figure 5c,d).
In particular, the theoretically predicted flatness reproduces its rapid increase in the
intermediate dissipative range, a phenomenon that is related to the differential action
of viscosity depending on the local singular strength of velocity, as modelled by the
parametrization of Paladin & Vulpiani (1987), Nelkin (1990) and Borgas (1993).

It would be useful, from a modelling perspective, to analyse a specifically designed
DNS, and its Lagrangian trajectories, where special care has been taken to resolve in
an appropriate way the range of dissipative scales. Also, at the price of being limited
in terms of Reynolds numbers, it would be much appreciated to work with numerous
trajectories, each of them lasting far longer that the Lagrangian integral time scale TL.
Only then would we be able to discriminate between schematic modelling aspects and
a lack of numerical resolution. Also, both current theoretical approaches shed new light
on the interpretation of experimental data in this range of time scales where viscosity
dominates, and open the route to an original characterization of the influence of possible
large scale anisotropic situations. Finally, it would be welcome, from the theoretical side,
to include this differential action of viscosity as modelled by Paladin & Vulpiani (1987),
Nelkin (1990) and Borgas (1993) into the stochastic approach that ends up with u and
developed in § 3.2. To date, we do not know how to model in a stochastic manner (and to
provide the respective causal dynamics) this tricky action of viscosity; we can nonetheless
conclude that a simple linear filtering at small scales fails at reproducing such a behaviour.
A natural idea would be to weight the filtering at the scale of order τη by a function of the
multifractal random field. This remains to be explored and we leave these aspects for future
investigations.
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Appendix A. Propositions concerning infinitely differentiable causal stochastic
processes

PROPOSITION A.1. Assume n ≥ 2. Then the correlation functions of velocity and
acceleration are given by

Cvn (τ ) = q(n)

(
GT � G�(n−1)

τη

)
(τ ), (A 1)
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and

Can (τ ) = −d2Cvn (τ )

dτ 2
, (A 2)

where we have introduced the correlation product �, which is defined as, for any two
functions g1 and g2,

(g1 � g2) (τ ) =
∫

R

g1(t)g2(t + τ) dt,

with the corresponding shorthand notation,

g�n = g � g � · · · � g︸ ︷︷ ︸
n

,

and the response function of the OU process at a given time scale τ (here τ = T or τ = τη)

t ∈ R �→ Gτ (t) = τ

2
e−|t|/τ . (A 3)

For the sake of completeness, we also provide the spectral view of the correlation functions
of velocity and acceleration, ((A 1) and (A 2)), which is especially useful when seeking
their explicit expression for a given layer n, once injected into a symbolic calculation
software. We have

Cvn (τ ) = q(n)

∫
R

e2 iπωτ T2

1 + 4π2T2ω2

[
τ 2
η

1 + 4π2τ 2
η ω2

]n−1

dω, (A 4)

and

Can (τ ) = q(n)

∫
R

4π2ω2e2 iπωτ T2

1 + 4π2T2ω2

[
τ 2
η

1 + 4π2τ 2
η ω2

]n−1

dω. (A 5)

To finish with this proposition, we state the implied expression for the constant q(n) to
ensure the physical constraint on velocity variance (2.19) by Parseval’s identity,

σ 2

q(n)

=
∫

R

T2

1 + 4π2T2ω2

[
τ 2
η

1 + 4π2τ 2
η ω2

]n−1

dω. (A 6)

Proof. Rephrased in the language of linear systems theory (see for instance Papoulis
1991), the system of equations (2.14)–(2.18) defines a series of linear filters with a
stochastic input. This explains the expression given for the velocity correlation of vn (A 1).

We compute the correlation function of vn , as was done in (2.11) in a more
straightforward manner, and drawing a connection with the approach adopted to present
the model of Sawford (§ 2.2.1). We obtain

Cvn (τ ) =
∫ 0

−∞

∫ τ

−∞
e−(τ−t1−t2)/TCfn−1(t1 − t2) dt1 dt2,

which can be formally rewritten as

Cvn (τ ) =
∫

R2

gT(τ + t2)gT(t1)Cfn−1(t1 − t2) dt1 dt2

=
∫

R2

gT(τ + t1 + t2)gT(t1)Cfn−1(t2) dt1 dt2

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

U
N

Y 
St

on
y 

Br
oo

k,
 o

n 
11

 A
ug

 2
02

0 
at

 1
5:

03
:0

1,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

49
5

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2020.495


Lagrangian velocity/acceleration turbulent flow modelling 900 A27-37

=
∫

R

(gT � gT) (τ + t2)Cfn−1(t2) dt2

= (gT � gT � Cfn−1

)
(τ ),

where gT(t) = e−t/T1t≥0. Noticing that GT(t) = (gT � gT)(t), we arrive at the proposition
made in (A 1) after iterating the procedure for the n − 1 remaining layers. The equivalent
form of the velocity correlation in the spectral space (A 4) is a consequence of the
convolution theorem, and that the Fourier transform of GT is a Lorentzian function. �

