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Abstract. Motivated by the modeling of three-dimensional fluid turbulence,
we define and study a class of stochastic partial differential equations (SPDEs)
that are randomly stirred by a spatially smooth and uncorrelated in time forcing
term. To reproduce the fractional, and more specifically multifractal, regularity
nature of fully developed turbulence, these dynamical evolutions incorporate an
homogenous pseudo-differential linear operator of degree 0 that takes care of
transferring energy that is injected at large scales in the system, towards smaller
scales according to a cascading mechanism. In the simplest situation which concerns
the development of fractional regularity in a linear and Gaussian framework, we
derive explicit predictions for the statistical behaviors of the solution at finite
and infinite time. Doing so, we realize a cascading transfer of energy using linear,
although non local, interactions. These evolutions can be seen as a stochastic
version of recently proposed systems of forced waves intended to model the regime
of weak wave turbulence in stratified and rotational flows. To include multifractal,
i.e. intermittent, corrections to this picture, we get some inspiration from the
Gaussian multiplicative chaos, which is known to be multifractal, to motivate the
introduction of an additional quadratic interaction in these dynamical evolutions.
Because the theoretical analysis of the obtained class of nonlinear SPDEs is much
more demanding, we perform numerical simulations and observe the non-Gaussian
and in particular skewed nature of their solution.

1. Introduction

The present investigation is mainly motivated by the modeling of some aspects of
the random nature of fluid turbulence [54, 30]. To be more precise, let us begin with
illustrating Kolmogorov’s phenomenological theory of three-dimensional turbulence
[34]. To do so, consider a component ui∈{1,2,3}(t, x), and x ∈ R3, of the divergence-free
vector velocity field u of a fluid of viscosity ν, whose dynamics is governed by the
incompressible three-dimensional Navier-Stokes equations. Moreover, we assume that
this evolution is supplemented by an additive random vector forcing term f(t, x) that
we take divergence-free and smooth in space. Typically, without loss of generality,
and to fix ideas, consider a zero-average, white-in-time Gaussian vector field whose
covariance is of the form E[f(t, x) ⋅ f(t′, x′)]∝ δ(t − t′)Cf(∣x − x′∣), where the scalar
positive-definite function Cf(x) is C∞ and takes significant values only for ∣x∣ ⩽ L.
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Experimental and numerical observations suggest that this dynamics, that we
recall to be stirred all along the way by a random force, converges at large time
towards a statistically stationary state in which the velocity variance σ2 is finite and
remains so in the fully developed turbulent regime (that is for ν → 0). Understanding
how the fluid organizes itself spatially and temporally to damp in an efficient way the
energy that is injected at a given large scale L is at the core of the phenomenology
of turbulence. Indeed, a cascading process of energy is taking place, transferring in
some ways the energy injected at the large scales L to smaller scales, such that the
fluid develops events of large spatial gradients and acceleration, that are eventually
smoothed out by viscosity. As a consequence, in the asymptotic limit of infinite
Reynolds number, or equivalently in the limit ν → 0, velocity becomes rough, as it can
be quantified by the variance of the velocity increment δ`ui(t, x) = ui(t, x+`)−ui(t, x)
and its decrease towards 0 according to

lim
ν→0

E (δ`ui)2 ∼
`→0

c2 (
`

L
)

2H

,(1.1)

where c2 is a positive constant of the order of 2σ2 and H is the local Hölder exponent.
In a turbulent context, it is universally observed that H ≈ 1/3, as predicted by
dimensional arguments [54, 30], and Eq. 1.1 says that, at this second order statistical
level, velocity shares the same local regularity as a fractional Brownian motion of
Hurst parameter H [41]. Moreover, as a more precise characterization of the observed
non-Gaussian nature of the velocity field, higher-order structure functions, i.e. the
moments of order q ∈ N of the increments, behave as

lim
ν→0

E (δ`ui)q ∼
`→0

cq (
`

L
)
ζq

,(1.2)

with a spectrum of exponents ζq which is possibly a nonlinear function of the order q.
The deviation from the linear behavior ζq = qH, which can be obtained starting from
Eq. 1.1 and furthermore assuming that ui is a Gaussian field, is a manifestation of
the intrinsically non-Gaussian nature of the fluctuations, known as the intermittency
phenomenon, properly defined in the language of the multifractal formalism (see for
instance [30, 18], and references therein).

In this spirit, the article is devoted to the design of a dynamics governed by a partial
differential equation, forced by such a random force f , whose structure is simpler
than the three-dimensional Navier-Stokes equations. The aim of this dynamics is to
reproduce the aforementioned statistical properties of turbulence in the statistically
stationary regime, without the ambition to mimic all of the behaviors inherent to
fluid mechanics, such as laminar flows and the mechanisms of transition towards
turbulence. To further simplify this picture, we will limit ourselves to one-dimensional
space x ∈ R, and consider a unique velocity component u(t, x) ∈ C, the imaginary
nature of such a modeled velocity will become clear later when energy conservation
is discussed.

Reproducing a cascading process of energy from the large to the small scales is
the great success of shell models (see the review articles [11, 10], and [25, 16, 6] for
a more mathematically inclined approach). They consist in considering a coupled
system of nonlinear ordinary differential equations, inspired by the expression of the
Navier-Stokes equations in Fourier space, each of them governing the evolution of
a shell un(t) ∈ C with n ∈ N, which is meant to mimic some aspects of the behavior
of a velocity Fourier mode û(t, kn) over a logarithmically-spaced lattice kn = k02n.
The dynamics is furthermore supplemented by a viscous damping term and a forcing
term fn that is restricted to large scales (i.e. fn = 0 for say n ⩾ 3). The coupling of
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each shell un with its closest neighbors, typically at larger scales (uk)n−2⩽k⩽n and at
smaller scales (uk)n⩽k⩽n+2, is made in a heuristic and nonlinear way such that for
instance the dynamics preserves some key invariants that share the same structure
as kinetic energy and helicity. Shell models can be viewed as a dynamical system
that possesses as many degrees of freedom as the number of shells, once boundary
conditions are set in an appropriate way. In a certain sense, such shells are observed
numerically to behave in a similar way as in turbulence (Eqs. 1.1 and 1.2) [10], but
a complete analytical understanding of the energy transfer mechanisms remains an
open question [25]. In this spirit, it is shown in Ref. [42] that, instead of considering
a nonlinear coupling between the shells, a peculiar linear coupling that mimics a
derivative with respect to the number of the shell n is able to reproduce some aspects
of the cascading process of energy. We will later employ this idea, which can be
viewed as a transport equation in the scale-space, that can be fully understood since
only linear interactions are considered.

Although the underlying idea of shell models is appealing, it is not clear how
to interpret such a shell un(t). Indeed, it is has been observed in various direct
numerical simulations of the Navier-Stokes equations [14] and in experiments [21]
that the real and imaginary parts of the true Fourier modes are mostly Gaussian,
being compatible with Eq. 1.1 but not with Eq. 1.2. Although this observation
makes shells not clearly related to Fourier modes over a logarithmically-spaced lattice,
some ways to interpret shells in a continuous framework are proposed in Ref. [39],
giving a meaning to the shells as Fourier modes, allowing to design related partial
differential equations in physical space.

As we can see, on the one hand, interpreting shells as Fourier modes is not
fully satisfactory. On the other hand, it is tempting to interpret shells as wavelet
coefficients in a dyadic decomposition of velocity over a tree. Such a decomposition
can been shown to be orthonormal for square-integrable functions, and possesses a
reconstruction formula in physical space [26], that has been used in a turbulent context
[8, 2] in order to synthesize random fields able to reproduce aforementioned statistical
properties (Eqs. 1.1 and 1.2). Doing so, inverting this orthonormal decomposition
in order to get the dynamics in the physical space requires to link these shells, or
wavelet coefficients, both in scale and in space. This interpretation of shell models,
much more complete than only considering interactions through scales, has been
already explored in the literature [5, 9]. Nevertheless, an analytical derivation of
the statistical properties of such shells when the dynamics is forced by an external
large-scale forcing remains difficult since further relations between these coefficients in
space must be prescribed, in order to guarantee, for instance, spatial homogeneity of
the velocity field in physical space, i.e. that the underlying probability law is invariant
by translation. Designing such an interaction between the shells is not obvious and
barely discussed. Up to now, we are not aware of such a dyadic model over a tree able
to reproduce the rough behaviors depicted by the behaviors of structure functions
at small scales (Eqs. 1.1 and 1.2) in a statistically stationary and homogeneous
framework. It is also worth mentioning the approach of the so-called Leith [36, 55]
and EDQNM [44, 12] models in directly proposing a PDE for the energy spectrum,
based on the phenomenology of turbulence. Nevertheless, these models do not address
fundamental statistical features of the underlying velocity field, such as homogeneity,
stationarity and intermittency.

In a very different context, devoted to the mathematical understanding of the
phenomenon of convergence of internal [38] and inertial [49] waves towards attractors,
as observed experimentally in linearly stratified flows [37, 53, 13], the authors of
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Ref. [24] propose an original interpretation. They show that these waves, whose
dispersion relation between their wavelength and their frequency is very peculiar, can
be obtained as solutions of a linear partial differential equation (PDE), supplemented
by an external forcing, where enters an homogeneous operator of degree 0 [23, 29].
Furthermore, and as a consequence of the nature of this operator, the phenomenon of
attraction of waves is seen as a cascading process [24]. As we will see, this operator
can be interpreted as a linear transport in the Fourier space, and interestingly, its
discretized version coincides with the linear shell model developed in Ref. [42]. It thus
becomes very tempting to include such an operator in a dynamics that would transfer
energy from the large to the small scales, as demanded by the phenomenology of
turbulence. Doing so, this would mean that this cascading process could be captured
by a linear mechanism. This is what we propose to study in the present article.

To go further in the presentation of our results, let us consider a one-dimensional
velocity field u(t, x) ∈ C with x ∈ R, and its continuous Fourier transform

F[u](t, k) ≡ û(t, k) = ∫
x∈R

e−2iπkxu(t, x)dx.(1.3)

In the sequel, we will be studying the following nonlinear stochastic partial differential
equation given by

∂tuH,γ,ν = PHLP −1
H uH,γ,ν + γPH [(P̃0LP −1

H uH,γ,ν) (P −1
H uH,γ,ν)] + ν∂2

xuH,γ,ν + f,
(1.4)

where we use the notation ∂t ≡ ∂/∂t for temporal and ∂x ≡ ∂/∂x for spatial derivatives.
Viscosity ν enters in the dynamics through the second-order spatial derivatives
∂2
x ≡ ∂2/∂x2. Henceforth, the forcing term f(t, x) ∈ C will be assumed Gaussian and

uncorrelated in time, statistically homogeneous, with zero average and covariance
given by

E [f(t, x)f∗(t′, x′)] = δ(t − t′)Cf(x − x′),(1.5)

where ∗ stands for the complex conjugate, and Cf is a smooth function that decays
rapidly away from the origin. To fully determine the forcing f ∈ C, we furthermore
take E [f(t, x)f(t′, x′)] = 0, which implies that its real and imaginary parts are chosen
independently. For analytical and numerical purposes, we will for instance consider

Cf(x) = exp (− x2

2L2 ), where the large length scale L will eventually coincide with the

correlation length scale of velocity u, and is known in turbulence phenomenology as
the integral length scale.

Several operators and parameters enter in the dynamics of the velocity field u(t, x)
(Eq. 1.4). Let us begin with the operator L that, as we will see, is responsible for
the transfer of energy from the large scale L towards smaller ones. The crucial step,
made in Ref. [42] in a discrete setup related to the dynamics of a shell model and
in Ref. [24] in a continuous one insightfully related to the propagation of waves in
rotational and stratified flows, lies in demonstrating that such a transfer of energy
through scales can be done in a linear fashion. In our continuous set up, we thus
consider the linear operator

(1.6) Lu(t, x) ≡ 2iπcxu(t, x),
where c is a constant. Using the language developed in Refs. [24, 23, 29], we can say
that L is an homogeneous pseudo-differential operator of degree 0. From a physical
point of view, the picture gets very clear in Fourier space, while writing Eq. 1.6 in a
equivalent way as

(1.7) F[Lu](t, k) = −c∂kû(t, k),
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which says that the inviscid and unforced dynamics ∂tu = Lu is nothing else than
a transport equation in the Fourier space, i.e. ∂tû = −c∂kû, towards increasing
wavelengths for positive rate c > 0, and respectively towards decreasing wavelengths
for c < 0. For the sake of clarity, let us consider c > 0 such the transport goes in
the direction of increasing k, as it is observed for turbulence. We will show in the
sequel that once sustained by a forcing term f (Eq. 1.5), this intermediate dynamics
will generate a solution u0(t, x), with initial condition u0(0, x) = 0, that eventually
behaves similarly as a complex Gaussian white noise in space as t→∞, in a way that
we examine during the course of the article.

