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Abstract

The role of instantons is investigated in the Lagrangian model for the velocity gradient evolution

known as the Recent Fluid Deformation (RFD) approximation. After recasting the model into the path-

integral formalism, the probability distribution function (pdf) is computed along with the most probable

path in the weak noise limit through the saddle-point approximation. Evaluation of the instanton solution

is implemented numerically by means of the iteratively Chernykh-Stepanov method. In the case of the

longitudinal velocity gradient statistics, due to symmetry reasons, the number of degrees of freedom can

be reduced to one, allowing the pdf to be evaluated analytically as well, thereby enabling a prediction of

the scaling of the moments as a function of Reynolds number. It is also shown that the instanton solution

lies in the Vieillefosse line concerning theRQ-plane. We illustrate how instantons can be unveiled in the

stochastic dynamics performing a conditional statistics.
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I. INTRODUCTION

This paper aims at obtaining the stationary probability distribution function and large Wuc-

tuations of a stochastic model of turbulence proposed by Chevillard and Meneveau [1]. The

model, known as Recent Fluid Deformation (RFD) approximation, consists in a set of stochastic

diUerential equations describing the evolution of the eight degrees of freedom of the velocity

gradient tensor of a Wuid particle along its Lagrangian trajectory in an incompressible Wow.

Large deviations of the velocity gradient in turbulent Wows are associated with high dissipation

rates and enstrophy and are crucial to the understanding of intermittency phenomena - a topic

of intense research in turbulence. In order to evaluate the pdfs of the velocity gradients (and

also the probability of large Wuctuations) we made use of the iterative numerical procedure of

Chernykh-Stepanov [2] which amounts to solving the saddle-point equations that minimize the

action, providing this way the most probable path leading to a given Wuctuation, which will be

refered to as the instanton. In the case of the longitudinal velocity gradient, due to symmetry

reasons, the number of degrees of freedom can be reduced to one, allowing the pdf to be ob-

tained analytically as well. These analytical probability distribution functions (pdfs) obtained

are in excellent agreement with the numerical ones obtained by numerical integration of the

stochastic diUerential equations. Another result is that the instanton lies along the Vieillefosse

line in the so-called RQ-plane. For the longitudinal velocity gradient, this instanton approach

gives unprecedented prediction for the pdf tail and for the dynamics of the optimal path, along

with a prediction of how the moments scale with the Reynolds number. That gives us a theoret-

ical approach to the dynamics leading to these rare events, and thus intermittency. This point is

the main originality of this work.

Of central interest in turbulence is the behavior of small scales statistics. More speciVcally,

scaling and universality at small scales of motion in turbulent Wows is a long standing problem

[3]. Due to the intense Wuctuations within small scales, large deviations of the velocity Veld

diUerences are very pronounced for high values of Reynolds number. These large excursions of

the velocity gradient are apparent in the pdf, where drastic departures from gaussian behavior

are manifest - and also termed intermittency.

It is clear that a theory of turbulence capable of explaining intermittency and the scaling of

high order structure functions must rely on a deep understanding of the dynamics of the small

scales. A natural candidate to probe such scales is the velocity gradient tensor. Nevertheless,
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obtaining the statistics of the velocity gradient tensor is a diXcult task. A common approach to

address the evolution of the velocity gradient is the Lagrangian framework, which can drastically

reduce the degrees of freedom and lead to a simpliVed picture of the small scales. Turbulence

in the Lagrangian frame has some diUerent features compared to Eulerian turbulence, such as

a shorter correlation time of the velocity gradient. This property inspired the Recent Fluid De-

formation [1] approximation, which is a model where the shape of a Wuid particle following the

local velocity Veld has a short memory. This closure was studied in the last years [4], [5], [6] and

extended to account for passive scalar transport and MHD [7] and was dealt with analytically

by an eUective action approach, based on noise renormalisation [8].

In order to study large deviations of the velocity gradients in this model the path integral

framework is used, which is very suitable to investigate large Wuctuations. The reason lies in

the fact that for weak noise driven systems, the probability is dominated by the action minima.