PROPOSITION A.2. Take n ≥ 2. Using the results of Proposition A.1, we have

Cvn (τ ) = 2σ 2e−τ 2
η /T2

Terfc
(
τη/T

) ∫
R

e2 iπωτ T2

1 + 4π2T2ω2

⎡⎢⎢⎣ 1

1 + 4π2τ 2
η ω2

n − 1

⎤⎥⎥⎦
n−1

dω, (A 7)

such that

Cv(τ ) ≡ lim
n→∞

Cvn (τ ) = 2σ 2e−τ 2
η /T2

Terfc
(
τη/T

) ∫
R

e2 iπωτ T2

1 + 4π2T2ω2
exp(−4π2τ 2

η ω2) dω. (A 8)

We get

Cv(τ ) = σ 2 e−|τ |/T

2erfc(τη/T)

[
1 + erf

( |τ |
2τη

− τη

T

)
+ e2|τ |/Terfc

( |τ |
2τη

+ τη

T

)]
, (A 9)

with the particular value Cv(0) = 〈v2〉 = σ 2. Concerning the acceleration correlation
function, take (minus) the second derivative of Cv (A 9) and we obtain

Ca(τ ) = σ 2

2T2erfc(τη/T)

[
2T

τη

√
π

exp

(
−
(

τ 2

4τ 2
η

+ τ 2
η

T2

))
− e−|τ |/T

(
1 + erf

( |τ |
2τη

− τη

T

))

−e|τ |/Terfc
( |τ |

2τη

+ τη

T

)]
. (A 10)

Proof. By Lebesgue’s dominated convergence, we can safely commute limn→∞ and the
indefinite integral that enter in the expression given in (A 7). Recall that (1 + x/n)n

tends to ex as n → ∞, and we get to (A 8). Express then (A 8) in the physical space as
a convolution, and perform the remaining integral to arrive at (A 9). The expression in
(A 10), the acceleration correlation function, also follows. �

PROPOSITION A.3 (On the statistical properties of the fields X1,ε and its asymptotical log-
correlated version X1 ≡ limε→0 X1,ε). Recall first the definition of the OU-kernel gτ (t) =
e−t/τ 1t≥0, where 1t≥0 stands for the indicator function of positive reals, and the
associated response function Gτ (t) = (gτ � gτ )(t) = (τ/2)e−|t|/τ (A 3). We will also need
its derivative, which reads as G′

τ (t) = −(t/(2|t|))e−|t|/τ .
The unique solution X1,ε of the dynamics given in (3.2) is a zero-average Gaussian

process that reaches a statistically stationary regime at large time t, independently of the
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initial condition. In this statistically steady state, X1,ε is thus fully characterized by its
correlation function that reads

CX1,ε
(τ ) = −

∫ ∞

0

[
G′

T(τ + h) − G′
T(τ − h)

] dh
h + ε + √

ε(h + ε)
(A 11)

= −e−|τ |/T
∫ |τ |

0

sinh (h/T) dh
h + ε + √

ε(h + ε)
+ cosh(|τ |/T)

∫ ∞

|τ |

e−h/T dh
h + ε + √

ε(h + ε)
.

(A 12)

In particular, we have

CX1,ε
(0) = 〈X2

1,ε〉 =
∫ ∞

0

e−h/T dh
h + ε + √

ε(h + ε)
(A 13)

=
ε→0

log
(

1
ε

)
+ O(1). (A 14)

In the asymptotic regime ε → 0, whereas the variance of X1,ε diverges, its correlation
function at a given time lag |τ | > 0 remains a bounded function of ε. This defines an
asymptotic zero-average Gaussian process X1 of infinite variance, but with a bounded
covariance for |τ | > 0. We obtain

CX1(τ ) = lim
ε→0

CX1,ε
(τ ) = −

∫ ∞

0

[
G′

T(τ + h) − G′
T(τ − h)

] dh
h

(A 15)

= −e−|τ |/T
∫ |τ |

0
sinh (h/T)

dh
h

+ cosh(|τ |/T)

∫ ∞

|τ |
e−h/T dh

h
(A 16)

= log+
(

T
|τ |
)

+ c(|τ |), (A 17)

where log+(x) = log(max(x, 1)) and c(|τ |) is a bounded function of its argument such
that it goes to zero as |τ | → ∞. Of special interest is the value of c at the origin. We
obtain

c(0) =
∫ ∞

0
e−y log( y) dy ≈ −0.577216, (A 18)

and is known as (minus) the Euler–Mascheroni constant.
The corresponding spectral representation of the correlation function of the limiting

process X1 is given by

CX1(τ ) =
∫

R

e2 iπωτ 2π2|ω| T2

1 + 4π2T2ω2
dω. (A 19)