In other words, the operator L entering in the full dynamics written in Eq. 1.4
participates in transferring the energy injected at the scale L to smaller scales, in a
linear and non dissipative way, such that the solution u0(t, x) seen as a function of x
at a given large time t develops the regularity of a white noise. Let us keep in mind
that our aim for u is to reproduce instead, at least from a statistical point of view
(Eq. 1.1), the regularity of a fractional Gaussian field of parameter H ∈]0,1[. For
this purpose, we introduce the operator PH in the dynamical evolution which reads,

(1.8) PHu(t, x) ≡ ∫ e2iπkx 1

∣k∣H+1/2
1/L

û(t, k)dk,

where a regularized absolute value ∣ ⋅ ∣1/L over the wavelength 1/L is introduced, such

that ∣k∣1/L ≈ ∣k∣ when ∣k∣ ≫ 1/L and ∣k∣1/L ≈ 1/L when ∣k∣ ≪ 1/L. The inverse P −1
H of

this operator reads accordingly

(1.9) P −1
H u(t, x) ≡ ∫ e2iπkx∣k∣H+1/2

1/L û(t, k)dk.

We will see that the linear part of the full dynamics (Eq. 1.4), that is ∂tuH,0 =
PHLP −1

H uH,0 + f , eventually generates a solution uH,0(t, x), with initial condition
uH,0(0, x) = 0, seen as a function of space x and at a fixed and large time t, that
shares several properties with a statistically homogeneous fractional Gaussian field,
again as t→∞. In particular, the variance of uH,0 will reach a finite value and the
second order structure function will behave as in Eq. 1.1. We will also see how an
additional viscous term generating a solution noted uH,ν modifies this picture and
allows to reach furthermore a statistically stationary state.

Ultimately, let us discuss the nonlinear part of the dynamics (Eq. 1.4) that we are
proposing. Whereas all the ingredients that we previously discussed are based on
linear operations on the velocity field u, and as we will see can be fully understood
on a rigorous ground, this additional nonlinearity makes the overall dynamics much
more intricate. For this reason, we will mostly rely on numerical simulations and
observe their implications.

In a few words, the structure of this nonlinearity originates from the probabilistic
construction of multifractal random fields using the a Gaussian multiplicative chaos
[40, 33, 48]. In our setup, to be more precise, and as it is demanded by the complex
nature of our dynamics (Eq. 1.4), we will invoke a complex generalization of this
probabilistic object, some aspects of which have been already explored in the literature
[35]. It consists in introducing a random field able to reproduce key ingredients that
enter in the nonlinear behavior of the spectrum of exponents ζq of high-order structure
functions (Eq. 1.2). It is obtained as the exponential of a logarithmically correlated
Gaussian random field. It can be seen as a particular case of the more general class
of log-infinitely divisible measures [7, 52, 4, 15, 47, 48] and has been extensively
used under various forms while modeling the random nature of fluid turbulence



6 G. B. APOLINÁRIO, L. CHEVILLARD, AND J.-C. MOURRAT

[51, 3, 43, 50, 22, 45, 19]. Moreover, the Gaussian field entering in the construction,
that we recall to be logarithmically correlated, can be seen, in a way that we will
discuss later, as a fractional Gaussian field of vanishing parameter H = 0 [28]. Not
only is this remark important because such a field can thus be defined as a solution
of regularized versions of random walks [1, 17, 20], but also because it makes a clear
connection with the aforementioned build-up of fractional Gaussian fields using the
operator PH (Eq. 1.8) for the boundary case H = 0. For several reasons that are
developed in the sequel during the ad-hoc construction of multifractal fields, it turns
out necessary to introduce a Hermitian symmetric version P̃0 of the Fourier multiplier
of such an operator P0 (Eq. 1.8) that reads

(1.10) P̃0u(t, x) ≡ −i∫ e2iπkx k

∣k∣3/2
1/L

û(t, k)dk.

Developing on these ideas, the design of the nonlinear term of (Eq. 1.4) is a
consequence of rules of construction of multifractal fields able to reproduce the
behaviors of the second (Eq. 1.1) and high-order (Eq. 1.2) structure functions.
Interestingly, this approach which is based on a probabilistic ansatz also gives a way
to define a multiplicative chaos as a solution of a dynamical process governed by
a partial differential equation, forced by a smooth term, in a different spirit and
setup than those proposed in the context of Liouville measures and two-dimensional
quantum gravity [31, 27]. We will see that, in our context, this probabilistic ansatz,
not only for the multiplicative chaos, but more appropriately for a multifractal velocity
field u, suggests a dynamics that is not closed in a simple fashion in terms of this
field u. We then rely on a closure approach to simplify this dynamics, ending up
with the quadratic nonlinearity that enters in Eq. 1.4.

The last parameter γ ∈ R entering in the proposed dynamics (Eq. 1.4) has the
same origins. Its role in the aforementioned multifractal probabilistic ansatz is clear
and governs entirely the level of multifractality and related non-Gaussian behaviors.
Once inserted in our dynamics, a fully rigorous approach is much more demanding.
Instead, we propose and design numerical simulations of the dynamics (Eq. 1.4) that
indeed show that γ governs, among others, the non-Gaussian nature of the solution
u(t, x), at least for the range of values that we have explored.

Organization of the paper. We develop in Section 2 the Hamiltonian dynamics
induced by the homogenous pseudo-differental operator L (Eq. 1.6) of degree 0.
More precisely, we compute the statistical properties at large time of the solution
uν(t, x) of the partial differential equation ∂tuν = Luν + ν∂2

xuν + f , with and without
the additional action of viscosity ν and forcing f . We focus in Section 3 on the
linear part of our proposed dynamics (Eq. 1.4), induced by the joint action of the
operators L (Eq. 1.6) and PH (Eq. 1.8). To do so, we first recall in paragraph
3.1 some key ingredients of the construction of fractional Gaussian field as linear
operations on a Gaussian white noise measure, and then in paragraph 3.2 move on
to the calculation of the statistical properties and regularity of the solution of the
linear stochastic PDE ∂tuH,ν = PHLP −1

H uH,ν + ν∂2
xuH,ν + f , again with and without

the additional action of viscosity ν and forcing f . We then develop in Section 4 the
extension of the linear approach in order to go beyond the Gaussian framework. We
begin in paragraph 4.2 by recalling some basic facts about multifractal random fields,
and develop a method for their construction starting from an instance of u0(t, x),
which is similar to a complex Gaussian white noise at infinite time. Based on this
method of construction, which is viewed as a probabilistic ansatz, we develop in
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paragraph 4.3 the induced dynamics. Finally, because a rigorous approach aimed
at calculating the statistical properties of the solution of the proposed stochastic
PDE (Eq. 1.4) is for now out of reach, we design in Section 5 a numerical algorithm
and run simulations that give access to the solution uH,γ,ν(t, x) in the statistical
stationary regime. This allows us to estimate its statistical properties for a given set
(H,γ) of parameters, while considering averages across space of an instance at large
time of the spatial profile uH,γ,ν(t, x). As we will see, indeed the solution of Eq. 1.4
reproduces the statistical properties announced in Eqs. 1.1 and 1.2, and moreover
exhibit an interesting non-vanishing third-order moment of the increments of the real
part of uH,γ,ν .

2. Hamiltonian dynamics induced by the cascade operator L

The purpose of this section is the presentation of the first ingredient entering in
the dynamics under study (Eq. 1.4), which concerns the statistical properties of the
solution uν(t, x) ∈ C of the following stochastic PDE

∂tuν = Luν + ν∂2
xuν + f,(2.1)

where ν ⩾ 0 is the viscosity, f a Gaussian random forcing term, whose covariance is
given in Eq. 1.5, and the linear operator L (Eq. 1.6) that we recall the expression
for any function u for convenience,

(2.2) Lu(t, x) ≡ 2iπcxu(t, x).
Without the forcing term f , observe that the evolution of the field v(t, x) ≡ u(t,−x)
is the same as in Eq. 2.1 but with opposite rate −c entering in the expression of L
(Eq. 2.2). Without viscous diffusion and forcing, the proposed dynamics (Eq. 2.1) is
Hamiltonian, as can be seen from the skew-Hermitian symmetry of the operator L
(Eq. 2.2), and it preserves energy, i.e. the energy budget of the solution u0(t, x) is
simple and given by ∂t∣u0∣2 = 0.

Proposition 2.1. (Concerning the Hamiltonian dynamics induced by L)

Consider the evolution

∂tu0(t, x) = Lu0(t, x) + f(t, x),(2.3)

where f(t, x) is a Gaussian random force defined in Eq. 1.5, with Cf a real and even
function of its argument, and the linear operator L defined in Eq. 2.2. Starting
from the initial condition u0(0, x) = 0, the solution of this evolution is statistically
homogeneous, meaning that the correlation in space

Cu0(t, x − y) = E[u0(t, x)u∗0(t, y)],(2.4)

is a function of the difference x − y. As a consequence of choosing independently the
real and imaginary parts of the forcing f , we also have the following property at any
time and positions,

E[u0(t, x)u0(t, y)] = 0.(2.5)

Furthermore, u0(t, x) behaves similarly to a white noise at large time, such that, for
any smooth function g,

lim
t→∞∫ g(x)Cu0(t, x)dx =

Cf(0)
2∣c∣ g(0).(2.6)

In this sense, we would say that the operator L has transferred the energy from the
large scale L at which it is injected by the force f towards vanishing scales at infinite
time.
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Remark 2.2. The proof of Proposition 2.1 is straightforward and is a consequence of
the exact expression of the solution of Eq. 2.3. We have, starting with u0(0, x) = 0,

u0(t, x) = ∫
t

0
e2iπcx(t−s)f(s, x)ds,

such that

Cu0(t, x − y) = Cf(x − y)
e2iπc(x−y)t − 1

2iπc(x − y) ,

where the function Cu0(t, x) is defined in Eq. 2.4. To clarify its behavior at large
time t > 0, integrate it against a smooth function g and obtain

∫ g(x)Cu0(t, x)dx = ∫ g(x)Cf(x)
e2iπcxt − 1

2iπcx
dx

= 1

∣c∣ ∫ g ( x
ct

)Cf (
x

ct
) e

2iπx − 1

2iπx
dx

∼
t→∞

g(0)Cf(0)
∣c∣ ∫

e2iπx − 1

2iπx
dx,

where the remaining indefinite integral is equal to 1/2, which entails Eq. 2.6.

Remark 2.3. Taking into account a finite viscosity ν > 0 in this picture and then
solving Eq. 2.1 instead of Eq. 2.3 is also straightforward. We get for the same
vanishing initial condition uν(0, x) = 0, using the Fourier transform defined in Eq.
1.3,

ûν(t, k) = ∫
t

0
e
−(2π)2ν[ks(k−cs)+ c

2s3

3
]
f̂(s, k − cs)ds.

Then, by taking expectations, we obtain an expression for the covariance function of
uν (Eq. 2.4),

Ĉuν(t, k) = ∫
t

0
e
−2(2π)2ν[ks(k−cs)+ c

2s3

3
]Ĉf(k − cs)ds,

and we recover the results obtained in the Hamiltonian case developed in Proposition
2.1 while considering ν = 0. Contrary to the inviscid case (i.e. ν = 0), the statistical
behavior of the solution uν is very different when viscosity is finite. In particular, the
variance reaches a finite value given by

lim
t→∞

E∣uν(t, x)∣2 = ∫
s∈R+ ∫k∈R e

−2(2π)2ν[ks(k+cs)+ c
2s3

3
]Ĉf(k)dsdk.