The trajectory which minimizes the action is called instanton. This approach is equivalent to the

Freidlin-Wentzell theory of large Wuctuations [10] and provides a proper way to Vnd which is the

most probable evolution leading to a large event. It can be, therefore, a valuable approach to deal

with an important question in hydrodynamic turbulence, that is what are the common structures

found at small scale turbulence. Structures related to large values of velocity gradient are of

vital importance in the study of turbulence, since they are responsible for most of dissipation

that takes place at the smallest scales of Wuid motion, typically associated with large strain

and vorticity. Many works have devoted a long eUort on the identiVcation of such objects. In

particular the use of instanton techniques to achieve this goal in Burgers turbulence can be found

in references [2], [19], [20], [21]. Reference [8] applies the path-integral approach to evaluate

the pdf in the RFD model. However, the set of saddle-point equations was linearized to obtain an

approximate instanton solution. To correct this truncated saddle-point equations, a perturbative

method was carried out.

In this work we determine the instanton of the RFD addressing what is the most probable

evolution of a Lagrangian particle and also calculate its contribution to the pdf in the weak

noise limit by solving the full set of non-linear saddle-point equations. For the case of a diagonal

(longitudinal) component of the velocity gradient, analytical results can be computed for its pdf.

The paper is organized as follows. In section II the Recent Fluid Deformation equations are

reviewed. Section III is devoted to the results and is divided in four parts. Part A presents

the model dressed in the Martin-Siggia-Rose/Janssen/de Dominicis path integral formalism [15],
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[16], [17] and how this approach can be used to address large deviations. Part B displays the

transverse velocity gradient statistics after solving the instanton equations by means of the nu-

merical Chernykh-Stepanov [2] algorithm. In part C it is shown that the longitudinal velocity

gradient is subject to an analytical solution in addition to the numerical one. In the sequel, part

D presents how instantons are uncovered by performing a conditioned statistics with respect to

the stochastic dynamics, which are confronted with the previously obtained instantons. Final

remarks close the paper in section IV.

II. THE RFD LAGRANGIAN STOCHASTIC MODEL

A. Recent Fluid Deformation for Lagrangian turbulence

Proposed in [1], the Recent Fluid Deformation (RFD) is a scheme for modelling the evolution

of velocity gradient of a Wuid particle along its trajectory in the Lagrangian frame. By taking the

gradient of the Navier-Stokes equation, we write

dAij

dt
= −AikAkj −

∂2p

∂xi∂xj

+ ν
∂2Aij

∂xm∂xm

, (2.1)

where d/dt is the convective derivative, p stands for pressure divided by Wuid density and ν cor-

responds to the kinematical viscosity. In equation (2.1),Aij = ∂jui is the velocity gradient tensor

in cartesian components. The diXculty in obtaining statistics from the velocity gradient Navier-

Stokes is that the pressure Hessian and the viscous term are not closed in terms of a Lagrangian

trajectory. A review of diUerent attempts of closures can be found at [9]. The simplest closure

is achieved by neglecting dissipation and nonlocal eUects of the pressure Hessian. Although, a

solution is available, it can be shown that it develops a divergence at Vnite time [11], [12]. The

RFD has the merit of incorporating pressure and viscous eUects preventing divergences in A. It

may be compared to the tetrad model [13], though instead of dealing with an equation for the

evolution of Wuid deformation, it is strongly modelled. The rationale goes as follows. Write the

pressure Hessian as

∂2p

∂xi∂xj

≈ ∂Xm

∂xi

∂Xn

∂xj

∂2p

∂Xm∂Xn

(2.2)

where ∂Xj/∂xi denotes the Jacobian of the change of coordinates from Eulerian to Lagrangian

coordinates. In (2.2), spatial derivatives of the Jacobian were neglected. The Cauchy-Green
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tensor, deVned by

Cij =
∂xi

∂Xk

∂xj

∂Xk

(2.3)

is assumed to have the form

C = exp[τA] exp[τAT] , (2.4)

where τ corresponds to a short time associated to the correlation time of the velocity gradient in

the Lagrangian frame, assumed to be of the order of the Kolmogorov time scale. The idea behind

the RFD approximation is that after a short period of time (∼ τ ) the shape of a Lagrangian

particle is uncorrelated with its initial shape. Therefore, it is possible to assume an isotropic

shape for a Wuid particle at initial time, which implies an isotropic pressure Hessian ∂2p
∂Xm∂Xn

=

1

3
δmn

∂2p
∂Xl∂Xl

. Taking it into account, (2.2) turns to

∂2p

∂xi∂xj

≈
C−1

ij

C−1
qq

AmnAnm. (2.5)