Proof. Arguments developed in Chevillard (2017) can be easily adapted to show the
expression of the correlation function of X1,ε at a given finite ε ((A 11) and (A 12)) (see
Pereira et al. (2018) for a full derivation). The expression of its variance (A 13) is a
consequence of (A 12). To see the logarithmic divergence with respect to ε (A 14), split
the integral entering in (A 13) in two over [0, ε] and [ε,∞] and observe that the first
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term tends to a bounded constant as ε → 0. Subtract then from the second term the
quantity

∫∞
ε

e−h/T dh/h and observe that the overall quantity remains bounded as ε → 0.
This shows the logarithmic divergence since this is the case for this subtracted quantity
(performing an integration by parts over the dummy variable h).

Similarly, expressions for the correlation function of the limiting process X1 ((A 15)
and (A 16)) are shown in Chevillard (2017) and Pereira et al. (2018). Remark that the
first integral on the right-hand side of (A 16) vanishes as τ → 0, and observe (again by
integration by parts) that the second integral diverges logarithmically with τ , showing the
small scale diverging behaviour depicted in (A 17). To prove the overall shape of CX1 as
it is given in (A 17), we have to show that the function c is indeed bounded and goes to
zero at large arguments. It is easy to see that once the logarithmic diverging behaviour is
subtracted from the full expression, only bounded terms remain, which makes c bounded
too. At large arguments, re-organize the terms in a proper way to see the convergence
towards zero.

To show the spectral representation of the correlation function (A 19), use G′
T(t) =∫

e2 iπωt2iπωT2/(1 + 4π2ω2T2) dω and inject into (A 15). Perform then the remaining
integral over the dummy variable h using the known result

∫∞
0 sin(u)/u du = π/2, and

we get (A 19). As a final remark, whereas the regularization procedure over ε used in
(3.2) may appear somehow arbitrary, and has some impact on the functional form of
the correlation function CX1,ε

(τ ) ((A 11) and (A 12)), this dependence disappears in the
limit ε → 0. In other words, the same correlation function CX1(τ ) ((A 15) and (A 16))
would have been obtained using another regularization procedure as long as the divergent
behaviours of variance (A 14) and covariance (A 17) are ensured. This canonical behaviour
of the limiting process X1 is consistent with the conclusions of Robert & Vargas (2010)
and Rhodes & Vargas (2014). �

PROPOSITION A.4. (On the statistical properties of the field Xn,ε and its asymptotical
behaviour). The unique solution Xn,ε of the dynamics given in (3.14) is a zero-average
Gaussian process, and reaches a statistically stationary regime at large times T,
independent of the initial condition. In this statistically steady state, Xn,ε is thus fully
characterized by its correlation function, conveniently expressed in spectral space. We
have

CXn,ε
(τ ) =

∫
R

e2 iπωτ 4πω
T2

1 + 4π2T2ω2

⎡⎢⎢⎣ 1

1 + 4π2τ 2
η ω2

n − 1

⎤⎥⎥⎦
n−1

(∫ ∞

0

sin(2πωh) dh
h + ε + √

ε(h + ε)

)
dω, (A 20)

such that

CX(τ ) ≡ lim
n→∞

lim
ε→0

CXn,ε
(τ ) = lim

ε→0
lim

n→∞
CXn,ε

(τ ) (A 21)

=
∫

R

e2 iπωτ 2π2|ω| T2

1 + 4π2T2ω2
exp(−4π2τ 2

η ω2) dω. (A 22)
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In particular, we have

CX(0) = 〈X2〉 =
∫

R

2π2|ω| T2

1 + 4π2T2ω2
exp(−4π2τ 2

η ω2) dω (A 23)

=
τη→0

log
(

T
τη

)
+ O(1), (A 24)

where the O(1) constant is equal to minus one half of the Euler–Mascheroni constant
(≈ −0.288), and

lim
τη→0

CX(τ ) = CX1(τ ), (A 25)

where X1 is the single-layer fractional Ornstein–Uhlenbeck process depicted in
Proposition A.3.

Concerning the expression of this correlation function in the physical space, it can be
written for numerical purposes as

CX(τ ) = T
4τ 3

η

∫
R

e− |τ−t|
T

[
τη − tF

(
t

2τη

)]
dt, (A 26)

where the so-called Dawson integral F(x) = e−x2 ∫ x
0 ey2 dy enters.

Proof. The correlation function CXn,ε
(A 20) corresponds to the successive linear

operations made on a white noise W̃(dt): an OU process for a large time scale T , n − 2
OU processes at the small time scale τη/

√
n − 1 and a fractional OU process of vanishing

Hurst exponent at τη/
√

n − 1 (and defined in Proposition A.3). Expressions (A 21)–(A 25)
follow from this spectral representation. The physical form of CX (A 26) is obtained
through inverse Fourier transformation of (A 22). �

PROPOSITION A.5 (Concerning the covariance structure of the infinitely differentiable
causal MRW u and the corresponding acceleration process). Assume γ 2 < 1. The unique
statistically stationary solution un,ε of the set of equations (3.8)–(3.12) converges, as far
as the average and variance are concerned, when both ε → 0 and n → ∞ (the limiting
procedure commutes) to a zero-average process that we note u.

