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Abstract

A linear dynamical model for the development of the turbulent energy cascade
was introduced in Apolinário et al [arxiv 2107.03309]. This partial differential
equation, randomly stirred by a forcing term which is smooth in space and delta-
correlated in time, was shown to converge at infinite time towards a state of
finite variance, without the aid of viscosity. Furthermore, the spatial profile of its
solution gets rough, with the same regularity as a fractional Gaussian field. We
here focus on the temporal behavior and derive explicit asymptotic predictions for
the correlation function in time of this solution and observe that their regularity
is not influenced by the spatial regularity of the problem, only by the correlation
in time of the stirring contribution. We also show that the correlation in time of
the solution depends on the position, contrary to its correlation in space at fixed
times. We then investigate the influence of a forcing which is correlated in time on
the spatial and time statistics of this equation. In this situation, while for small
correlation times the homogeneous spatial statistics of the white-in-time case are
recovered, for large correlation times homogeneity is broken, and a concentration
around the origin of the system is observed in the velocity profiles. In other words,
this fractional velocity field is a representation in one-dimension, through a linear
dynamical model, of the self-similar velocity fields proposed by Kolmogorov in
1941, but only at fixed times, for a delta-correlated forcing, in which case the
spatial statistics is homogeneous and rough, as expected of a turbulent velocity
field. The regularity in time of turbulence, however, is not captured by this model.

Keywords— fractional Gaussian fields, statistical theory of turbulence, stochastic partial
differential equations, homogeneous operators of degree 0, energy cascade, pseudo-spectral
numerical simulation, Ornstein-Uhlenbeck process
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1 Introduction

Since the important work of Taylor and Richardson in the first half of the XX century, a direct
energy cascade has been invoked to interpret the rough nature of velocity fluctuations that are
observed in Navier-Stokes turbulence in three dimensions [1]. This picture has been further
supplemented by the statistical description provided by Kolmogorov in 1941 [2], in which
fractional stochastic processes play a paradigmatic role in modeling the rough behavior of
incompressible velocity fields. The energy cascade can then be seen as the dynamical process
through which energy is transported from the large scale smooth external force to the small
scales of the flow, where it generates rough random fields. Furthermore, it is conjectured that
this rough stationary state is reached even in the absence of viscous dissipation [3, 4, 5, 6].

Consider that ui(x, t), i ∈ {1, 2, 3}, x ∈ R3 is a divergence-free velocity field, solution of the
incompressible Navier-Stokes equations. The statistical behavior of turbulence in [2], based
on two propositions regarding symmetries and self-similarity of these solutions, describes a
fluid of kinematic viscosity ν, stirred at a large scale L by an external force, and determines a
power-law scaling for the statistical moments of increments of the velocity field (also called
structure functions of order q),

lim
ν→0

E(δ`ui)
q ∼
`→0

cq

(
`

L

)qH
, (1.1)

where the velocity increments are defined as δ`ui(t, x) = ui(t, x+`)−ui(t, x), and the constants
cq do not depend on the exact setup of the flow, but only on the large scale L and on
the mean energy dissipation rate. The exponent H is approximately 1/3, as predicted by
dimensional analysis and verified by numerical and experimental measurements [1, 7, 8, 9]. It
should be remarked that the characterization of Eq. (1.1) has been later supplemented by the
intermittency hypothesis, in which the structure function exponents do not grow linearly with
the order of the statistical moments, meaning that the underlying velocity field is not exactly
self-similar, but rather a multifractal [1].