Similar reasoning can be applied to model the viscous term, yielding

ν
∂2Aij

∂xm∂xm

≈ ∂Xk

∂xm

∂Xl

∂xm

∂2Aij

∂Xk∂Xl

≈ − 1

3T
C−1

qq Aij (2.6)

where T stands for the integral time scale, which comes from dimensional arguments as

ν/(∂X)2 ≈ 1/T , considering that ∂X is on the order of a typical distance travelled by a

particle during time τ , which scales with the Taylor microscale length. Therefore, substituting

eqs. (2.5) and (2.6) in (2.1), the RFD model equation is given by

Ȧ = −A
2 +

C−1Tr(A2)

Tr(C−1)
− Tr(C−1)

3T
A+ gF , (2.7)

where a random forcing was supplemented to provide stationary statistics. In (2.7), g is the

strength of the stochastic force, related to energy injection rate, and will play an important role

in the discussion. F is a zero average white noise tensor such that

〈Fij(t)Fkl(t
′)〉 = Gijklδ(t− t′) , (2.8)

with

Gijkl = 2δikδjl −
1

2
δilδjk −

1

2
δijδkl . (2.9)

The force correlatorGijkl is the general 4th-order tensor which respects isotropy and also ensures

incompressibility, i.e., TrA = 0. It can be shown that Gjjkl = 0 and Gijkl = Gklij , which follow

immediately from equation (2.8).
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III. RESULTS

A. Instantons in the Martin-Siggia-Rose path integral

As in many applications of large deviations, it is customary to evaluate the probability to

reach a Vnal state A(t2) = A2 at time t = t2 starting from time t1, with A(t1) = A1. The initial

conVguration A1 is usually taken to be at, or close to, an attractor of the deterministic dynamics,

whilst the initial time is assumed to be t1 = −∞, such that the stationary transition probability

will depend solely on A(t2). In this work, we want to evaluate the probability of Vnding a large

value of one component Aαβ(t2), either longitudinal, or transverse, which can be accomplished

with the auxiliary of the Martin-Siggia-Rose/Janseen/de Dominics path integral [15], [16], [17].

Therefore, denoting the referred transition probability by ραβ(a) = ρ(Aαβ(t2) = a|A(t1) = 0)

with α and β prescribed ( ραβ should not be understood as a tensor, the indices simply refer

to the transition probability of the component Aαβ to the value a at a Vnal time t2), the path

integral formalism leads to

ραβ(a) = 〈δ(Aαβ(t2)− a)〉 =
∫

D[A] exp

[

−
∫ t2

t1

dtLOM[A(t), Ȧ(t)]

]

δ(Aαβ(t2)− a) , (3.1)

where the angular brackets stand for the averaging over force realisations, which can be ac-

counted for, alternatively, by performing a sum over all possible paths A(t) starting from A1 and

arriving at A2. The Vnal condition is enforced by the Dirac delta functional, and the Onsager-

Machlup Lagrangian LOM[A(t), Ȧ(t)] [18] reads

LOM[A, Ȧ] =
1

2g2

(

(Ȧij − Vij)Q
−1

ijkl(Ȧkl − Vkl)−
1

5
Tr[Ȧ− V]2

)

, (3.2)

with Q−1

ijkl = (8/15)δikδjl + (−2/15)δilδjk such that Gijkl = Qijkl − QijmmQklnn/Qppqq. Equiv-

alently, the probability transition can be written in terms of the Martin-Siggia-Rose Lagrangian

LMSR[A(t), Â(t)] as

ραβ(a) = 〈δ(Aαβ(t2)− a)〉 =
∫

D[A]D[Â] exp

[

−
∫ t2

t1

dtLMSR[A(t), Â(t)]

]

δ(Aαβ(t2)− a) ,

(3.3)

with

LMSR[A, Â] =
g2

2
ÂijGijklÂkl − iTr[ÂT(Ȧ− V)] . (3.4)

The relationship between the two Lagrangians is made clearer by noting that from (3.4) the

conjugated momentum reads P = ∂L/∂Ȧ = −i Â, so the Lagrangians are related by a Legendre
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transform. In order to obtain the instanton equations we have, thus, to derive the stationary

action (3.4) with the endpoint Aαβ(0) = a imposed by the Dirac delta functional. We are going

to clarify how this constraint turns to a Vnal condition for the auxiliary variable P(t), since this

point is not usually discussed in the literature. Many authors consider the physical reasoning of

Guraire and Migdal [19] based on the negative viscosity sign. The limitation of this argument is

that it applies only to Wuid systems. The discussion below encompasses more general cases.