Its correlation function reads

Cu(τ ) =
∫

R

GT(h + τ)Cf (h)eγ 2CX(h) dh (A 27)

= Te− |τ |
T

∫ |τ |

0
cosh

(
h
T

)
Cf (h)eγ 2CX(h) dh + T cosh

( τ

T

) ∫ ∞

|τ |
e− h

T Cf (h)eγ 2CX(h) dh,

(A 28)

where CX corresponds to the correlation function of the infinitely differentiable Gaussian
process X depicted in Proposition A.4, and Cf the correlation function of the Gaussian
force f entering in the dynamics of un (3.8) once the limit n → ∞ has been taken, and
given by

Cf (τ ) = σ 2

T
∫ ∞

0
e− h

T e−h2/(4τ 2
η )eγ 2CX(h) dh

e
− τ2

4τ2
η . (A 29)

In the limit of infinite Reynolds number, i.e. as τη/T → 0, the correlation function Cu of u
coincides with the one of the single-layered MRW u1, which was shown in § 3.1 to coincide
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itself with the one of the single-layered OU process v1 (2.1) of variance σ 2, and we have

lim
τη→0

Cu(τ ) = Cu1(τ ) = Cv1(τ ) = σ 2e− |τ |
T . (A 30)

Rephrased in terms inherited from the phenomenology of turbulence, the asymptotic
behaviour of the correlation function (A 30) says that intermittent corrections observed
at finite Reynolds numbers (A 27), and governed by the coefficient γ , disappear at
infinite Reynolds number. In a similar spirit, these intermittent corrections only affect
the dissipative range (i.e. τ of the order and smaller than τη), and disappear in the inertial
range τη � τ � T.

Going back to finite Reynolds number predictions, i.e. keeping τη finite and smaller than
T, the expression of the Lagrangian integral time scale TL is of special interest, and we get

TL =
∫ ∞

0

Cu(τ )

Cu(0)
dτ = T2

σ 2

∫ ∞

0
Cf (h)eγ 2CX(h) dh →

τη→0
T. (A 31)

The corresponding expression for the acceleration correlation function Ca is then obtained
while taking (minus) the second derivatives of Cu (A 28), and reads

Ca(τ ) = Cf (τ )eγ 2CX(τ ) − 1
T2

Cu(τ ). (A 32)

Incidentally, the acceleration variance, and its behaviour in the infinite Reynolds number
limit (i.e. while looking at the limit τη/T → 0), reads

Ca(0) = 〈a2〉 = Cf (0)eγ 2CX(0) − σ 2

T2
(A 33)

∼
τη/T→0

σ 2

√
πTτη

, (A 34)

consistent with standard dimensional predictions, with no further intermittent corrections.

Proof. Start with showing the form of the asymptotic correlation function Cf (A 29) of the
force term f , when the number of layers n goes to infinity. Consider first this correlation at a
finite n. We have, seeking for the stationary solution of (3.9) and computing its correlation
function in the statistically steady regime,

Cfn−1(τ ) = βn

∫
R

e2 iπωτ

⎡⎢⎢⎣
τ 2
η

n − 1

1 + 4π2τ 2
η ω2

n − 1

⎤⎥⎥⎦
n−1

dω.

Remark that for all positive x and integers n, by the binomial formula, (1 + x/n)n is
bounded from below by 1 + x , such that (1 + 4π2τ 2

η ω2/(n − 1))1−n is bounded from
above by (1 + 4π2τ 2

η ω2)−1, which is an integrable function. This allows the use of
dominated convergence to conclude on the convergence of Cfn−1 as n → ∞, once we take
for βn the expression in (3.13). Taking then the limit n → ∞, the inverse Fourier transform
of the obtained Gaussian function is computed to arrive at (A 29).

Looking for the stationary solution of u (3.8), once the limit n → ∞ has been taken and
keeping in mind that the log-correlated field X is independent of the forcing term f , the
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velocity correlation function reads Cu(τ ) = (gT � gT � Cf eγ 2CX )(τ ). This corresponds to the
expression provided in (A 27).

Whereas it is straightforward to show the convergence of the correlation function of the
process as τη → 0 and then ε → 0, the convergence as ε → 0 and only then τη → 0, as
stated in (A 30), deserves attention. In any case, both orderings of limits give the same
convergence towards the one of the OU process (A 30). The full demonstration of this is
developed in appendix C, where the convergence of the second-order structure function is
studied.