To see how it behaves as ν → 0, rescale the dummy variable s by ν−1/3 and get

lim
t→∞

E∣uν(t, x)∣2 =
1

ν1/3 ∫s∈R+ ∫k∈R e
−2(2π)2ν[ksν−1/3(k+csν−1/3)+ c

2s3

3ν
]Ĉf(k)dsdk,

∼
ν→0

Cf(0)
ν1/3∣c∣2/3 ∫s∈R+

e−
2
3
(2π)2s3ds,(2.7)

where the remaining integral can be evaluated with the help of the Gamma function.
By inspection of the limiting behavior given in Eq. 2.7, we can see that the variance
of u is proportional to the one of the forcing term Cf(0), weighted by the diverging

factor ν−1/3 as ν goes to zero.

Remark 2.4. As we can see, in the presence of viscosity, the solution of Eq. 2.1
reaches a statistically steady state, in which the variance is finite. Let us underline
that the role of the transfer term played by L is crucial in the establishment of this
regime. Indeed, without this term, i.e. taking c = 0, diffusion is not able to dissipate
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enough of the energy stemming from the smooth forcing in this unidimensional setup.
Actually, using only the Green function of the Laplacian, it can be shown that the
variance will increase as fast as

√
t as time t goes on.

3. Dynamical Fractional Fields

We have presented in Section 2 a mechanism, governed by a linear operator L (Eq.
2.2), able to transfer energy from the large scale L, a characteristic scale of the forcing
f , towards the small ones. In the inviscid case (ν = 0), this dynamics is Hamiltonian
when the force is shut down, and once forced generates a solution u0(t, x) that shares
several properties with the white noise, as they are listed in Proposition 2.3. This
section is devoted to the presentation of the action of the linear operator PH (Eq.
1.8) on this particular solution u0(t, x), recalling here its expression for any function
u,

(3.1) PHu(t, x) ≡ ∫ e2iπkx 1

∣k∣H+1/2
1/L

û(t, k)dk,

where is introduced a regularized norm ∣ ⋅ ∣1/L of k over the characteristic length of the
forcing L. We do not need to precise the exact expression of this regularized norm
in subsequent calculations, but require it to behave as the proper norm ∣k∣ at large
arguments, and that it goes to a finite positive value of order 1/L as ∣k∣ goes to zero.
To set ideas, we can keep in mind the expression ∣k∣21/L = ∣k∣2 + 1/L2, a regularization

that we will make use of in forthcoming numerical simulations. As we will see, the
action of the operator PH on u0(t, x) will eventually generate a fractional Gaussian
field at large times, and the power-law decrease that enters its Fourier transform will
govern the regularity of this field at small scales. To show this, we consider in the
following paragraph such a field, and derive for the sake of completeness its statistical
properties.

3.1. Fractional Gaussian fields.

Proposition 3.1. (Concerning an imaginary fractional Gaussian field of parameter
H) Consider the following Gaussian field

vH(t, x) = (PHu0)(t, x) ≡ ∫ e2iπkx 1

∣k∣H+1/2
1/L

û0(t, k)dk,(3.2)

where u0(t, x) is the unique solution of the SPDE (Eq. 2.3) starting with vanishing
initial condition and sustained by a forcing term f . The field vH being defined as a
linear operation on a Gaussian field u0, is itself Gaussian, statistically homogeneous
and of zero average. It is also a finite variance process for any H > 0 and at any
time, its value is given asymptotically by

lim
t→∞

E∣vH(t, x)∣2 = Cf(0)
2∣c∣ ∫

1

∣k∣2H+1
1/L

dk < +∞.(3.3)

Furthermore, the field vH(t, x) has locally in space the same regularity as a fractional
Brownian motion of parameter H. To see this, define the increment over the scale `
as δ`vH(t, x) = vH(t, x + `) − vH(t, x), and get

δ`vH(t, x) = ∫ e2iπkx e
2iπk` − 1

∣k∣H+1/2
1/L

û0(t, k)dk.(3.4)
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We have, for H ∈]0,1[, the following behavior at small scales:

lim
t→∞

E∣δ`vH(t, x)∣2 ∼
`→0

∣`∣2H Cf(0)
2∣c∣ ∫

∣e2iπk − 1∣2

∣k∣2H+1
dk,(3.5)

independently of the precise form of the regularization at vanishing wavelengths.

Remark 3.2. The proofs are again straightforward since the Gaussian field vH (Eq.
3.2) is defined as a linear operation on u0(t, x) which behaves as a white noise at large
time. The calculation of the variance (Eq. 3.3) is the consequence of the behavior
of its correlation function Cu0(t, x) at large time (Eq. 2.6). This expression makes
sense since integrability is warranted at infinity by H > 0 and at the origin because
the power-law is regularized over 1/L. Let us underline that the variance depends
explicitly on the precise choice of the regularization procedure.

Remark 3.3. Very similarly to the calculation of the variance, the increment variance
is a consequence of Eq. 2.6. The equivalent at small scales (Eq. 3.5) can be easily
obtained when rescaling the dummy variable k by 1/`. Notice that the integrability at
the origin furthermore requires that H < 1 and does not necessitate a regularization
procedure. In this sense, we can say that the behavior at small scales is independent
of the mechanism of regularization at large scales (i.e. small wavelengths k).

Remark 3.4. As we can see the fractional Gaussian field vH (Eq. 3.2) is bounded, of
finite variance (Eq. 3.3) and nowhere differentiable. Instead it shares the same local
regularity as a fractional Brownian motion of parameter H, as is pinpointed by the
behavior at small scales of the second-order structure function (Eq. 3.5). It reproduces
in this sense the regularity of a turbulent velocity field (Eq. 1.1) if we choose the
particular value H = 1/3. Because it is Gaussian, higher order structure functions

E∣δ`vH ∣q behave similarly as (E∣δ`vH ∣2)q/2, which implies a spectrum of exponents
ζq (Eq. 1.2) that depends linearly on q, at odds with experimental observations of
turbulence.

Remark 3.5. The boundary case H = 0 is worth being considered. It enters in the
construction of multifractal fields, as we will see in the next Section. Whereas the
variance of such a field remains finite as t→∞ for H > 0 (Eq. 3.3), it is no more the
case for H = 0. Instead, we get the diverging behavior

E∣v0(t, x)∣2 ∼
t→∞

Cf(0)
∣c∣ ln(ct),(3.6)

and thus asymptotically as time gets large, v0(t, x) should be seen as a random
distribution. Nevertheless, the covariance makes sense as a function away from the
origin and reads, for ` ≠ 0,

lim
t→∞
Cv0(t, `) ≡ lim

t→∞
E[v0(t,0)v∗0(t, `)] =

Cf(0)
2∣c∣ ∫ e2iπk` 1

∣k∣1/L
dk.(3.7)

To see the infinite value of the variance in this limit (Eq. 3.6), rescale the dummy
variable k by 1/` in Eq. 3.7, and remark that the integral is then governed by the
behavior of ∣k∣−1

`/L near the origin when `→ 0, such that

lim
t→∞
Cv0(t, `) ∼

`→0

Cf(0)
∣c∣ ln(L∣`∣) .(3.8)

Thus, for H = 0 and in the limit t→∞, the fractional Gaussian field (Eq. 3.2) has
an infinite variance and is logarithmically correlated. In the following, we will find it
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convenient to write this asymptotic limit as

lim
t→∞
Cv0(t, `) =

Cf(0)
∣c∣ ln+ (L∣`∣) + h(`),(3.9)

where a smoothly-truncated logarithmic function ln+(∣x∣) is introduced, which behaves
as ln(∣x∣) as ∣x∣→∞ and smoothly goes to zero as ∣x∣→ 0, and h(x) is a bounded and
even function of its argument at least twice differentiable. As we will see, the very
shapes of the truncation of the logarithm and of the function h are not important,
although they could be derived from Eq. 3.7. Only the values at the origin of h and
its derivatives will matter, and we can get their exact expressions using a symbolic
calculation software.

Remark 3.6. We could have alternatively considered the field ṽH(t, x) defined in a

similar manner as vH(t, x) (Eq. 3.2) but with an odd version P̃H of the operator PH ,
which reads

ṽH(t, x) = (P̃Hu0)(t, x) ≡ −i∫ e2iπkx k

∣k∣H+3/2
1/L

û0(t, k)dk,(3.10)

without changing the global picture provided in Proposition 3.1. In particular, the
variance is finite for H > 0 and can be expressed similarly as in Eq. 3.3 while slightly
modifying the multiplicative factor, with the behavior of the second-order structure
function being unchanged (Eq. 3.5) for H ∈]0, 1[. When H = 0, which corresponds to

considering the action of the respective operator P̃0 that we have defined in Eq. 1.10,
we obtain the same logarithmic behaviors observed on the variance (Eq. 3.6) and
the correlation function (Eq. 3.8). Only the very shape of the additional function h
entering in the asymptotic limiting behavior of the respective correlation function
Cv0(t, `) (Eq. 3.9) is impacted by the possible parity of PH , and we obtain instead
that

lim
t→∞
Cṽ0(t, `) =

Cf(0)
∣c∣ ln+ (L∣`∣) + h̃(`),(3.11)

where similarly h̃(x) is a bounded and even function of its argument, at least twice
differentiable.

3.2. Induced fractional dynamics. In the light of the results of Section 2 devoted
to the design of a linear PDE, governed by the operator L (Eq. 2.2), whose solution
u0(t, x) behaves at large time as a white noise once it is forced, and the construction
of fractional Gaussian fields (Paragraph 3.1) using the linear action of the operator
PH (Eq. 3.1) on u0(t, x), it is then tempting to consider the following dynamics

∂tuH,ν = PHLP −1
H uH,ν + ν∂2

xuH,ν + f.(3.12)

Contrary to the Hamiltonian dynamics generated by the operator L in the inviscid
and unforced situation, the operator PHLP −1

H does not preserve ∣uH,0(t, x)∣2 in time.
Actually, we will see that once forced, this dynamics will converge at large time
towards a finite variance process, thus without the additional action of viscosity.

Proposition 3.7. (Concerning the inviscid and forced fractional dynamics) Consider
the evolution

∂tuH,0 = PHLP −1
H uH,0 + f,(3.13)

where f(t, x) is a Gaussian random force defined in Eq. 1.5, with Cf a real and even
function of its argument, the linear operator L defined in Eq. 2.2, and the operator
PH defined in Eq. 3.1. Starting from the initial condition uH,0(0, x) = 0, the solution
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of this evolution is a zero-average Gaussian field uH,0(t, x). Its correlation in space
(Eq. 2.4) is a function of the difference of the positions only and is conveniently
expressed in Fourier space as

ĈuH,0(t, k) = ∣k∣−(2H+1)
1/L ∫

t

0
∣k − cs∣2H+1

1/L Ĉf(k − cs)ds.(3.14)

Furthermore, for any H > 0, the solution u goes towards a statistically stationary
regime as t→∞, such that its variance is finite, i.e.

lim
t→∞

E∣uH,0∣2 <∞,(3.15)

and its correlation function is given by

lim
t→∞
ĈuH,0(t, k) =

⎧⎪⎪⎨⎪⎪⎩

1
c ∣k∣

−(2H+1)
1/L ∫ k−∞ ∣s∣2H+1

1/L Ĉf(s)ds if c > 0
1
−c ∣k∣

−(2H+1)
1/L ∫ ∞k ∣s∣2H+1

1/L Ĉf(s)ds if c < 0.
(3.16)

Similarly to the fractional Gaussian field (see Proposition 3.1 and Remark 3.3), as
t→∞ and for H ∈]0, 1[, the solution u shares the same local regularity as a fractional
Brownian motion of parameter H, independently of the precise regularization procedure
taking place at the scale L. Consequently, whatever the sign of c, the second order
structure function behaves at small scales as

lim
t→∞

E∣δ`uH,0∣2 ∼
`→0+

cH`
2H ,(3.17)

where the factor cH can be derived explicitly while introducing the function Γ(z) =
∫ ∞0 xz−1e−xdx, and reads

cH = 1

2∣c∣
(2π)2H+1

sin(πH)Γ(1 + 2H) ∫
∞

−∞
∣s∣2H+1

1/L Ĉf(s) ds.(3.18)

Remark 3.8. The proofs are once again straightforward since the PDE (Eq. 3.13) is
linear. Once expressed in Fourier space, it reads equivalently

(3.19) ∂tûH,0 + c∂kûH,0 + c(H + 1

2
) k

∣k∣2
1/L

ûH,0 = f̂ ,

which possesses the unique solution û(t, k), starting with û(0, k)=0, given by

(3.20) ûH,0(t, k) = ∣k∣−(H+1/2)
1/L ∫

t

0
∣k − c(t − s)∣H+1/2

1/L f̂(s, k − c(t − s)) ds.