Starting from the Onsager-Machlup Lagrangian we calculate the action variation with respect

to the path A(t) with initial point Vxed, that is, δA(t1) = 0, yielding

δS =

∫ t2

t1

dt

{

Tr

[
∂L
∂A

δAT (t) +
∂L
∂Ȧ

δȦT (t)

]

+ λδ(t− t2) δAαβ(t)]

}

(3.5)

=

∫ t2

t1

dt Tr

[
∂L
∂A

δAT (t) +
d

dt

(
∂L
∂Ȧ

δAT (t)

)

− d

dt

∂L
∂Ȧ

δAT (t)

]

+

+ lim
ǫ→0

∫ t2+ǫ

t1

dt λ δ(t− t2) δAαβ(t) (3.6)

=

∫ t2

t1

dt Tr

[(
∂L
∂A

− d

dt

∂L
∂Ȧ

)

δAT (t)

]

+ Tr

(
∂L
∂Ȧ

δAT (t)

)t2

t1

+ λ δAαβ(t2)] (3.7)

The last term in (3.5) is due to writing the Dirac delta in terms of its Fourier representation. By

demanding the action variation to be stationary with respect to the path A(t) we arrive at

∂L
∂A

− d

dt

∂L
∂Ȧ

= 0 (3.8)

Tr[P(t2) δA
T (t2)]− Tr[P(t1) δA

T (t1)]
︸ ︷︷ ︸

=0

+λ δAαβ(t2)] = 0, (3.9)

where we used the deVnition P(t) ≡ ∂L/∂Ȧ(t). Equation (3.8) is the Euler-Lagrange equation

which gives the evolution with time, while (3.9) implies Pij(t2) = −δiαδjβλ. This completes our

derivation relating the Vnal point condition of A with P(t). Note that in this case, the endpoint

is not Vxed as usual. The Dirac delta relaxed the endpoint, allowing it to have non vanishing

variation (δA(t2) 6= 0).

Therefore, since a Vnal condition for the canonical momentum is obtained, it is more conve-

nient to minimize the MSR action rather than minimising the OM Lagrangian, since the former

is Vrst order in time. Hence, substituting −iÂ(t) by P(t) in (3.4), we are led to solve the set of

saddle-point equations

Ȧij = Vij(A) + g2GijklPkl (3.10)

Ṗij = −Pkl∇ijVkl(A) , (3.11)
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with endpoint condition Pij(t2) = −λ δiαδjβ . The solution of equations (3.10) and (3.11) mini-

mize the MSR action (3.4), (3.3) subject to the endpoint constraint Aαβ(t2) = a.

Thus, we end up with a system of mixed initial-Vnal condition which naturally suggests that

P should be integrated backwards in time whereasA is integrated forwards in time. This kind of

problem was tackled numerically by Chernyk and Stepanov [2] and by [20], [21] in the context

of the Burgers equation. There they were seeking large values of the velocity gradient in one

point. It was found that the instantons turned out to be the shocks which are present in the

underlying dynamics of the system. See also [22] for a review of applications of this approach,

including the study of instantons in the stochastic Navier-Stokes equation.

By scaling the auxiliary variable P̃ = g2P the action changes as S[P,A] → S̃[P̃,A]/g2,
yielding for the conditional probability distribution

ραβ(a) =

∫

D[P]D[A] δ[Aαβ(0)− a] exp

{

−S̃ [P̃,A]
g2

}

(3.12)

where S̃[P̃,A] is independent of g. In the weak noise limit g → 0, the probability ραβ(a) will

be dominated by the contribution from the action minimizer. This is in accordance with the

Freidlin-Wentzell theory of large deviations [10], which states that

− lim
g→0

g2 ln ραβ(a) = I = min S̃ (3.13)

where the action minima min S̃ , is evaluated at the optimal path satisfying Aαβ(t2 = 0) = a

and A(t1 = −∞) = 0. The rate function I , independent of g, controls the behavior of the

transition probability for asymptotically vanishing g. It contains information not just about

small Wuctuations around the attractor of A (A = 0 for the dynamics considered) but also about

large Wuctuations.

For the sake of clarity, we split the cases where the Vxed Vnal value of the velocity gradient

is either one of the diagonal (longitudinal) or oU-diagonal (transverse) components.