Other assertions of Proposition A.5 follow from the expression of Cu. �

PROPOSITION A.6 (Concerning the scaling of the higher-order structure functions of the
infinitely differentiable causal MRW u). Without loss of generality, consider an infinite
number of layers n → ∞, and call uε the respective process. Define the velocity increment
of the process uε as

δτ uε(t) = uε(t + τ) − uε(t). (A 35)

Accordingly, define the respective asymptotic structure functions as

Su,m(τ ) = lim
ε→0

〈(uε(t + τ) − uε(t))m〉 . (A 36)

As we have seen when presenting the correlation structure of u in proposition A.5, we
have, for γ 2 < 1,

Su,2(τ ) = lim
ε→0

Suε ,2(τ ) = 2
[
σ 2 − Cu(τ )

]−→
τη→0

2σ 2
[
1 − e− |τ |

T

]
. (A 37)

With respect to the convergence of the fourth-order structure function Suε ,4, we have a more
subtle behaviour related to the ordering of the limits. We can show that, taking first the
limit τη → 0 and keeping ε finite, Suε ,4 coincides with the fourth-order structure function of
the single-layered MRW u1 for which scaling properties are listed in § 3.1. More precisely,
we can write for 4γ 2 < 1

lim
ε→0

lim
τη→0

Suε ,4(τ ) = Su1,4(τ ), (A 38)

which exhibits an intermittent behaviour (see (3.6), with q = 2σ 2/T such that u and u1
have same variance). In the reverse order of the limits, calculations get intricate, but under
an approximation procedure, we obtain the following scaling behaviour

lim
τη→0

lim
ε→0

Suε ,4(τ ) = cγ,4Su1,4(τ ), (A 39)

where cγ,4 is a constant that depends only on the intermittency coefficient γ which can
be computed. We can notice that, in this approximation, the ordering of the limits has
a consequence only on the value of the multiplicative constant entering in the power
laws ((A 38) and (A 39)), whereas the power-law exponent is the same in both cases, and
exhibits an intermittent correction.

In a similar way, whereas taking the limit τη → 0 and then ε → 0 has no difficulties,
we can assert that

lim
τη→0

lim
ε→0

Suε ,2m(τ ) = cγ,2mSu1,2m(τ ), (A 40)

showing that u exhibits a log-normal spectrum (take a look at 3.7 with again q = 2σ 2/T)
when the Reynolds number becomes infinite.

We gather all proofs in appendix C.
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Appendix B. Scaling properties of the structure functions of the causal multifractal
random walk

To set our notations, define various quantities that will enter in following calculations.
The velocity increments read

δτ u1,ε(t) = u1,ε(t + τ) − u1,ε(t) (B 1)

=
∫

R

gτ,T(t − s) exp(γ X1,ε(s) − γ 2〈X2
1,ε〉)W(ds), (B 2)

where gτ,T corresponds to the OU-kernel associated with velocity increments, that is

gτ,T(t) = √
q
[
e− t+τ

T 1t+τ≥0 − e− t
T 1t≥0

]
. (B 3)

We obtain〈(
δτ u1,ε

)2〉 = ∫
R2

gτ,T(t − s1)gτ,T(t − s2)
〈
exp(γ

(
X1,ε(s1) + X1,ε(s2)

)
− 2γ 2〈X2

1,ε〉)W(ds1)W(ds2)
〉

(B 4)

=
∫

R2

gτ,T(t − s1)gτ,T(t − s2)
〈
exp(γ

(
X1,ε(s1) + X1,ε(s2)

)− 2γ 2〈X2
1,ε〉)
〉

× 〈W(ds1)W(ds2)〉 (B 5)

=
∫

R

g2
τ,T(t − s)

〈
exp(2γ X1,ε(s) − 2γ 2〈X2

1,ε〉)
〉

ds (B 6)

=
∫

R

g2
τ,T(s) ds, (B 7)

where we have used the independence of the fields X1,ε and W, and the fact that 〈ex〉 =
e

1
2 〈x2〉 for any zero-average Gaussian random variable x . It is then easy to see that the result

(B 7) would have been the same with the standard Ornstein–Uhlenbeck process v1 (2.1),
which shows that the asymptotic process u1 has no intermittent corrections up to second
order. Performing the remaining integral that enters in (B 7) leads to the result obtained in
(3.5).