The expression of the Fourier transform of the correlation function ĈuH,0(t, k) (Eq.
3.14) can be obtained from the exact solution (Eq. 3.20), and its limiting value in the
statistically stationary regime (Eq. 3.16) can be similarly justified. Let us notice that
this expression is not an even function of the wavelength k because of the complex
nature of the setup, in particular when c > 0, we have the asymptotical behavior

lim
t→∞
ĈuH,0(t, k) ∼

k→∞

1

c
k−(2H+1)∫

∞

−∞
∣s∣2H+1

1/L Ĉf(s) ds,(3.21)

as is expected for a fractional Gaussian field, whereas the decay for k → −∞ is
much faster and completely governed by the forcing correlation function Ĉf . Similar
behaviors are obtained when c < 0 but looking at equivalents for large negative
wavelengths. Integrability of ĈuH,0(t, k) (Eq. 3.14) over k ∈ R requires H > 0 and
warrants a finite variance (Eq. 3.15). To compute the power-law behavior of the
second-order structure function at small scales (Eq. 3.17), including the multiplicative
factor (Eq. 3.18), notice that at any time,

E∣δ`uH,0∣2 = 2∫
R+

[1 − cos (2πk`)] [Ĉu(t, k) + Ĉu(t,−k)]dk,(3.22)
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and rescale the dummy variable k by ` to obtain

lim
t→∞

E∣δ`uH,0∣2 ∼
`→0+

`2H
2

∣c∣ ∫
∞

−∞
∣s∣2H+1

1/L Ĉf(s) ds∫R+ [1 − cos (2πk)]k−(2H+1)dk,

(3.23)

where the last integral entering as a multiplicative factor in Eq. 3.23 is finite for
H ∈]0, 1[ and can be expressed with the help of the Gamma function Γ, which entails
Eq. 3.18.

Remark 3.9. As we can see, we succeeded in defining a Gaussian random field
uH,0(t, x) as a solution of a PDE forced by a smooth term f (Eq. 3.13), that shares at
large times several statistical properties with a fractional Gaussian field of parameter
H defined in Proposition 3.1, including a finite variance (Eq. 3.15) without the help
of viscosity, and a local regularity governed by H (Eq. 3.17).

Remark 3.10. It is then easy to include the effects of viscous diffusion while generalizing
the results of Proposition 3.13, considering the evolution provided in Eq. 3.12.
Doing so, we introduce a new characteristic wavelength kν of the order of (∣c∣/ν)1/3,
independent of H, such that asymptotic behaviors as those of Eq. 3.16 are expected
in the finite range 1/L≪ ∣k∣ ≪ kν . Equivalently using the terminology of turbulence
phenomenology, the power-law behavior of the second-order structure function (Eq.
3.17) is expected in the so-called inertial range 1/kν ≪ `≪ L. Also, and for the same
reasons, the statistically stationary regime can be reached at a finite time tν which
depends on ν. This will turn out to be very convenient from a numerical point of
view.

Remark 3.11. For reasons that will become clear later, it will be useful to revisit
the results listed in Proposition 3.7 for the boundary case H = 0, as the statistical
properties of fractional Gaussian fields (Proposition 3.1) were revisited for this very
particular value of the parameter H (See Remark 3.5). In this case, at a finite time t,
we can obtain the Fourier transform of the correlation function of u0,0(t, x), solution
of Eq. 3.13, using the expression provided in Eq. 3.14, and obtain

Ĉu0,0(t, k) =
1

c
∣k∣−1

1/L∫
k

k−ct
∣s∣1/LĈf(s)ds,(3.24)

which converges towards a bounded function as t→∞, depending on the sign of c,
as was written in Eq. 3.16. Nonetheless, contrary to the case H ∈]0, 1[ for which the
variance converges at large times towards a finite value (Eq. 3.15), the finiteness of
the variance is no more warranted when H = 0. Instead, we get, for any ∣c∣ > 0, the
following logarithmically diverging behavior at large times

E∣u0,0(t, x)∣2 ∼
t→∞

1

∣c∣ ln(∣c∣t)∫
R
∣s∣1/LĈf(s)ds.(3.25)

Whereas the variance diverges with time (Eq. 3.25), the correlation function (Eq.
2.4) is bounded away from the origin, and we can write, for any ` > 0,

lim
t→∞
Cu0,0(t, `) = ∫

k∈R
e2iπk` lim

t→∞
Ĉu0,0(t, k)dk.(3.26)

We recover then the infinite value for the variance (Eq. 3.25) in this regime while
obtaining a logarithmically diverging behavior of the correlation function (Eq. 3.26)
at small scales, that is

lim
t→∞
Cu0,0(t, `) ∼

∣`∣→0

1

∣c∣ ln(L/∣`∣)∫
R
∣s∣1/LĈf(s)ds.(3.27)
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We can thus see that the inviscid dynamics ∂tu0,0 = P0LP −1
0 u0,0 + f ultimately

generates as time goes on a Gaussian field of infinite variance (Eq. 3.25) which
is logarithmically correlated in space (Eq. 3.27). It thus shares similar statistical
properties with the fractional Gaussian fields (Proposition 3.1) of vanishing parameter
H = 0, as detailed in Remark 3.5.

4. Multifractal random fields and the induced nonlinear dynamics

This Section is devoted to the design of an additional nonlinear interaction term in
the fractional evolution of Proposition 3.7 able to reproduce the observed multifractal
nature of fluid turbulence. As mentioned earlier, the Gaussian framework that
has been developed implies necessarily a spectrum of exponents ζq of high-order
structure functions (Eq. 1.2) that behaves linearly with the order q. Inspired by the
structure of probabilistic objects known as Multiplicative Chaos (MC) and related
Multifractal processes, we will end up with a quadratic interaction that once added
to the forced fractional linear evolution (Eq. 3.13) supports the development of
non-Gaussian fluctuations. Numerical investigations detailed in the next Section
furthermore indicate the multifractal behavior of this nonlinear evolution.

4.1. Complex Gaussian Multiplicative Chaos.

Proposition 4.1. (About a complex version of the Gaussian Multiplicative Chaos)
Consider the following complex random field

Mγ(t, x) = eγv0(t,x),(4.1)

where v0(t, x) = P0u0(t, x) is a fractional Gaussian field of parameter H = 0 (Eq.
3.2) whose asymptotic logarithmic correlation structure is detailed in Remark 3.5,
and γ ∈ R an additional parameter. As time goes to infinity, Mγ(t, x) behaves as a
random distribution such that, for any γ ∈ R and at any time and position,

EMγ(t, x) = 1.(4.2)

To see its distributional nature as t→∞, consider a C∞ compactly supported function
g(x), of unit integral, and its rescaled version g`(x) ≡ g(x/`)/`. We get the following
asymptotic behavior, at large time t→∞ and at small scales ∣`∣→ 0, for any q ∈ N∗

and γ2 < ∣c∣
qCf (0) ,

lim
t→∞

E [∣∫ g`(x)Mγ(t, x)dx∣
2q

] ∼
∣`∣→0

cq,γe
q2γ2h(0) (L∣`∣)

q2γ2Cf (0)

∣c∣

,(4.3)

where enters the value at the origin of the function h defined in Eq. 3.9 and a
remaining multiplicative constant cq,γ given by

cq,γ = ∫
q

∏
i=1

1

∣xi − yi∣
γ2Cf (0)

∣c∣

q

∏
i<j=1

1

∣xi − yj ∣
γ2Cf (0)

∣c∣

1

∣xj − yi∣
γ2Cf (0)

∣c∣

q

∏
i=1

g(xi)g(yi)dxidyi.

(4.4)

Remark 4.2. The proof of the statistical properties of the Complex Gaussian Multi-
plicative Chaos (GMC) Mγ(t, x) (Eq. 4.1) relies on several ingredients. Notice first
that, as a consequence of the independence of the real and imaginary parts of u0(t, x)
(Eq. 2.5), entering in the definition of the fractional Gaussian field v0(t, x), the real
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and imaginary parts of v0(t, x) are statistically independent, and moreover, at any
time and positions,

E [v0(t, x)v0(t, y)] = 0,(4.5)

whereas we have formerly noted

Cv0(t, x − y) ≡ E [v0(t, x)v∗0(t, y)] ∈ C.(4.6)

In the following, we will also rely on a particular statistical property of complex
Gaussian random variables. Consider thus a complex Gaussian random variables u
such that E(u) = 0. We have the useful result

E (eu) = e
1
2
E(u2),(4.7)

which leads, at second order, to

E [∣∫ g`(x)Mγ(t, x)dx∣
2

] = ∫ g`(x)g`(y)E [eγ(v0(t,x)+v∗0(t,y))]dxdy

= ∫ g`(x)g`(y)eγ
2Cv0(t,x−y)dxdy,

where we notice that u = v0(t, x)+v∗0(t, y) is a zero average complex Gaussian random
variable and used the properties of Eqs. 4.5 and 4.7. Relying then on the asymptotic
form of Cv0(t, x − y) at large time (Eq. 3.9), rescaling the dummy variables x and y
by `, we obtain

lim
t→∞

E [∣∫ g`(x)Mγ(t, x)dx∣
2

] ∼
∣`∣→0

(L∣`∣)
γ2Cf (0)

∣c∣

eγ
2h(0)∫

g(x)g(y)

∣x − y∣
γ2Cf (0)

∣c∣

dxdy,(4.8)

which requires γ2 < ∣c∣/Cf(0) in order for the remaining integral to be finite.

Similar techniques can be used to derive higher-order moments. In particular we
have

E [∣∫ g`(x)Mγ(t, x)dx∣
2q

] = ∫ E [eγ∑
q
i=1 v0(t,xi)+v∗0(t,yi)]

q

∏
i=1

g`(xi)g`(yi)dxidyi

= ∫ e
γ2

2 ∑
q
i,j=1 Cv0(t,xi−yj)+Cv0(t,xj−yi)

q

∏
i=1

g`(xi)g`(yi)dxidyi,

such that

lim
t→∞

E [∣∫ g`(x)Mγ(t, x)dx∣
2q

] ∼
∣`∣→0

(L∣`∣)
q2γ2Cf (0)

∣c∣

eq
2γ2h(0)×

(4.9)

∫
q

∏
i=1

1

∣xi − yi∣
γ2Cf (0)

∣c∣

q

∏
i<j=1

1

∣xi − yj ∣
γ2Cf (0)

∣c∣

1

∣xj − yi∣
γ2Cf (0)

∣c∣

q

∏
i=1

g(xi)g(yi)dxidyi.

The finiteness of the remaining multiple integral entering on the RHS of Eq. 4.9,
and the implied range of possible values for the free parameter γ, is difficult to
determine. Performing an integration over one variable, say x1, and then making
a spherical change of coordinates over the remaining 2q − 1 variables, would give
q2γ2 < (2q − 1)∣c∣/Cf(0) stemming from the integration over the radial component,
which is optimistic since integration over the 2q − 2 angles is not discussed. For
q ⩾ 3, using a bound for the integrand which is simpler to analyse, as has been
done in Lemma A.8 of Ref. [32], would instead give the more pessimistic range
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q2γ2 < q∣c∣/Cf(0). A specially devoted communication on this would be needed, and
is beyond the scope of the present article. This entails Eq. 4.3 and motivates the
proposed range of accessible values for γ.