B. Transverse gradient statistics

This section shows the results regarding the stationary statistics ρ12(a) of the transverse

velocity gradient. Due to numerical reasons we should use a Vnite but large initial time t1. In

our implementation we chose t1 = −6T whereas t2 = 0, that is, the evolution is carried out

through six integral time scales. It was also checked numerically that this value suXces for
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stationarity by examining the time series of the original SDE, integrated according to [24]. The

algorithm is an iterative procedure to obtain the solution of the set of equations (3.10) and (3.11).

Before we apply the method treating the eight independent degrees of freedom encoded in A,

it is convenient to take advantage of the symmetries of the problem in order to reduce the num-

ber of degrees of freedom, lowering thus the computational cost. First, we recall the Onsager-

Machlup action (3.1). After we write the Dirac delta using its Fourier representation, the end-

point condition can be understood as another term in the action of the form λδ(t − t2)Aαβ(t)

(in this section (α, β) = (1, 2)). This additional term, which manifests itself in the equations of

motion (3.10) and (3.11) as a Vnal condition for P, breaks the parity symmetry xi → −xi and

vi → −vi for i = 1, 2, therefore only the symmetry x3 → −x3 and v3 → −v3 remains. If

the action exhibits this symmetry so does the solution to the equations of motion, provided the

Vnal/initial conditions keep the same symmetry, which is the case. Hence A must be a velocity

gradient tensor with reWection symmetry in the x3 direction, whose only possible form is

A(t) =








A11(t) A12(t) 0

A21(t) A22(t) 0

0 0 −A11(t)− A22(t)








. (3.14)

We are left with 4 independent variables instead of eight, which simpliVes the computation

considerably.

Now, the Chernyk-Stepanov method can be performed. The idea is to decouple P(t) and A(t)

for the Vrst iteration. For instance, we set A(t) = 0 and solve (3.11) backwards in time for an ar-

bitrarily chosen λ. In the next step, we substitute the time series of P(t) obtained in (3.10), which

is integrated forward in time to obtain A(t). This is performed recursively until the solutions

converge. Both equations are solved by the 4th order Runge-Kutta scheme with time step dt =

10−3 and a piecewise cubic interpolation is performed to obtain the intermediate time steps re-

quired by the method. The criteria used for convergence is that |A12(0)−Aold

12 (0)|/|Aold

12 (0)| < δ,

i.e, the relative error of the obtained instanton in comparison with the (old) instanton calculated

in the previous iteration should be smaller than a quantity δ (we set δ = 10−7 and δ = 10−10 for

the longitudinal case). With the instanton solution, the probability of arriving at a Vnal value

A12 = a can be computed plugging it into (3.13). Spanning a set o λ’s we can generate the pdf

ρ12(a), since each value of λ leads to a diUerent Vnal value of the longitudinal velocity gradient

a. Figure 1(a) displays pdfs obtained by this approach for diUerent values of forcing amplitude.
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FIG. 1. (a) Semilog plot of the transverse velocity gradient pdf. Dots: numerical instanton evaluation.

Solid lines: pdfs from SDE (2.7). The range of A12 lies between 5 to 6 standard deviations. Forcing values

are g = 0.2 , 0.3 , 0.4 and 0.5 where darker colours correspond to higher values of g. (b) Rescaled pdfs

corresponding to vertical axis g2 ln ρ(a) showing collapse.

Pdfs from numerical integration of the SDE are also plotted for comparison, showing good agree-

ment between the results. The collapse depicted in Vgure 1(b) corresponds to a rescaling of the

vertical axis, g2 ln(ρ(A12(t2) = a)) and shows that the pdfs calculated obey the large deviation

principle (3.13). The curve is minus the rate function (action minima) as a function of the Vnal

value A12.

A last comment on the numerical scheme concerns convergence issues that may arise. Actu-

ally, in the original reference of the method [2] it was reported that, for a critical value of λ, the

numerical convergence becomes problematic. In our case, it is noticed that as |λ| increases, so
does the number of iterations to reach convergence. In the transverse case, where the number

of degrees of freedom cannot be as reduced as in the longitudinal case (cf. next subsection),

convergence may fail completely. In order to circumvent this issue we performed the following

strategy. Let Aα and P α be the α-th step in the iteration procedure of the numerical integration.