Concerning the fourth-order structure function, we have in a similar way〈(
δτ u1,ε

)4〉 = 3
∫

R2

g2
τ,T(t − s1)g2

τ,T(t − s2)

× 〈exp(2γ
(
X1,ε(s1) + X1,ε(s2)

)− 4γ 2〈X2
1,ε〉)
〉

ds1 ds2 (B 8)

= 3
∫

R2

g2
τ,T(t − s1)g2

τ,T(t − s2) exp(4γ 2CX1,ε
(s1 − s2)) ds1 ds2 (B 9)

= 6
∫ ∞

0

(
g2

τ,T � g2
τ,T

)
(s) exp(4γ 2CX1,ε

(s)) ds, (B 10)

where we have used Isserlis’ theorem to factorize the four-time correlator of W in terms
of products of its correlations, which gives rise to three symmetrical terms of equal
contribution, with an appropriate change of variables, and finally exploited the parity of
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the functions (g2
τ,T � g2

τ,T) and CX1,ε
. Dominated convergence ensures that

Su1,4(τ ) = lim
ε→0

〈(
δτ u1,ε

)4〉 (B 11)

= 6
∫ ∞

0

(
g2

τ,T � g2
τ,T

)
(s) exp(4γ 2CX1(s)) ds. (B 12)

At this stage, remark that the integral provided in (B 12) makes sense only if the singularity
∼ s−4γ 2 implied by exp(4γ 2CX1(s)) (as easily seen in (A 17)) is integrable in the vicinity
of the origin. This explains the bound on γ required by the existence of the fourth-order
structure function, that is

4γ 2 < 1. (B 13)

Compute then the function (g2
τ,T � g2

τ,T)(s), namely, for s ≥ 0 and τ ≥ 0,

(
g2

τ,T � g2
τ,T

)
(s) = q2e− 2s

T

∫
R

e− 4x
T
[
e− τ

T 1x+τ≥0 − 1x≥0
]2 [

e− τ
T 1x+τ+s≥0 − 1x+s≥0

]2
dx,

(B 14)
which integrand is made up of simple exponentials over intricate domains, and get in an
exact fashion (with the help of a symbolic calculation software),

(
g2

τ,T � g2
τ,T

)
(s) = q2T

4

[(
1 − e− τ

T
)3 (

2 + e
τ
T + e2 τ

T
)

e−2 s
T (B 15)

+2
(
2e− τ

T − 1
)

sinh
(

2
τ − s

T

)
1τ−s≥0

]
, (B 16)

and inject it into the expression of Su1,4 (B 12). Observe that the decrease of Su1,4 as τ → 0
is governed by the second term (g2

τ,T � g2
τ,T) (B 16), since the first term (B 15) implies

a decrease towards 0 as τ 3. Thus, only considering the leading contribution entering in
(B 16), using (2e−τ/T − 1) ≈ 1, we have a good approximation as τ → 0

Su1,4(τ ) ≈ 3Tq2
∫ τ

0
sinh

(
2(τ − s)

T

)
exp(4γ 2CX1(s)) ds (B 17)

= 3Tq2
∫ 1

0
sinh

(
2τ(1 − s)

T

)
exp(4γ 2CX1(τ s))τ ds (B 18)

∼
τ→0

6q2τ 2
( τ

T

)−4γ 2

e4γ 2c(0)

∫ 1

0
(1 − s) s−4γ 2

ds (B 19)

= 3
1 − 6γ 2 + 8γ 4

q2τ 2
( τ

T

)−4γ 2

e4γ 2c(0), (B 20)

where the constant c(0) is explicitly known, and given in (A 18). This entails (3.6).
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Let us now generalize former calculations up to any order. We get〈(
δτ u1,ε

)2m
〉
= (2m)!

2mm!

∫
Rm

m∏
k=1

g2
τ,T(t − sk)

〈
exp

(
2γ

m∑
k=1

X1,ε(sk) − 2mγ 2〈X2
1,ε〉
)〉 m∏

k=1

dsk (B 21)

= (2m)!
2mm!

∫
Rm

m∏
k=1

g2
τ,T(t − sk) exp

⎛⎝4γ 2
m∑

k<p=1

CX1,ε
(sk − sp)

⎞⎠ m∏
k=1

dsk (B 22)

=
ε→0

(2m)!
2mm!

∫
Rm

m∏
k=1

g2
τ,T(t − sk) exp

⎛⎝4γ 2
m∑

k<p=1

CX1(sk − sp)

⎞⎠ m∏
k=1

dsk. (B 23)

Once again, the exponential entering in (B 23) gives both the condition of existence on γ ,
and intermittent corrections. The strongest singularity is encountered along the diagonal,
that is when all dummy variables sk coincide. It is equivalent to say that it is necessary to
take

2m(m − 1)γ 2 < 1, (B 24)

to guarantee the existence of the integral given in (B 23). Similarly, it implies an
intermittent correction of order (τ/T)−2m(m−1)γ 2 , as stated in (3.7), which concludes the
proofs of § 3.1.