In this setting, the fractional Gaussian field of exponent H = 1/3 can be seen as the simplest
model of a turbulent velocity field, with statistics given by Eq. (1.1). These mathematical
objects, introduced by Kolmogorov (in the framework we henceforth refer to as K41) and
named by Mandelbrot and Van Ness [10, 11, 12], are uniquely characterized by the Hölder
exponent H, which describes their local regularity, coinciding with the behavior of Brownian
motion for H = 1/2, while being rougher than that for H < 1/2 and smoother for H > 1/2.
Nevertheless, being Gaussian and of mean zero, all of the odd order increment moments of
fractional Gaussian fields vanish, in contrast with the phenomenology of turbulence, where
strong skewness has been observed in the statistical distribution of velocity increments, and
where an important exact result on the third order structure function has been obtained, given
by E(δ`ui)

3 = −4
5ε`, with ε being the mean energy dissipation rate [1, 13]. This discrepancy

has lead to several proposals for synthetic random fields with a local regularity prescribed
either by Eq. (1.1) or by its intermittent extensions [14, 15, 16, 17].

Nevertheless, these models are static, and do not address the fundamental dynamics of the
formation of small scales from the random advection of large scale flows, established by the
external forcing. Some success in the heuristics of turbulent statistics from a dynamical
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description has been obtained in the framework of shell models [18, 19, 20], which are systems
of nonlinear differential equations for the variables uk, called shells, inspired by the Navier-
Stokes equations in Fourier space. Each shell has a characteristic wavelength k and interacts
only with its closest neighbors in a discretized, often logarithmic, k-space, as a way to model
the local transport of energy in Fourier space observed in turbulence. With constraints such
as energy and helicity conservation, and a with large scale forcing (i.e. a forcing concentrated
around shells of wavelength k0, where k0 is small), a scaling behavior very similar to that of
Navier-Stokes is observed, albeit only in a numerical context.

The present work addresses the modeling of self-similar random velocity fields in a dynamical
framework, building upon the results of [21], in which a nonlinear partial differential equation
(PDE) for a complex one-dimensional velocity field was introduced. The stationary solution of
this PDE, when subject to a random force on the large scales, is multifractal and fractional, as
controlled respectively by the intermittency parameter γ and by the Hölder parameter H, and
as a step to its construction, a linear PDE whose stationary state is a fractional Gaussian field
of parameter H is presented as well. Small scales are built dynamically by an homogeneous
operator of degree 0 [22, 23, 24], which has been identified in the phenomenon of concentration
of internal waves around geometrical attractors in stably stratified flows [25, 26, 27, 28], and
whose discretized version has been used to describe a linear cascade of energy in the context
of shell models [29].

For the linear PDE introduced in [21], consider a complex velocity field uH,ν(t, x), defined on
x ∈ R and characterized by a positive kinematic viscosity ν and a Hölder exponent H ∈]0, 1[.
This velocity field is governed by

∂tuH,ν(t, x) = PHLP−1H uH,ν(t, x) + ν∂2xuH,ν(t, x) + f(t, x) , (1.2)

where temporal and spatial derivatives are denoted respectively by ∂t and ∂x. A viscous
dissipation term, proportional to the viscosity ν and an external large scale force f are present.
The operator L on the right-hand side of Eq. (1.2) is identified with the homogeneous operator
of degree 0 described in [22, 23, 24] and its action on a general velocity field u(t, x) is defined
as

Lu(t, x) ≡ 2iπcxu(t, x) , (1.3)

where c is a constant. This term is responsible for the transport of energy from the large
scale L to the small scales, where viscous dissipation acts strongly in regularizing the velocity
field. It can be seen that the dynamics induced by L is a linear transport in Fourier space,
towards increasing wavelengths in the case of c > 0. In this paper, we always consider c to be
positive, but the case of c < 0 is equivalent, with the energy cascade flowing to large negative
wavelengths. Ultimately, the operator PH , responsible for the local regularity of order H of
the stationary state solution, is defined by

PHu(t, x) =

∫
R
e2πikx

1

|k|H+1/2
1/L

û(t, k) dk , (1.4)

where |k|1/L is a regularization of the norm |k| on small wavelengths, whose exact description
is not crucial, and û represents a Fourier transform of u, with the chosen definition

F [u](t, k) ≡ û(t, k) =

∫
R
e−2iπkxu(t, x) dx . (1.5)
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The combined action of L in generating a delta-correlated velocity field and of PH in building
power-law correlations from this delta-correlated field lead to the formation of a stationary
state which resembles a fractional Gaussian field, as explained in [21].