Remark 4.3. Similar behaviors as those depicted in Proposition 4.1 are again expected
for a complex GMC M̃γ based on the fractional Gaussian field ṽ0 defined in Eq. 3.10
for the particular value H = 0, and which would read

M̃γ(t, x) = eγṽ0(t,x).(4.10)

Its distributional nature as t → ∞ would also be characterized by Eq. 4.3, with a
power-law exponent having the same quadratic dependence on the order q, and the
same multiplicative constant cq,γ (Eq. 4.4). Only the very shape of the function h
entering in Eq. 4.3 and defined in Eq. 3.9 would be impacted, requiring the use of
the function h̃ defined in Eq. 3.11.

4.2. Construction of a complex multifractal field, and the calculation of
its statistical properties.

Proposition 4.4. (About a complex multifractal process vH,γ) Consider the random
field vH,γ(t, x), defined as

vH,γ(t, x) = PH (eγP̃0u0u0) (t, x) ≡ ∫ e2iπkx 1

∣k∣H+1/2
1/L

F [eγP̃0u0u0] (t, k)dk(4.11)

= ∫ PH(x − y)eγP̃0u0(t,y)u0(t, y)dy,(4.12)

where we have introduced the abusive notation

PH(x) = ∫ e2iπkx 1

∣k∣H+1/2
1/L

dk.

The field vH,γ(t, x) is statistically homogeneous and its average is 0 at any time t.

As time gets large, the field is such that, for any q ∈ N∗, H ∈]0,1[ and γ2 Cf (0)
∣c∣ <

min(2H/q,1),

lim
t→∞

E ∣vH,γ(t, x)∣2q <∞.(4.13)

Furthermore, for the same range of values of the parameters H and γ, the random
field vH,γ (Eq. 4.11) exhibits a multifractal local regularity, as can be quantified by its
respective structure functions of order 2q, which behave at small scales as

lim
t→∞

E ∣δ`vH,γ ∣2q ∼
`→0

cH,γ,q`
2qH ( `

L
)
−q2γ2

Cf (0)

∣c∣

,(4.14)

where the explicit expression of the multiplicative constant cH,γ,q at the second order
q = 1 is provided in Eq. A.22.

Concerning the skewed nature of the probability laws of the random field vH,γ (Eq.

4.11), we obtain in a similar way, again for H ∈]0, 1[, but for γ2 Cf (0)
∣c∣ < min(3H/2, 1),

non trivial odd-order statistics, as they can be quantified by the behavior at small
scales of the following expectation

lim
t→∞

E [δ`vH,γ ∣δ`vH,γ ∣2] ∼
`→0

dH,γ`
3H ( `

L
)
−2γ2

Cf (0)

∣c∣

,(4.15)

where dH,γ ∈ R is a real and finite multiplicative factor, whose exact expression is
given in Eq. A.31.



DYNAMICAL FRACTIONAL AND MULTIFRACTAL FIELDS 17

Remark 4.5. We partially prove the statements of Proposition 4.4 in Appendix A
while deriving the expressions of the expectations using the Gaussian integration by
parts formula (see Lemma A.1, which is adapted from Lemma 2.1 of Ref. [50] for
the general case of complex Gaussian random variables). In particular, we derive in
an exact fashion the variance and increments variance, i.e. Eqs. 4.13 and 4.14 using
the particular value q = 1. Also, we justify in Appendix A the scaling behavior of
the third-order structure function (Eq. 4.15), computing in particular the value of
the multiplicative factor dH,γ and showing that it is finite for the proposed range of
parameters H and γ. Nonetheless, its expression is intricate. Whereas we demonstrate
that its value is finite, we fail at giving simple arguments to justify that it does not
vanish, also its sign remains unknown. For q ⩾ 2, expressions of moments (Eqs. 4.13)
and structure functions (Eq. 4.14) get even more cumbersome. For this reason, we
only provide heuristics that led us to propose the scaling behavior of Eq. 4.14, and
the range of values of γ for which this asymptotic behavior is expected to make sense.

Remark 4.6. As stated in Proposition 4.4, given the limitations listed in Remark 4.5,
the complex random field vH,γ (Eq. 4.11) behaves at infinite time as a multifractal
function (Eq. 4.14), and furthermore its real part is skewed (Eq. 4.15). Interestingly,
as argued in Ref. [19], vH,γ has no natural equivalent in a purely real setup. Instead,
defining a real, skewed and multifractal unidimensional random field requires a more
sophisticated method of construction, as is developed in Ref. [19]. In this case,
the real part RvH,γ of vH,γ can be seen as a realistic probabilistic representation
of the longitudinal component of the three-dimensional turbulent velocity vector
field, whose statistical properties are listed in Refs. [30, 19] if the particular value

H = 1/3 + γ2 2Cf (0)
3∣c∣ is chosen. In this case, the third-order structure function (Eq.

4.15) behaves linearly with the scale `, as is suggested by the so-called four-fifths
law of turbulence (see Ref. [30]), which governs the energy transfers through scales.
In a turbulent setting, focusing again on the longitudinal component of the velocity
field, as is measured in wind tunnels, the intermittency parameter is observed to be

universal, i.e. independent of the Reynolds, and small, of the order of 2γ2 Cf (0)
∣c∣ ≈ 0.025

(see for instance Ref. [18]).

Remark 4.7. Let us finally remark that even and odd-order statistics behave in a
different manner, as was already observed in different, although similar, random fields

[19]. In particular, the third-order structure function goes towards 0 as `
3H−2γ2

Cf (0)

∣c∣

(Eq. 4.15), whereas it is expected heuristically that limt→∞E ∣δ`vH,γ ∣3 would go to

zero as `
3H− 9

4
γ2
Cf (0)

∣c∣ . To see this, assume that Eq. 4.14 can be extended to non-integer
values, and take q = 3/2. Although surprising, this remark is consistent with the

constraint that, at any time and any scale, we should have E [Rδ`vH,γ ∣δ`vH,γ ∣2] ⩽
E [∣δ`vH,γ ∣3]. Nonetheless, it remains to be rigorously shown, following a more general
approach as the one developed in Ref. [19], that would give access to the behavior at
small scales of limt→∞E ∣δ`vH,γ ∣q for any q ∈ R. We keep this important perspective
for future investigations.

4.3. Induced nonlinear dynamics. Let us now explore the consequence of the
probabilistic ansatz vH,γ(t, x) (Eq. 4.11) that we recall to exhibit multifractal
statistics (Eq. 4.14), as presented in Proposition 4.4. In particular, in the same
way as we built up the fractional inviscid evolution in Eq. 3.13, we would like to
extract, at least heuristically, a dynamics for a field uH,γ,0(t, x) which once forced by
f would lead to similar statistics as vH,γ(t, x). Recall first that the field u0 entering
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in the definition of vH,γ(t, x) (Eq. 4.11) evolves in the inviscid and unforced situation
according to

∂tu0 = Lu0,

where the transfer operator L is defined in Eq. 2.2. Accordingly, we thus expect that

∂t (eγP̃0u0u0) = eγP̃0u0∂tu0 + γP̃0∂tu0 (eγP̃0u0u0)

= L (eγP̃0u0u0) + γP̃0Lu0 (eγP̃0u0u0) .

From a formal point of view, note W a functional of some complex function

h ∶ R→ C, implicitly defined as W[h](x)eγP̃0W[h](x) = h(x), if it exists, such that,

∂tvH,γ ≡ PH∂t (eγP̃0u0u0) = PHLP −1
H vH,γ + γPH [(P̃0LW [P −1

H vH,γ]) (P −1
H vH,γ)] .

(4.16)

We can see that the first term at the RHS of Eq. 4.16, which is linear in the variable
vH,γ coincides with the deterministic part of the fractional evolution proposed in Eq.
3.13. The second term, proportional to the multifractal parameter γ, is not clearly
closed in terms of vH,γ , but certainly introduces a nonlinearity in the picture.

4.4. A closure approach. The functional W entering in the nonlinear evolution
of Eq. 4.16 resembles a functional generalization of the Lambert W-function, which
is a multivalued function of C → C. Much care is needed to make sense of it, and
this is out of the scope of the present article. Although we could write formally the
functional W[h] in a recursive manner, a tractable form as a function of h(x) is
not known. Consequently, the evolution given in Eq. 4.16 is not closed in terms of
the field vH,γ , and in order to close it, we propose to use the simplest and natural
approximation given by

W[h](x) ≈ h(x),(4.17)

which corresponds to making the approximation

P −1
H vH,γ(t, x) = eγP̃0u0(t,x)u0(t, x) ≈ u0(t, x).(4.18)

In other words, we approximate the functional W entering in Eq. 4.16 by the identity
(Eq. 4.17), and this can be motivated by the Taylor series of the exponential entering
in Eq. 4.18, keeping only the first term in its development as powers of γ. Doing so,
we end up with the following, approximate but closed, nonlinear evolution for the
multifractal field vH,γ (Eq. 4.16)

∂tvH,γ ≈ PHLP −1
H vH,γ + γPH [(P̃0LP −1

H vH,γ) (P −1
H vH,γ)] .(4.19)

The approximative evolution of the multifractal field, as given in Eq. 4.19, motivated
us to propose the nonlinear PDE of the introduction, Eq. 1.4, forced by f with
the additional action of viscosity ν. Of course, in presence of such an additional
quadratic interaction, the theoretical analysis becomes much more demanding than
the linear fractional evolution of Section 3.2. This is why we will focus in the sequel
on a numerical exploration of this stochastically forced nonlinear PDE.

5. Numerical simulations

5.1. Numerical setup. The aim of this section is to present a numerical investigation
of the statistical properties of the solution uH,γ,ν of Eq. 1.4. To do so, we make the
following numerical proposition.
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Numerical proposition 5.1. For periodic boundary conditions, over the period Ltot

of the spatial numerical domain, starting from the initial condition uH,γ,ν(0, x) = 0,
over the grid x = {−N/2+ 1, . . . , 0, . . . ,N/2}∆x, where N is the number of collocation
points and ∆x = Ltot/N , we are solving the numerical problem

duH,γ,ν = [PHLP −1
H uH,γ,ν + γPH [(P̃0LP −1

H uH,γ,ν) (P −1
H uH,γ,ν)] + ν∂2

xuH,γ,ν]∆t

(5.1)

+ ftrunc
√

∆t,

where the operators L, PH and its inverse P −1
H , and P̃0 are defined respectively

in Eqs. 1.6, 1.8, 1.9 and 1.10. The force ftrunc that sustains the dynamics is a
truncated version of the forcing term f(t, x) defined in Eq. 5.3 which vanishes at
the boundaries, i.e. ftrunc(t,±Ltot/2) = 0. The time marching is based on an explicit
predictor-corrector algorithm in which a single instance of the force ftrunc is generated
at every time step ∆t.

Remark 5.1. The evolution given in Eq. 5.1 involves several operations that are
nonlocal in physical space, but local in Fourier space, including the convolutions
with the operators PH , its inverse, P̃0 and the second derivative associated to
viscous diffusion (recall that the Fourier symbol of the second derivative in physical
space is F[∂2

x](k) = −(2π)2k2). In this periodic framework, we will massively rely
on the Discrete Fourier Transform (DFT) to evaluate the deterministic part at
the RHS of Eq. 5.1. Corresponding available wavelengths are thus given by k =
{−N/2 + 1, . . . , 0, . . . ,N/2}∆k where ∆k = 1/Ltot. For full benefit of the Fast Fourier
Transform (FFT) algorithm to evaluate the DFT, we choose N to be a power of 2, i.e.
N = 2n. Evaluations of the transfer operator L and the quadratic term proportional
to the parameter γ are performed in physical space, which implies several back and
forth computations of the DFT and its inverse, in what is known as a pseudo-spectral
method. Furthermore, to get rid of the aliasing error induced by the quadratic
nonlinear term, we use a de-aliasing procedure based on the 3/2-rule (see for instance
Ref. [46]).