The direct approach would be to use the series Aα and P α in the saddle-point equation (3.11) to

obtain P α+1 and Aα+1 and so on. However, when the iteration ceases to converge, we modify

Aα+1 byAα+1 → βAα+(1−β)Aα+1, with β arbitrarily chosen on the interval [0, 1], that is, the

next iteration is a weighted average of the old and the new ones. Although not systematic, since

we do not know a priori which is the optimal β value, this procedure dumps large variations in
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FIG. 2. (a) Semilog plot of the longitudinal velocity gradient pdf. Dots: numerical instanton evaluation.

Solid lines: pdfs from SDE (2.7). Dashed lines: analytical (3.18). The range of A11 lies between 5 to 6

standard deviations. Forcing values are g = 0.2 , 0.3 , 0.4 , 0.5 and 0.6 where darker plots correspond to

higher g values. (b) Rescaled pdfs corresponding to vertical axis g2 ln ρ(a) showing collapse.

each step and tends to keep iterations inside the converge radii. Values as big as β = 0.8may be

needed to capture the tail of the distributions.

C. Longitudinal gradient statistics

In this section we show the results concerning the longitudinal velocity gradient. In order to

calculate the instanton we make use of the even higher degree of symmetry of this case, which

reduces the number of degrees of freedom to only one. We invoke the same rationale of the

previous section. The diUerence is that imposing A11(0) = a consequently adds to the action a

term that respects parity symmetry xi → −xi, vi → −vi in all directions and hence implies that

the instanton velocity gradient must be diagonal. This term breaks rotation symmetry though,

by selecting the x1 direction, but the action is still invariant under rotations around the x1 axis.

So, the action makes no preference between the x2 or x3 directions, implying A22 = A33 for

the solution. Moreover, incompressibility leads to A = diag(A(t),−A(t)/2,−A(t)/2), i.e, the

velocity gradient depends on a single degree of freedom. Within this simpliVcation the saddle-

point equations become much faster and stable to be integrated numerically.

Apart from the numerical solution to the saddle-point equations, the high degree of symmetry

enables us to derive an analytical solution in the case of longitudinal velocity gradient. With the
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velocity gradient given by a diagonal form A = diag(A(t),−A(t)/2,−A(t)/2), a reduced MSR

action for the single degree of freedom A(t) can be written as

Sred[A, p] =

∫
0

−T

dt

[

p
(

Ȧ− b[A]
)

− g2

2
p2
]

, (3.15)

where A(t) is a scalar, equivalent to the A11 of the original system and b[A] = V11[A]. Due to

this drastic reduction of degrees of freedom, it is possible to write b[A] as a gradient of a function

h[a]

b[A] = −∇h[A], h[A] =
A2

2
+

A3

6
+

τ

4
(1 + τ)A4 − τ 2

10
A5 +O(τ 3) . (3.16)

In that case, instantons may be obtained as the reverse of the relaxation path from A(0) to

A(−∞) [23]. Nevertheless, the pdf can be computed in a more straightforward manner by

solving the corresponding Fokker-Planck equation. First, we write an eUective SDE which leads

to the above reduced action (3.15)

Ȧ = b[A] + gf(t) , (3.17)

where 〈f(t)f(t′)〉 = δ(t − t′) is the correlation of the reduced noise f(t). A straightforward

calculation shows that the MSR action related to the SDE (3.17) is given by (3.15). The Fokker-

Planck equation can be easily derived from (3.17), whose stationary solution reads

ρ(a) = N exp(−2h[a]/g2) , (3.18)

with h[A] given by (3.16) and N is normalization factor. This important result validates the nu-

merical procedure, as one can see in Vgure 2(a), where a good agreement between the analytical

and numerical instanton contribution to the pdf is achieved.

Once the pdf ρ(a) is obtained analytically, it is possible to evaluate the moments of the ve-

locity gradient as a power series of the noise g along with the scaling with Reynolds number,

which is another original result of this paper. A straightforward computation yields for the Vrst

central moments of the longitudinal velocity gradient,

var[a] =
g2

2
+

g4

96
(29− 180τ(1 + τ)) , (3.19)

E[(a− E[a])3]

var3/2[a]
= − g√

2
+ g3

(

− 25

24
√
2
+

15 τ√
2
+ 9

√
2τ 2

)

, (3.20)

E[(a− E[a])4]

var2[a]
= 3 +

1

16
g2(19− 60 τ(1 + τ)) . (3.21)
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FIG. 3. Statistical moments of the longitudinal velocity gradient as a function of the forcing g. Circles:

numerical integration. Solid lines: instanton analytical results (equations 3.19-3.21).