The forcing contribution of Eq. (1.2) is taken to be a complex Gaussian random field of mean
zero and covariance

E[f(t, x)f∗(t′, y)] = χ(t− t′)Cf (x− y) , (1.6)

where ∗ represents complex conjugation. Moreover, the real and imaginary components of
f are independent, meaning that E [f(t, x)f(t′, y)] = 0. χ and Cf are even functions of
their arguments, representing the correlations in time and in space of the external force,
respectively. These functions have finite characteristic scales, a length L for Cf and a time
T for χ, beyond which they rapidly vanish. The scale L is furthermore identified in the
turbulence phenomenology as the integral length scale, at which energy is injected in the
flow.

The case of white in time forcing (that is, χ(t) is a Dirac delta function) has been considered
in [21] and is revisited in this work, where we investigate the properties in time and in space of
the solution uH,ν . Additionally, we examine the case of a finite correlation time T and establish
a connection with the previous results in the limit T → 0. We choose the initial condition
uH,ν(0, x) = 0, and, for the correlation functions, we specify χ(t) = e−|t|/T /2T and Cf (x) =

e−x
2/2L2

as particular cases which have been applied to the numerical simulations.

This paper is organized as follows. In Sec. 2, we discuss the statistical properties in space and
in time of the solution of Eq. (1.2) driven by a delta-correlated external force, with analytical
results and numerical simulations. In Sec. 3, these statistical properties are revisited for a
force of finite correlation time, with numerical simulations and analytical results. Concluding
remarks and future perspectives are drawn in Sec. 4.

2 Dynamical fractional Gaussian fields

In this section we discuss the statistical properties of the stationary solution of Eq. (1.2) under
delta-correlated forcing in time. We begin with recalling the spatial statistics that were first
analyzed in [21], and we then introduce statistical properties in time as well. This is also an
opportunity to present the details of our numerical simulations and directly compare them
with the analytical results.

2.1 Statistical properties for a delta-correlated in time forcing
term

2.1.1 Spatial statistics

As discussed in [21], the solution of Eq. (1.2), uH,ν , reaches a statistically stationary state
of finite variance even for vanishing viscosity, and spatial slices of this stationary solution
resemble fractional Gaussian fields. At zero viscosity, the system only reaches this exactly
self-similar description at infinite time, since the external energy injected at scale L by the
forcing term is linearly transported in k-space to higher frequencies, and an infinite amount
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of time is necessary for arbitrarily small wavelengths to be manifest. In the presence of
a finite viscosity, though, wavelengths higher than some typical dissipative wavelength are
strongly suppressed, and the system reaches its stationary state in a finite time. Nevertheless,
since both the solutions at finite or zero viscosity are statistically stationary, their statistical
features are very similar, differing only in the dissipative range of wavelengths, where viscosity
regularizes the rough local behavior of the solution. Therefore, we discuss the solution of the
inviscid fractional equation

∂tuH,0(t, x) = PHLP−1H uH,0(t, x) + f(t, x) , (2.1)

with initial condition uH,0(t = 0, x) = 0 and f a large scale Gaussian forcing, smooth in space,
exactly as in Eq. (1.6). We first consider the delta-correlated case, χ(t) = δ(t). This equation
admits an analytical solution in its Fourier space formulation,

ûH,0(t, k) = |k|−H−
1
2

1/L

∫ t

0
|k − cs|H+ 1

2

1/L f̂(t− s, k − cs)ds , (2.2)

for any forcing scheme. The small wavelength regularization might be defined as |k|1/L =

(k2 + L−2)1/2, a choice which is important in the numerical simulations. The solution in
Eq. (2.2) is Gaussian since it is defined as a linear operation on the forcing f , which is itself
chosen Gaussian. Hence, to characterize the solution from a statistical point of view, it suffices
to investigate second order observables, namely the power spectrum and the structure function,
which elucidate the nature of the energy cascade and of the local regularity of the velocity
field.