Remark 5.2. We also recall the definition of the forcing term f(t, x) that enters in the
continuous evolution of Eq. 1.4, which is a complex Gaussian random force defined
in Eq. 1.5. It is uncorrelated in time, each instance of the force is taken as

f(t, x) = ∫ e−
(x−y)2

2L2 dW (t, y),(5.2)

where dW (t, x) = 1√
2
[dWr(t, x) + idWi(t, x)] with dWr(t, x) and dWi(t, x) being at

each time t independent copies of the increment over dx of a real Wiener process.
Remark that another choice for the convolution kernel entering in Eq. 5.2 could
be made, as long as its Fourier transform decreases rapidly above the characteristic
wavelength 1/L. Choosing the force f as given in Eq. 5.2 implies that its real and
imaginary parts are independent, or equivalently that E[f(t, x)f(t, y)] = 0 at any
positions x and y. From a numerical point of view, and in our periodic setup, an
instance at a time t of f(t, x) is conveniently obtained by multiplying the DFTs of
the convolution kernel and of N independent instances of a zero-average Gaussian
random variable N (0,∆x/2) of variance ∆x/2 for both the real and imaginary parts.
The form of the spatial dependence Cf of its covariance (Eq. 1.5) is explicitly given
by

Cf(x) ≡
√
πL2e−

x2

4L2 ,(5.3)
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and its expression in Fourier space corresponds to

Ĉf(k) = 2πL2e−4π2k2L2

.(5.4)

Remark 5.3. Notice that we have chosen the same characteristic large length scale
L in the definitions of the force f (Eq. 5.3) and of the operator PH (Eq. 1.8). It
would be interesting to explore precisely the influence of choosing different scales to
define forcing and fractional operators, although we expect from a physical point of
view that these scales are of the same order. With the particular choice of L of a
few fractions of Ltot, we are able to observe the cascading of energy towards small
scales, as will be developed in the sequel. We believe that choosing L or Ltot in the
definition of PH (Eq. 1.8) would give similar numerical results, as it can be fully
shown in the linear framework (choose γ = 0 in Eq. 5.1) since statistical properties
are in this case known in an exact fashion.

Remark 5.4. Importantly, the periodization of the operator L (Eq. 1.6) introduces a
discontinuity at the boundaries of the integration domain x = ±Ltot/2. A first way to
get rid of this spurious discontinuity is to consider a periodic version of this operator
such as Lper = iLtot sin(2πx/Ltot). Doing so, as was explored numerically in Ref.
[29] while solving an equation similar to the evolution given in Eq. 2.3, the induced
solution looses the convenient property of statistical homogeneity, and in particular
energy accumulates at the boundaries. To prevent this accumulation of energy at
the boundaries, while keeping an approximate statistically homogeneous region of
space near the origin, i.e. far from the boundaries, and using the operator L as it is
defined in Eq. 1.6, we propose to use, instead of the force f(t, x) defined in Eq. 5.3,
its truncated version

ftrunc(t, x) = e
− x2

L2
tot
/4−x2 f(t, x).(5.5)

The particular choice of the bump function to truncate the force f is not crucial at
this stage. This choice is mostly motivated by the fact that ftrunc(t, x) coincides with
f(t, x) at the origin, and goes smoothly towards zero at x → ±Ltot, without thus
introducing another discontinuity at the boundaries. Using ftrunc (Eq. 5.5) instead
of f (Eq. 5.3) introduces nonetheless an inhomogeneous term in the evolution given
in Eq. 5.1. We will extensively comment in the next paragraph on the implications
of taking a vanishing force ftrunc at the boundaries of the numerical domain on the
solution of the PDE under study (Eq. 5.1). In particular, we will see that the solution
will be observed in a good approximation to be homogeneous around the origin, say
in the restricted domain x ∈ [−0.2Ltot, 0.2Ltot]. We will also observe that the solution
of the PDE of Eq. 5.1, with a vanishing initial condition, when sustained by the
truncated force ftrunc (Eq. 5.5), will also vanish at the boundaries of the numerical
domain x = ±Ltot/2. This is guaranteed by the facts that the deterministic terms
entering in the RHS of Eq. 5.1 must also vanish at the boundaries by periodicity and
that the operator L is skew-symmetric.

5.2. Numerical results. We perform several simulations of the numerical problem
detailed in the proposition 5.1. The parameters of the simulations are chosen in the
following way. Without loss of generality, we take Ltot = 1. The integral length scale
is chosen as L = Ltot/10 and we consider the particular value H = 1/3 as suggested
by the phenomenology of turbulence. The rate of transfer of energy is set to c = 10.
Three different values for the intermittency parameter γ = 0,

√
0.01 and

√
0.02 are

chosen. Based on the numerical stability of the underlying heat equation when facing
a discontinuity, the time step is expected to be chosen of the order of ∆t ≈ (∆x)2,
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although this would require a prohibitive numerical cost. Instead, since the solution
is expectedly continuous, we will choose ∆t = ∆x, a value that we found small
enough to avoid singular behaviors and to be numerically tractable. Viscosity ν and
number of collocation points N are chosen such that the smallest length scale of the
problem, which is of the order of (ν/∣c∣)1/3 (see the discussion provided in Remark
3.10) is properly resolved such that no numerical instabilities are observed. With
the given choices made for the aforementioned parameters, we moreover consider the
pairs of values (N ;ν) = (212; 10−5), (213; 10−6), (214; 10−7), (216; 10−8), (216; 10−9).
Notice that we have used the same resolution N = 216 to study the values of the
viscosity ν = 10−8 and 10−9, because we observed for the former case some numerical
instabilities. We checked that integration in time is long enough to reach a statistically
steady regime, and only then various quantities of interest are averaged at several
times such that the statistical samples are independent.

We display in Fig. 5.1 the results of our simulations. We begin with the spatial
representation of the solution in the statistically stationary regime at a given time t,
at a moderate viscosity ν = 10−6 (Fig. 5.1(a) in red) and for the lowest value ν = 10−9

(Fig. 5.1(b) in green). For both cases, we moreover superimpose the Gaussian case

γ = 0 using a dashed-line and γ =
√

0.02 using a solid line. As we already explained,
the solution uH,γ,ν(t, x) vanishes at the boundaries x = ±Ltot/2 of the domain. Also,
we can barely see in this representation a difference between the Gaussian γ = 0 and
intermittent γ ≠ 0 cases. This shows from a numerical point of view that somehow
the intermittent solution could be approached in a perturbative way with respect to
the Gaussian solution. As viscosity decreases, we can also observe the appearance
of fluctuations at smaller and smaller length scales, making overall the series of Fig.
5.1(b) rougher than those displayed in Fig. 5.1(a). Similar plots could be obtained for
the imaginary parts IuH,γ,ν(t, x) of the solution instead of the real one RuH,γ,ν(t, x).

We present in Fig. 5.1(c) in a logarithmic representation the estimation of the power

spectrum, i.e. the Fourier transform ĈuH,γ,ν(t, k) for various values of viscosity, and

for both values γ = 0 (dashed-line) and γ =
√

0.02 (solid-line). The estimation is made
using the periodogram, i.e. the square norm of the DFT of the solution, normalized
by Ltot, which is averaged in time using independent instances. As viscosity decreases,
a wider and wider range of energy-populated wavelengths develops, in a similar way
as small-scale fluctuations appear in spatial profiles (Figs. 5.1(a) and (b)). For the
smallest viscosity ν = 10−9, we can clearly observe an extended inertial range, as it is
named in the phenomenology of turbulence, where the spectrum exhibits a power-law
behavior whose exponent is governed by the parameter H (here, recall that we
chose H = 1/3), consistently with the prediction obtained for the fractional Gaussian
case (Eq. 3.16). We remark also that our numerical results for the intermittent

and non-Gaussian situation (γ =
√

0.02) are indistinguishable in this range, as it
is expected from the inspection of the observed independence of the series of Figs.
5.1(a) and (b) to the explored values of γ. Only in the dissipative range, that is for

wavelengths bigger than the characteristic viscous one kν ≈ (∣c∣/ν)1/3 (see Remark
3.10), power spectra with different intermittency coefficient γ differ. We superimpose
with a black line the prediction obtained in the inviscid case (ν = 0) which is provided
in Eq. 3.16. Notice that we could have computed in an exact fashion the remaining
integral entering in Eq. 3.16 using the expression of the spatial correlation of the
force (Eq. 5.4) and special functions, we perform instead a convenient numerical
integration. To take into account some implications of the inhomogeneity induced by
the truncated version of the force ftrunc (Eq. 5.5), we propose to weigh the prediction
made in Eq. 3.16 by a multiplicative factor given by the integral of the square of the
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Figure 5.1. Local and statistical behaviors of the solution uH,γ,ν(t, x)
detailed in Proposition 5.1. (a): spatial profiles of RuH,γ,ν(t, x) at
a given time t in the statistically stationary regime for L = Ltot/10,

c = 10, H = 1/3, ν = 10−6, with γ = 0 (dashed line) and γ =
√

0.02
(solid line). (b): same plot as in (a), but for a lower value of viscosity
ν = 10−9. (c): estimations of the power spectrum based on the averaged
periodograms (see text) of the solution for various values of viscosity
ν = 10−5, 10−6, 10−7), 10−8 and 10−9 (from left to right), using dashed

lines for γ = 0, and a solid ones for γ =
√

0.02. We superimpose
with a solid black line the asymptotic prediction made in Eq. 3.16,
which has been obtained in the Gaussian and fractional case, properly
weighted by a multiplicative factor to take the truncation of the force
into account (see text). (d) Similar plot as for (c) but for the second
order structure function, i.e. the variance of the increments, following
an averaging procedure detailed in the text. We superimpose the
expected asymptotic power-law behavior, given in Eq. 3.17, which is
properly weighted (see text) and represented by a solid black line.

windowing function that enters in its definition. This corresponds to the fraction of
energy that is subtracted from the system by the truncation. Accordingly, this factor
is defined by and evaluated numerically as ∫ exp[−2x2/(L2

tot/4 − x2)]dx ≈ 0.49Ltot,
where the integration is made over ∣x∣ < Ltot/2. We observe in the inertial range a
nearly perfect collapse of data and prediction, even when γ ≠ 0.

Similarly as for Fig. 5.1(c), we display in Fig. 5.1(d) the corresponding second-
order structure function E∣δ`uH,γ,ν ∣2 as a function of the scale `, in a logarithmic
representation, for the same set of data used in Fig. 5.1(c). To estimate this
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expectation, we average the square norm of the increment δ`uH,γ,ν(t, x) = uH,γ,ν(t, x+
`) − uH,γ,ν(t, x) over several independent instances of the solution in time, and also
over the region of space x/Ltot ∈] − 0.2,0.2[ in which the solution is statistically
homogeneous to a good approximation. At large scales, i.e. greater than the integral
length scale L, the increment variance reaches a plateau, barely dependent on viscosity,
which coincides with twice the variance of the solution. Once again, we observe, as
ν decreases, the development of an inertial range where the second-order structure
function behaves as a power-law, whose exponent is governed by the parameter H,
in a consistent manner with the power-law behavior of the power-spectrum in the
corresponding range of wavelengths (Fig. 5.1(c)), although the power-law is not
as clear. Nonetheless, as ν decreases, we can see this behavior gets closer to the
asymptotic prediction that we presented in Eq. 3.17 and that we superimpose with
a straight black line in Fig. 5.1(c), weighted for the same reason as for the power
spectrum by the factor 0.49Ltot. At smaller scales than those pertaining to the
inertial range, we recover a scaling behavior proportional to `2, as a consequence of
the differentiability of the solution for finite viscosity.

Let us make the important remark that, whereas the multifractal ansatz vH,γ (Eq.
4.11) exhibits an intermittent correction on the second-order structure function (i.e.
take q = 1 in Eq. 4.14), it does not seem to be the case from a numerical point of
view for the solution of Eq. 5.1. This is most certainly related to the fact that we are
not presently studying a dynamical version of vH,γ (Eq. 4.11), whose evolution is not
obviously closed (see the devoted discussion in Paragraph 4.3), but an approximate
evolution that has been obtained following a closure approach (see Paragraph 4.4).

Let us now discuss higher-order statistics than the second-order one, and thus
quantify the effects of the quadratic term entering in Eq. 5.1, which introduces the
parameter γ in the picture. Let us first introduce the skewness S(`) of the increments,
i.e.