We highlight this is a novel result specially considering there are few analytical results con-

cerning velocity gradient models available. Let us compare it to phenomenological expectations.

The forcing g may be interpreted as the energy injection rate in the Lagrangian particle per unit

area. Since stationarity demands that energy injection equals energy dissipation, the stochastic

RFD equation (2.7) leads to g2 ∼ ∂2ε/(∂x)2 ∼ ε/λ2, where ε is the dissipation rate and λ is

the Taylor microscale length. On dimensional grounds one would expect the velocity gradient

variance to behave as 〈(∂u)2〉 ∼ ε/ν ∼ εRe/(UL) (U is a typical integral velocity scale) which

implies 〈(∂u)2〉 ∼ g2λ2Re/(UL) ∼ g2T in agreement with (3.19) at least to leading order (recall

we have set T = 1).

Comparison with the numerical solution of the SDE, Vgure 3, shows compatibility between

analytical and numerical moments for small values of forcing. As g increases though, the analyt-

ical result disagrees with the numerical evaluation since for Vnite g the instanton approximation

is not suXcient to estimate the pdf. Moreover, it can be also noted that the agreement between

numerical and analytical moments decreases for higher moments, which is expected considering

the analytical pdfs mismatch the numerical ones in the tails (specially the right tail), Vgure 2.

The skewness and Watness, though, show an incorrect scaling with respect to Reynolds num-

ber which points to a drawback of the model. This drawback appearing at high Reynolds num-

bers was already recognized in Ref. [26]. The new analytical results provided in Eqs. (3.19),

(3.20), (3.21) shed a new light on the numerical results obtained in this reference [26]. Indeed, it

is there underlined that the variance of the gradients does not behave with the free parameter
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of the model, i.e. the Reynolds number, in a consistent way with the dimensional approach of

Kolmogorov. To circumvent this issue, it was proposed instead in Ref. [26] to study the relative

scaling of the logarithm of higher order moments of the gradients with respect to the variance

of the gradients. To interpret the departure of the observed scalings seen in Ref. [26] from non

intermittent scalings, it is then tempting to interpret them, based on the theoretical results of

Eqs. (3.19), (3.20), (3.21), as being reminiscent of the forcing. Future works will be devoted to

improve the RFD approximation in order to include genuine intermittent scalings, at the cost,

perhaps, of introducing a further free parameter that quantiVes in an appropriate way intermit-

tent corrections. We leave these perspectives for future investigations.

Regarding the so-called RQ plane, the velocity gradient instanton starts at A1 = 0 evolving

to a Vnal conVguration such that A11(0) = a. If we keep track of the trajectory on the RQ

plane it is noticed that it lies entirely in the Vieillefosse line (4Q3 + 27R2 = 0, with Q =

−TrA2/2 and R = −TrA3/3) [11], although this is not a consequence of the model dynamics.

Actually, this is simply due to kinematics since for a velocity gradient tensor taking the formA =

diag(A(t),−A(t)/2,−A(t)/2), which in turn is a consequence of symmetry, the Vieillefosse line

is satisVed identically.

D. Filtering and interpretation of instanton solution

In this subsection we try to assess the relevance of instantons in a Wuid dynamical model

sharing many non trivial properties with real turbulence, as it is the case for the RFD approx-

imation, following reference [20]. An ensemble with trajectories of the original SDE with-

out any constraint was build. With this ensemble we perform a conditioned statistics select-

ing those paths ending within a small neighborhood of a, that is, A11(0) ∈ [a − da, a + da]

(A12(0) ∈ [a − da, a + da] if we are looking at transverse gradients). To increase the ensemble

sizes, if the searched value a is crossed by any component, we perform frame rotations over the

entire trajectory so that it always corresponds to component A11 (in the diagonal case) or A12

(oU-diagonal). What is seen is that these paths concentrates around the instanton solution and

after being averaged they tend to superpose with it as depicted in Vgure 4. Figure 4(a) shows sev-

eral components of velocity gradients from conditionally averaged trajectories compared to the

instanton solution with Vnal value A12(0) = −0.8. Figure 4(b) depicts how the unconditioned

component A22(t) evolves for diUerent Vnal values of the conditioned A12(0) in comparison
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FIG. 4. (a) DiUerent components from conditionally averaged trajectories (symbols) compared to the

instanton (solid) for the case where A12 is set to −0.8 at the endpoint. Components A13, A23, A31, A32

(not all shown) are negligible, in agreement with our symmetry argument. (b) ComponentA22 both from

Vltering (dashed) and instanton (solid) for the case where A12 is set to 0.5, 1.0 and 1.5 at the endpoint. In

both Vgures g = 0.5.

with instanton solution. The agreement is better as the constrained Vnal value gets larger, as

expected by instanton theory. This trend has been found in the context of Burgers equation in

[20] and [21]. After all it is clearly obtained that typical trajectories of the stochastic dynamics

Wuctuates around but not far from the instanton trajectory provided g is small in accordance

with the large deviation principle.