Appendix C. Scaling properties of the structure functions of the infinitely
differentiable causal multifractal random walk

To set our notations, we define various quantities that will enter in the following
calculations. The velocity increments read

δτ u(t) = u(t + τ) − u(t) (C 1)

=
∫

R

gτ,T(t − s) exp
(

γ X(s) − γ 2

2
〈X2〉

)
f (s) ds, (C 2)

where gτ,T corresponds to the OU-kernel associated with velocity increments, that is

gτ,T(t) = e− t+τ
T 1t+τ≥0 − e− t

T 1t≥0. (C 3)

We obtain〈
(δτ u)2〉 = ∫

R2

gτ,T(t − s1)gτ,T(t − s2)Cf (s1 − s2)

× 〈exp(γ (X(s1) + X(s2)) − γ 2〈X2〉)〉 ds1 ds2 (C 4)

=
∫

R2

gτ,T(t − s1)gτ,T(t − s2)Cf (s1 − s2) exp(γ 2CX(s1 − s2)) ds1 ds2 (C 5)

=
∫

R

(
gτ,T � gτ,T

)
(s)Cf (s)eγ 2CX(s) ds (C 6)

= 2
∫

R+

(
gτ,T � gτ,T

)
(s)Cf (s)eγ 2CX(s) ds, (C 7)

where we have used the independence of the fields X and f , and the fact that 〈ex〉 = e
1
2 〈x2〉

for any zero-average Gaussian random variable x . This shows that, contrary to the MRW
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case u1 (3.5), the asymptotic process u (once the limit ε → 0 has been taken) has an
intermittent correction up to second order when τη/T is finite. We have, for τ ≥ 0 and
s ≥ 0,

(
gτ,T � gτ,T

)
(s) = T

(
e−s/T − e−τ/T cosh(s/T) + sinh

(
s − τ

T

)
1s−τ≥0

)
, (C 8)

which shows that once injected in (C 7), we recover in a consistent manner〈
(δτ u)2〉 = 2

(
σ 2 − Cu(τ )

)
. (C 9)

To see the behaviour of the second-order structure function in the (non-commuting) limit
τη → 0 (i.e. the infinite Reynolds number limit) and then τ → 0 (i.e. the limit at small
scales), regroup terms in (C 8) and obtain, using the definition of Cf (A 29),

〈
(δτ u)2〉 = 2σ 2

[
1 − cosh

( τ

T

)]
+ 2σ 2

∫ τ

0
sinh

(
τ − s

T

)
e

− s2

4τ2
η eγ 2CX(s) ds∫ ∞

0
e− s

T e
− s2

4τ2
η eγ 2CX(s) ds

. (C 10)

Rescale then the dummy variable entering the second term by τη and obtain

〈
(δτ u)2〉 = 2σ 2

[
1 − cosh

( τ

T

)]
+ 2σ 2

∫ τ/τη

0
sinh

(
τ − sτη

T

)
e− s2

4 exp(γ 2CX(sτη)) ds∫ ∞

0
e− sτη

T e− s2
4 exp(γ 2CX(sτη)) ds

,

(C 11)
such that we obtain the simple result

lim
τη→0

〈
(δτ u)2〉 = 2σ 2 [1 − e− τ

T
]
, (C 12)

showing that, up to second-order statistics, the infinitely differentiable causal multifractal
walk u coincides with the underlying OU process (2.1) in the infinite Reynolds number
limit τη → 0.

Concerning the fourth-order structure function, we have in a similar way

〈
(δτ u)4〉 = 3

∫
R4

4∏
k=1

gτ,T(t − sk)

〈
exp

(
γ

4∑
k=1

X(sk) − 2γ 2〈X2〉
)〉

× Cf (s1 − s2)Cf (s3 − s4)

4∏
k=1

dsk (C 13)

= 3
∫

R4

4∏
k=1

gτ,T(sk) exp

⎛⎝γ 2
4∑

k<p=1

CX(sk − sp)

⎞⎠
× Cf (s1 − s2)Cf (s3 − s4)

4∏
k=1

dsk (C 14)
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= 3
∫

R4

gτ,T(s)gτ,T(s − h1)gτ,T(s − h2)gτ,T(s − h3) (C 15)

× exp(γ 2 (CX(h1) + CX(h2) + CX(h3) + CX(h1 − h2)

+ CX(h1 − h3) + CX(h2 − h3))) (C 16)

× Cf (h1)Cf (h3 − h2) ds
3∏

k=1

dhk (C 17)

= 3
∫

R3

Gτ,T(h1, h2, h3)Cf (h1)Cf (h2 − h3)

× exp

(
γ 2

(
3∑

k=1

CX(hk) +
3∑

k<l,1

CX(hk − hl)

))
3∏

k=1

dhk, (C 18)

where we have noted

Gτ,T(h1, h2, h3) =
∫

R

gτ,T(s)gτ,T(s + h1)gτ,T(s + h2)gτ,T(s + h3) ds. (C 19)

The exact expression of the function Gτ,T (C 19) could be obtained using a symbolic
calculation software, although it is intricate. Instead, we will do an approximate
calculation, based on an ansatz for the correlation function CX entering in the expression of
the moment of velocity increments (C 18). We get then an equivalent at infinite Reynolds
number (i.e. τη → 0), from which we deduce the scaling behaviour as τ goes to zero.