S(`) = E (Rδ`uH,γ,ν)3

[E (Rδ`uH,γ,ν)2]3/2 ,(5.6)

where only enters the real part of the increment. We display in Fig. 5.2(a) the
skewness factor of the real part of the increment (Eq. 5.6) as a function of the
logarithm of the scales `, with the same colors representing various values of viscosity
as in Fig. 5.1, using dashed lines for γ = 0 and solid lines for γ =

√
0.02. To estimate

the expectations entering in Eq. 5.6, we use the same averaging procedure as it is
detailed while discussing the results of Fig. 5.1(d). We indeed observe that S vanishes
at any scale for γ = 0, consistently with the expected skewness of Gaussian processes.
For γ =

√
0.02, the scale dependence is rather different. For a given value of viscosity

ν, the skewness is negative below the integral scale ` ⩽ L. It then saturates in the
dissipative range to converge towards the skewness of the real part of the derivative
∂xuH,γ,ν . As ν decreases, it seems that the evolution of S towards larger negative
values follows an approximately viscosity-independent curve in the inertial range. It
is rather difficult to see a power law behavior, especially in this representation, but
we can say that, while inspecting the numerical results with a smaller value for the
parameter γ =

√
0.01 as displayed in the inset of Fig. 5.2(a), if power-law there is,

then the data are compatible with an exponent two times smaller. This suggests
that the power law exponent depends quadratically on γ, in a similar way as in Eq.
4.14, which was derived for the proposed multifractal ansatz vH,γ (Eq. 4.11). We
could also have computed the skewness (Eq. 5.6) based on the imaginary part of the
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Figure 5.2. (a) and (c): similar plots as in Fig. 5.1(d), for the same
values of the parameters, using the same colors and representing γ = 0
with dashed lines, and γ =

√
0.02 with solid ones, but concerning the

increment skewness S(`) (Eq. 5.6) in (a), and flatness F(`) (Eq. 5.7)
in (c). Corresponding insets show the same statistical quantities but

for a smaller value of the parameter γ =
√

0.01. (b) and (d): histograms
of the values of the real R∂xuH,γ,ν and imaginary I∂xuH,γ,ν parts of
the derivative of the solution, with the same parameters as former
figures but for the single value γ =

√
0.02. For the sake of clarity,

histograms correspond to unit-variance probability density functions,
and are arbitrary vertically shifted (see text).

increments, instead of the real one. In this case, we obtain a vanishing skewness at
all scales, even when γ ≠ 0 (data not shown).

We display the scale dependence of the flatness factor of increments in Fig. 5.2(c),
i.e.

F(`) = E ∣δ`uH,γ,ν ∣4

[E ∣δ`uH,γ,ν ∣2]
2
,(5.7)

and we use the same colors for various viscosities and dashed and solid lines respectively
for γ = 0 and γ =

√
0.02, as we did in Figs. 5.1 and 5.2(c). We first observe that

F(`) ≈ 2 at any scale ` when γ = 0, as is expected from a complex Gaussian random
field, whose real and imaginary parts are independent. For the more interesting case
γ =

√
0.02, we observe that the flatness departs from the Gaussian value 2 as ` ⩽ L.

In the inertial range of scales, F seems to behave as a power law, independently of
the value of viscosity. This is a characteristic feature of multifractal processes, in
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particular reproduced by our multifractal ansatz vH,γ (Eq. 4.11). Similarly to the
skewness, the power law exponent of this observed behavior is tricky to understand.
By inspection of the behavior of flatnesses for a smaller intermittency parameter
γ =

√
0.01 displayed in the inset of Fig. 5.2(c), we can infer that again data are

compatible with a power law exponent proportional to γ2, as is expected from
multifractal processes (Eq. 4.14). The multiplicative factor in front of γ2 remains
difficult to determine at this stage.

Finally, we display respectively in Fig. 5.2(b) and (d) the histograms of the
real and imaginary parts of the gradients ∂xuH,γ,ν for various values of viscosity

and γ =
√

0.02, using the same colors as those that have been used formerly. This
estimation of the probability density functions (PDFs) is made following the same
averaging procedure, that is over independent instances in time and across the
approximately statistically homogeneous region x/Ltot ∈] − 0.2,0.2[. To make the
comparison clear between different viscosities, we display the estimated PDFs such
that they are all of unit variance, and we shift them vertically in an arbitrary manner
to highlight the evolution of their shape. As expected, for γ = 0, PDFs of gradients
are Gaussian for any viscosity (data not shown). On the contrary, for γ =

√
0.02,

we observe a continuous deformation of their shape as ν decreases, being closer to
a Gaussian shape at high viscosity ν = 10−5, and exhibiting wider and wider tails
as ν decreases towards its lowest value ν = 10−9. Consistently with the observed
behavior of the skewness S (Eq. 5.6), PDFs are negatively skewed for R∂xuH,γ,ν
and symmetrical for I∂xuH,γ,ν , as it is obtained for the multifractal ansatz vH,γ (Eq.
4.11). Also, consistently with the fact that the small scale plateaus in the increment
flatnesses rise as the viscosity decreases (Fig. 5.2(c)), wider tail of the estimated
gradients PDFs develop for smaller viscosities.

Appendix A. Proof of Proposition 4.4

Let us start with proposing Lemma A.1, similarly to the Lemma 2.1 of Ref. [50],
but here for complex Gaussian variables:

Lemma A.1. Consider a complex zero average Gaussian random variable Z, a
function F ∶ C→ C and its derivative F ′ that grows at most exponentially. We have

E [ZF (Z)] = E(Z2)E [F ′(Z)] .(A.1)

More generally, considering the collection of (n + 1) complex Gaussian variables
(Z,Z1, ..., Zn) and the function F ∶ Cn → C. We have the following Gaussian
integration by parts formula

E [ZF (Z1, ..., Zn)] =
n

∑
k=1

E(ZZk)E [ ∂F
∂xk

(Z1, ..., Zn)] .(A.2)

Proof of Proposition 4.4: Concerning the average of vH,γ (Eq. 4.11), we make use
of Eq. A.2 and obtain

E [eγP̃0u0(t,y)u0(t, y)] = γE [u0(t, y)P̃0u0(t, y)] e
γ2

2
E[ṽ20(t,y)] = 0,(A.3)

because for any positions, E [u0(t, y)u0(t, z)] = 0 (Eq. 2.5), which shows that EvH,γ =
0.
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The calculation of the variance is done in a similar way, and requires the following
step: Making use of Eq. A.2, we obtain

E [u0(t, y1)u∗0(t, y2)eγ(P̃0u0(t,y1)+P̃0u
∗

0(t,y2))] = Cu0(t, y1 − y2)eγ
2Cṽ0(t,y1−y2)

(A.4)

+ γE [u0(t, y1)P̃0u
∗
0(t, y2)]E [u∗0(t, y2)eγ(P̃0u0(t,y1)+P̃0u

∗

0(t,y2))]

= (Cu0(t, y1 − y2) + γ2E [u0(t, y1)P̃0u
∗
0(t, y2)]E [u∗0(t, y2)P̃0u0(t, y1)]) eγ

2Cṽ0(t,y1−y2).

Using the odd symmetry of the function P̃0(x) = −P̃0(−x), notice that

K(t, y1 − y2) ≡ E [u0(t, y1)P̃0u
∗
0(t, y2)] = ∫ P̃0(y2 − z)Cu0(t, y1 − z)dz(A.5)

= −E [u∗0(t, y2)P̃0u0(t, y1)]
= −K∗(t, y2 − y1)

and we obtain

E [∣vH,γ(t, x)∣2] = ∫ e2iπky 1

∣k∣2H+1
1/L

[Cu0(t, y) − γ2K2(t, y)] eγ2Cṽ0(t,y)dkdy.(A.6)

Remark now that

∫
+∞

0
(PH ⋆ PH)′(y)eγ2Cṽ0(t,y)dy = − (PH ⋆ PH)(0)eγ2Cṽ0(t,0)

(A.7)

− ∫
+∞

0
(PH ⋆ PH)(y)γ2C′ṽ0(t, y)e

γ2Cṽ0(t,y)dy,

where we have introduced the correlation product ⋆, defined by, for any appropriate
real functions f and g,

(f ⋆ g)(y) = ∫ f(x)g(x + y)dx = ∫ e2iπkyf̂∗(k)ĝ(k)dk,(A.8)

such that

E [∣vH,γ(t, x)∣2] +
Cf(0)
2∣c∣ ∫

+∞

0
(PH ⋆ PH)′(y)eγ2Cṽ0(t,y)dy =(A.9)

∫ (PH ⋆ PH)(y)Cu0(t, y)eγ
2Cṽ0(t,y)dy − Cf(0)

2∣c∣ (PH ⋆ PH)(0)eγ2Cṽ0(t,0)(A.10)

− γ2∫ (PH ⋆ PH)(y) [K2(t, y) + Cf(0)
4∣c∣ C

′
ṽ0(t, ∣y∣)] e

γ2Cṽ0(t,y)dy.(A.11)

Recall that Cu0(t, y) behaves as a Dirac function as t→∞, weighted by an appropriate
factor, as is stated in Eq. 2.6. Hence, it is clear that the contribution given in Eq.
A.10 will vanish as t→∞. Similarly, in the same limit, the function K(t, y) (Eq. A.5)

converges towards P̃0(−y), again weighted by an appropriate factor, such that, using
the asymptotic expression of Cṽ0 (Eq. 3.11), we obtain pointwise

lim
t→∞

[K2(t, y) + Cf(0)
4∣c∣ C

′
ṽ0(t, ∣y∣)] =

C2
f(0)
4∣c∣2

[P̃ 2
0 (y) − ∣ ln′+(∣y∣)∣] +

Cf(0)
4∣c∣ h̃

′(∣y∣),(A.12)

where we have denoted by ∣ ln′+(∣y∣)∣ the derivative of the smoothly-truncaded loga-
rithm ln+ evaluated at ∣y∣, that is expected to behave as 1/∣y∣ in the vicinity of the
origin.

Let us focus on the second contribution displayed in Eq. A.11. As we have already
observed, the function (PH ⋆ PH)(y) is a bounded function of its argument for any
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H > 0, and its rapid decrease away from the origin ensures integrability when the
dummy variable y goes towards infinite values. Notice that

P̃0(y) = −i∫ e2iπky k

∣k∣3/2
1/L

dk ∼
y→0

y

∣y∣3/2
,(A.13)

which says that the first term of the RHS of Eq. A.12 grows at most logarithmically
near the origin, which is integrable. Thus, the integral entering in Eq. A.11 exists

as t → ∞ if the remaining singular term, i.e. ∣y∣−γ2Cf (0)/∣c∣, is integrable, i.e. γ2 <
∣c∣/Cf(0).

To conclude, concerning the limit at large time of the variance E [∣vH,γ(t, x)∣2],
let us examine the second term of the LHS of Eq. A.9. It is easy to see that near
the origin, whereas (PH ⋆ PH)(y) remains bounded for any H > 0, its derivative will
behave as (PH ⋆ PH)′(y) ∼ y2H−1. Thus, as t → ∞, this contribution is finite for
2H − 1 − γ2Cf(0)/∣c∣ > −1, i.e. γ2 < 2H ∣c∣/Cf(0). Hence, for γ2 < min(1,2H)∣c∣/Cf(0),
the variance is finite and its expression is given by

lim
t→∞

E [∣vH,γ(t, x)∣2] = −
Cf(0)
2∣c∣ ∫

+∞

0
(PH ⋆ PH)′(y) ∣L

y
∣
γ2
Cf (0)

∣c∣

+
eγ

2h̃(y)dy

(A.14)

− γ2Cf(0)
4∣c∣ ∫ (PH ⋆ PH)(y) [Cf(0)∣c∣

[P̃ 2
0 (y) − ∣ ln′+(∣y∣)∣] + h̃′(∣y∣)] ∣

L

y
∣
γ2
Cf (0)

∣c∣

+
eγ

2h̃(y)dy,

where the notation ∣y∣+ = exp (ln+ ∣y∣) is introduced.