Conversely, the most probable trajectory leading to a certain value of longitudinal velocity

gradient is such that the velocity gradient is diagonal, as claimed in section IIIB by symmetry

arguments. This statement is indeed conVrmed by the Vltering procedure as presented in Vgure

5. Figure 5(a) shows the average behaviour of velocity gradient conditioned to A11(0) = 1.0

in comparison with instanton trajectories. All oU-diagonal components vanish, as illustrated

by A12(t) and A21(t) (others not shown). In Vgure 5(b) three diUerent constrained values are

exhibited. In contrast to the previous case the agreement does not improve for larger values of

A11(0), another manifestation of the mismatch observed on the tails of the diagonal pdf (Vgure

2).
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FIG. 5. (a) DiUerent components from conditionally averaged trajectories (symbols) compared to the

instanton (solid) for the case where A11 is set to 1.0 at the endpoint. ComponentsA21, A12 are negligible

(as well as other oU-diagonal components not shown), in agreement with our symmetry argument. (b)

ComponentA11 both from Vltering (dashed) and instanton (solid) for the case whereA11 is set to 0.5, 1.0

and 1.5 at the endpoint. In both Vgures g = 0.5.

IV. CONCLUSION

The role of the rare events can be revealed by means of the Martin-Siggia-Rose path integral

formulation. In this work we apply this technique to a model of Lagrangian turbulence called

the Recent Fluid Deformation (RFD). This closure comprises a stochastic model of the velocity

gradient based on short time correlations in the Lagrangian frame. Within the path integral for-

malism the most probable trajectory that leads to a certain event is calculated numerically and,

for the longitudinal velocity gradient case, also analytically. We showed the use of symmetries

can rule out unnecessary degrees of freedom allowing less numerical eUort in order to compute

the instanton. Apart from the beneVted numerical computation, the symmetries let us evaluate

an analytical approximated solution for the longitudinal velocity gradient pdf, enabling us to

unveil its central moments dependence on the Reynolds number.

Both longitudinal and transverse cases present the instanton satisfying the Vielleifosse line.

We believe that the rationale for that lies in the dominance of the non deviatoric terms Vguring

the model equation (2.7). That is, when τ → 0, the RFD approximation approaches the Restricted

Euler equation.

Regarding vorticity alignment, instanton solutions for transverse gradients shows a complete
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alignement with the intermediate strain eigenvalue, which can be seen computing the normal-

ized product of the three rate of strain eigenvalues s∗ = −3
√
6λ1λ2λ3/(λ

2
1 + λ2

2 + λ2
3)

3/2 [27],

resulting s∗ = 1, where λi, i = 1, 2, 3, are the referred eigenvalues. Since the instanton cor-

responds to the most probable trajectory leading to a certain value of the velocity gradient, our

result agrees with reference [27] which showed that the pdf of s∗ develops a sharp peak around

s∗ = 1.

The longitudinal velocity gradient pdf has a weaker agreement in comparison with the trans-

verse one as the forcing increases, showing the instanton approximation is not enough to ac-

count for the full statistics even for moderately low values of g. It means that Wuctuations

around the instanton solution may play an essential role, which could be hopefully analyzed

by perturbative methods. Perturbative corrections to the instanton pdf can be dealt with the

eUective action approach [8] and is currently under study. The issue of wether the instanton

approach suXces and perturbative methods are Vt to more complex Wuid dynamical systems is

an important matter and deserves further investigation.

As a Vnal remark, the application of the instanton study to this Lagrangian model allowed

us to understand the scaling of the statistical moments with the Reynolds numbers. This opens

new possibilities in the direction of reVnement of the RFD approximation in order to grasp more

aspects of the phenomenology of turbulence. Moreover we expect that the use of symmetries

as in this work, which led to a reduction of the degrees of freedom, can be applied to other

stochastic systems allowing more eXcient optimal paths computation.
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