As we have seen, the correlation function CX(τ ) of X (A 22) has several obvious limiting
behaviours. First, it goes to zero at large arguments τ � T . Secondly, as τη → 0, its value
at the origin blows up logarithmically with τη (A 24), and in the same limit, pointwise,
for strictly positive arguments τ > 0, it behaves logarithmically with τ as τ → 0. A
simple ansatz for CX(τ ) consistent with these limiting behaviours could be written in an
approximate and simple way as

CX(τ ) ≈ 1
2

log
T2

τ 2
η + τ 2

1|τ |≤T + dτη
(τ ), (C 20)

where dτη
(τ ) is a bounded function of τ and τη, that goes to zero at large

arguments. Furthermore, we know that dτη
(0) → d(0) coincides with minus one half the

Euler–Mascheroni constant (i.e. ≈ −0.288) as τη → 0 (A 24). Henceforth, calculations
will not be performed in a rigorous way since the ansatz (C 20) in only an approximate,
although realistic, form of CX .

Find now the pointwise behaviour of the correlation function Cf of f (A 29). We have,
looking for an equivalent of the multiplicative factor entering in (A 29), using the ansatz
proposed in (C 20),

T(T/τη)
γ 2 eγ 2d(0)g(γ )

σ 2
Cf (τ ) ∼

τη→0

1√
4πτ 2

η

e
− τ2

4τ2
η , (C 21)

where

g(γ ) = 1√
4π

∫ ∞

0
e−h2/4 1

(1 + h2)γ 2 dh. (C 22)
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From the equivalent derived in (C 21), we can see that Cf , properly weighted, will
participate to the fourth-order moment of increments (C 18) similarly to a distributional
Dirac function, and will greatly simplify its expression. Checking the realism of
the ansatz (C 21) on the second-order structure function (C 6) we obtain 〈(δτ u)2〉 ∼
(σ 2/Tg(γ ))(gτ,T � gτ,T)(0) = (σ 2/g(γ ))(1 − e−τ/T) as τη → 0. We can see that the
approach based on the ansatz (C 20) introduces an error compared with the exact result
given in (C 12): instead of the exact factor 2 entering in (C 12), we find the factor
1/g(γ ) ≈ 2.1388 once is used the empirical intermittency coefficient given in (3.25),
corresponding thus to an overestimation of order 1/(2g(γ )) ≈ 7 % of the multiplicative
constant, the remaining power-law dependence on τ being correct.

Having justified the good performance of this approximate procedure, we inject then
(C 21) into (C 18), and use the limiting behaviour of CX as τη → 0 (A 25), and get in a
heuristic fashion the following expression〈

(δτ u)4〉 ∼
τη→0

6
σ 4

g2(γ )T2

∫ ∞

0
Gτ,T(0, h, h) exp(4γ 2CX1(h)) dh. (C 23)

Noticing that Gτ,T(0, h, h) = (g2
τ,T � g2

τ,T)(h), we recover the fourth-order structure
function of the MRW process (B 12) using q = 2σ 2/T in (B 3) (to make sure that we
are comparing two processes of same variance σ 2) up to a multiplicative factor such that〈

(δτ u)4〉 ∼
τη→0

1
4g2(γ )

〈
(δτ u1)

4〉 . (C 24)

The numerical value of this factor is 1/4g2(γ ) ≈ 1.1436 working with the empirical value
for γ (3.25), saying that 〈(δτ u)4〉 is very similar to 〈(δτ u1)

4〉 at large Reynolds number, in
particular its (intermittent) scaling behaviour with τ (see (B 20)).

Let us end this appendix by computing, under the very same approximation based on
(C 20), higher-order structure functions. We have〈

(δτ u)2m〉 (C 25)

= (2m)!
2mm!

∫
R2m

2m∏
k=1

gτ,T(t − sk)

〈
exp

(
γ

2m∑
k=1

X(sk) − mγ 2〈X2〉
)〉

m∏
k=1

× Cf (s2k−1 − s2k)

2m∏
k=1

dsk (C 26)

= (2m)!
2mm!

∫
R2m

2m∏
k=1

gτ,T(t − sk) exp

(
γ 2

2m∑
k<l,1

CX(sk − sl)

)
m∏

k=1

Cf (s2k−1 − s2k)

2m∏
k=1

dsk

(C 27)

∼
τη→0

(2m)!
2mm!

(
σ 2

g(γ )T

)m ∫
Rm

m∏
k=1

g2
τ,T(t − sk) exp

(
γ 2

m∑
k<l,1

CX1(sk − sl)

)
m∏

k=1

dsk, (C 28)

showing that 〈
(δτ u)2m〉 ∼

τη→0

1
2mgm(γ )

〈
(δτ u1)

2m〉 , (C 29)

which entails (A 40).
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