To see the behavior at small scales of the second-order structure function, consider
the function

PH,`(x) = PH(x + `) − PH(x) = ∫ e2iπkx e
2iπk` − 1

∣k∣H+1/2
1/L

dk,(A.15)

such that we can conveniently write the velocity increment as

δ`vH,γ(t, x) = ∫ PH,`(x − y)eγP̃0u0(t,y)u0(t, y)dy.(A.16)

Previous calculations concerning the variance apply and we get

lim
t→∞

E [∣δ`vH,γ(t, x)∣2] = −
Cf(0)
2∣c∣ ∫

+∞

0
(PH,` ⋆PH,`)′(y) ∣

L

y
∣
γ2
Cf (0)

∣c∣

+
eγ

2h̃(y)dy

(A.17)

− γ2Cf(0)
4∣c∣ ∫ (PH,` ⋆PH,`)(y) [

Cf(0)
∣c∣

[P̃ 2
0 (y) − ∣ ln′+(∣y∣)∣] + h̃′(∣y∣)] ∣

L

y
∣
γ2
Cf (0)

∣c∣

+
eγ

2h̃(y)dy.

Notice that

(PH,` ⋆PH,`)(y) = ∫ e2iπky
∣e2iπk` − 1∣2

∣k∣2H+1
1/L

dk,(A.18)

such that

(PH,` ⋆PH,`)(`y) ∼
`→0+

`2H ∫ e2iπky
∣e2iπk − 1∣2

∣k∣2H+1
dk,(A.19)
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this equivalence at small scales making sense only for H ∈]0,1[. Similarly, we have

(PH,` ⋆PH,`)′(`y) ∼
`→0+

`2H−1gH(y),(A.20)

where

gH(y) = ∫ 2iπke2iπky
∣e2iπk − 1∣2

∣k∣2H+1
dk.(A.21)

Once having rescaled the dummy variable y entering in the integrals at the RHS of

Eq. A.17, we can see that the first term will be order `2H−γ
2Cf (0)/∣c∣, and thus will

dominate the second term that goes to zero as `2H+1−γ2Cf (0)/∣c∣. Doing so, we get
the equivalent behavior of the second-order structure function at small scales, which
reads

lim
t→∞

E [∣δ`vH,γ(t, x)∣2] ∼
`→0+

−Cf(0)
2∣c∣ `

2H ( `
L
)
−γ2

Cf (0)

∣c∣

eγ
2h̃(0)∫

+∞

0

gH(y)

∣y∣γ
2
Cf (0)

∣c∣

dy.(A.22)

It remains to determine the range of parameters such that the equivalence given in
Eq. A.22 makes sense, and hence check the integrability of the remaining integral
that enters in it. Although the behavior of the function gH defined in Eq. A.21 at
small and large arguments can be tricky to establish, its integrability is pretty much

straightforward. Indeed, with notation a = γ2 Cf (0)
∣c∣ , using the equality

∫
+∞

0

gH(y)
∣y∣a dy = −(2π)aΓ (1 − a) cos(aπ

2
)∫

∣e2iπk − 1∣2

∣k∣2H+1−a dk,

it is clear that the equivalent (Eq. A.22) makes sense for H ∈]0,1[ and γ2 Cf (0)
∣c∣ <

min(1, 2H), and is indeed positive. As a further check, we can note that the expression
(Eq. A.22) indeed coincides with the equivalence obtained for fractional Gaussian
fields (Eq. 3.5) when γ = 0.

Let us now calculate the third order structure function. We have, making use of
the definition and symmetries of the function K (Eq. A.5),

E [u0(t, y1)u∗0(t, y2)u0(t, y3)eγ(P̃0u0(t,y1)+P̃0u
∗

0(t,y2)+P̃0u0(t,y3))]
(A.23)

= Cu0(t, y1 − y2)E [u0(t, y3)eγ(P̃0u0(t,y1)+P̃0u
∗

0(t,y2)+P̃0u0(t,y3))]

+ γK(t, y1 − y2)E [u∗0(t, y2)u0(t, y3)eγ(P̃0u0(t,y1)+P̃0u
∗

0(t,y2)+P̃0u0(t,y3))]

= Cu0(t, y1 − y2) [γK(t, y3 − y2)eγ
2[Cṽ0(t,y1−y2)+Cṽ0(t,y3−y2)]]

+ γK(t, y1 − y2) [Cu0(t, y3 − y2) + γ2 [K∗(t, y2 − y1) +K∗(t, y2 − y3)]K(t, y3 − y2)]

× eγ2[Cṽ0(t,y1−y2)+Cṽ0(t,y3−y2)]

= γ [Cu0(t, y1 − y2)K(t, y3 − y2) + Cu0(t, y3 − y2)K(t, y1 − y2)] eγ
2[Cṽ0(t,y1−y2)+Cṽ0(t,y3−y2)]

− γ3K(t, y1 − y2) [K(t, y1 − y2) +K(t, y3 − y2)]K(t, y3 − y2)eγ
2[Cṽ0(t,y1−y2)+Cṽ0(t,y3−y2)],

such that

E [δ`vH,γ ∣δ`vH,γ ∣2] = 2γ ∫ PH,`(y2 − z1)PH,`(y2)PH,`(y2 − z3)

× [Cu0(t, z1) − γ2K2(t, z1)]K(t, z3)eγ
2[Cṽ0(t,z1)+Cṽ0(t,z3)]dz1dy2dz3.
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Let us introduce the following function

hH,`(z1, z3) = ∫ PH,`(y2 − z1)PH,`(y2)PH,`(y2 − z3)dy2

= ∫ e−2iπ(k1z1+k3z3) (e
2iπk1` − 1) (e−2iπ(k1+k3)` − 1) (e2iπk3` − 1)

∣k1∣H+1/2
1/L ∣k1 + k3∣H+1/2

1/L ∣k3∣H+1/2
1/L

dk1dk3

= −hH,`(−z1,−z3),

such that

E [δ`vH,γ ∣δ`vH,γ ∣2] =
(A.24)

2γ ∫ hH,`(z1, z3) [Cu0(t, z1) − γ2K2(t, z1)]K(t, z3)eγ
2[Cṽ0(t,z1)+Cṽ0(t,z3)]dz1dz3.

Using the same ideas to determine the limiting value as t→∞ of the variance (Eq.
A.6), remark that

∫
+∞

0
∂z1hH,`(z1, z3)eγ

2Cṽ0(t,z1)dz1 = − hH,`(0, z3)eγ
2Cṽ0(t,0)

(A.25)

− ∫
+∞

0
hH,`(z1, z3)γ2C′ṽ0(t, z1)eγ

2Cṽ0(t,z1)dz1,

as we obtained in Eq. A.7. Doing so, we determine the proper quantity that eventually
dominates at small scales, and we obtain

lim
t→∞

E [δ`vH,γ ∣δ`vH,γ ∣2] ∼
`→0+

γ
C2
f(0)
2∣c∣2 `

3H ( `
L
)
−2γ2

Cf (0)

∣c∣

e2γ2h̃(0)

× ∫(z1,z3)∈R+×R
gH(z1, z3)

1

∣z1∣
γ2Cf (0)

∣c∣

z3

∣z3∣
3
2
+
γ2Cf (0)

∣c∣

dz1dz3,

where we have introduced the function

gH(z1, z3) = −2iπ∫ e−2iπ(k1z1+k3z3)k1 (e2iπk1 − 1) (e−2iπ(k1+k3) − 1) (e2iπk3 − 1)
∣k1∣H+1/2∣k1 + k3∣H+1/2∣k3∣H+1/2 dk1dk3.

(A.26)

Additionally, we will need the following exact Fourier transforms,

∫ e−2iπk1z1 1z1⩾0

∣z1∣a
dz1 = (2π)a−1Γ(1 − a) [sin(aπ/2) − i cos(aπ/2) k1

∣k1∣
] 1

∣k1∣1−a
,(A.27)

for 0 < a < 1, and

∫ e−2iπk3z3 z3

∣z3∣
3
2
+a
dz3 = −i(2π)a+1/2 1/4 + a/2

Γ(a + 3/2) sin(π(a/2 + 1/4))
k3

∣k3∣3/2−a
,(A.28)

for 0 < a < 3/2, and the identity

(e2iπk1 − 1) (e−2iπ(k1+k3) − 1) (e2iπk3 − 1)
= −2i [sin (2π(k1 + k3)) − sin(2πk1) − sin(2πk3)] .
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Using symmetries, it can be shown that the real part of Eq. A.27 does not
contribute, only remaining

∫(z1,z3)∈R+×R
gH(z1, z3)

1

∣z1∣
γ2Cf (0)

∣c∣

z3

∣z3∣
3
2
+
γ2Cf (0)

∣c∣

dz1dz3

(A.29)

= 4πAγ ∫
k3 [sin (2π(k1 + k3)) − sin(2πk1) − sin(2πk3)]

∣k1∣H+1/2−
γ2Cf (0)

∣c∣ ∣k1 + k3∣H+1/2∣k3∣H+2−
γ2Cf (0)

∣c∣

dk1dk3,

with Aγ ∈ R a real multiplicative constant that can be obtained from the multiplicative
contributions displayed in Eqs. A.27 and A.28. The sign of the remaining contribution
of the RHS of Eq. A.29 expressed as a double integral over the dummy variables
k1 and k3 is not obvious, neither whether it vanishes or not. Nonetheless, it gives a
condition on γ, to ensure its finiteness. Inspecting the integrability properties of this
term, we find that the integral exists along the diagonal k1 = k3 if

γ2Cf(0)
∣c∣ < min(1,3H/2).(A.30)

Doing so, we have thus shown that, under the condition provided in Eq. A.30, the
third-order moment of the increments of the process vH,γ , as it is defined in Eq. A.24,
is finite, and does not vanish in an obvious manner. It is furthermore real, and it
behaves at small scale as

lim
t→∞

E [δ`vH,γ ∣δ`vH,γ ∣2] ∼
`→0+

dH,γ`
3H ( `

L
)
−2γ2

Cf (0)

∣c∣

with

dH,γ = γ
C2
f(0)
2∣c∣2 e

2γ2h̃(0)∫(z1,z3)∈R+×R
gH(z1, z3)

1

∣z1∣
γ2Cf (0)

∣c∣

z3

∣z3∣
3
2
+
γ2Cf (0)

∣c∣

dz1dz3,(A.31)

where the function gH(z1, z3) is defined in Eq. A.26.

Let us finally determine the behavior at small scales of the statistics at high-order
considering q ∈ N∗,

E [∣δ`vH,γ ∣2q] = ∫
q

∏
i=1

PH,`(x − yi)PH,`(x − zi)
q

∏
i=1

dyidzi(A.32)

×E [
q

∏
i=1

u0(t, yi)u∗0(t, zi)eγ∑
q
i=1 P̃0u0(t,yi)+P̃0u

∗

0(t,zi)] ,

where the operator PH,` is defined in Eq. A.15. The determination of the exact
expression of the correlator entering in Eq. A.32 can be done using some combinatorial
analysis, although it can become cumbersome. Instead, in a first approach, let us
evaluate the spectrum of exponents that governs the decrease towards 0 as `→ 0. In
particular, intermittent corrections are eventually governed by a term of the form

E [eγ∑
q
i=1 P̃0u0(t,yi)+P̃0u

∗

0(t,zi)] = eγ
2[∑qi=1 Cṽ0(t,yi−zi)+∑

q
i<j=1 Cṽ0(t,yi−zj)+C

∗

ṽ0
(t,yj−zi)],
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contributing at small scales as

lim
t→∞

E [eγ∑
q
i=1 P̃0u0(t,`yi)+P̃0u

∗

0(t,`zi)] ∼
`→0+

( `
L
)
−q2γ2

Cf (0)

∣c∣

eq
2γ2h̃(0)

×
q

∏
i=1

1

∣yi − zi∣γ
2
Cf (0)

∣c∣

q

∏
i<j=1

1

∣(yi − zj)(yj − zi)∣γ
2
Cf (0)

∣c∣

,

whereas contributions from the fractional part will be of the order of `2qH . Once
again, the determination of the appropriate range of values for γ is tricky to get at
this stage because we have to compute in an exact fashion the expectation entering
in the RHS of Eq. A.32. To do so, we have to generalize the calculations made in
Eqs. A.4 and A.23, using combinatorial developments such as those proposed in Ref.
[50] (see their Lemma 2.2). Such a calculation is beyond the scope of the present

article. We nonetheless expect the additional condition γ2 Cf (0)
∣c∣ < 2H/q.
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