In its stationary state, obtained as the limit of t → ∞, Eq. (2.2) is a rough velocity field,
correlated over the large scale L. Its local regularity can be described by the power-law decay
of the power spectrum density, defined as

ĈH,0(t, k) = F E[uH,0(t, x+ `)u∗H,0(t, x)](t, k) , (2.3)

where the Fourier transform is performed over the separation variable `, since the correlation
function in this equation is homogeneous, as can be seen from the analytical solution. The
exact expression for the power spectrum of uH,0 is

ĈH,0(t, k) = |k|−(2H+1)
1/L

∫ t

0
|k − cs|2H+1

1/L Ĉf (k − cs)ds , (2.4)

which in the limit of large wavelengths, in the stationary state, becomes

lim
t→∞

ĈH,0(t, k) ∼
k→∞

bH |k|−(2H+1) (2.5)

with a constant given by

bH =
1

c

∫
R
|s|2H+1

1/L Ĉf (s)ds , (2.6)

an expression which can be explicitly evaluated in terms of special functions in the case
of a Gaussian correlation function Ĉf , and can also be easily numerically integrated in a
general setting. Eq. (2.5) illustrates the direct energy cascade, in which higher wavelengths
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are progressively excited, linearly in time. As previously stated, the variance of the solution
uH,0 is finite, even with a vanishing viscosity. It is given by

E|uH,0|2 = lim
t→∞

∫
R
ĈH,0(t, k) dk , (2.7)

and its finiteness is a consequence of the integrability of the power spectrum.

The local regularity of the solution is also measured by the small scale asymptotic statistics
of the increments δ`uH,0(t, x), defined as

δ`uH,0(t, x) = uH,0(t, x+ `)− uH,0(t, x) . (2.8)

The increment variance, or second order structure function, is asymptotically given by the
power-law relation

lim
t→∞

E|δ`uH,0|2 ∼
`→0+

cH `
2H , (2.9)

where the constant is

cH =
(2π)2H+1

2c sin(πH)Γ(1 + 2H)

∫
R
|s|2H+1

1/L Ĉf (s) ds (2.10)

and Γ represents the Gamma function. Higher order expectations of the increments, E(δ`uH,0)
q,

can be obtained directly from simple combinatorial arguments, since the increments are
Gaussian as well. Furthermore, q-order expectation values display an exponent linear in H,
and the expectation value themselves vanish for all odd q, as a consequence of the vanishing
mean of the velocity field.

This representation of a turbulent velocity field is thus compatible with the portrait of Eq. (1.1).
With the Hölder parameter chosen as H = 1/3, the power-law decay in Eq. (2.5) has an
exponent −5/3 and the increment variance has an exponent 2/3, two values which are widely
regarded as universal in the statistical description of turbulence, and which are given by
the K41 framework. Nonetheless, we remark that the multifractal description of turbulence
induces a small deviation to the value 1/3, which requires the introduction of an intermittency
parameter. The nonlinear equation addressed in [21], where the intermittency parameter
governs the intensity of the nonlinearity, induces non-Gaussian statistics on its solution, which
capture both the multifractal behavior and the nontrivial nature of the odd order structure
functions of real turbulent velocity fields.

2.1.2 Temporal statistics

We now turn to the statistical properties in time of the inviscid solution. We observe that
the PH operator does not significantly influence the temporal behavior of uH,0, and that its
regularity in time is solely governed by the shape of the forcing correlation in time. The
regularity in time is again investigated through increments δτuH,0(t, x), analogously defined
as

δτuH,0(t, x) = uH,0(t+ τ, x)− uH,0(t, x) . (2.11)

It is possible to write the following expression for the temporal second-order structure func-
tion,

lim
t→∞

E|δτuH,0(t, x)|2 = lim
t→∞

2E|uH,0(t, x)|2 − 2RE[uH,0(t+ τ, x)u∗H,0(t, x)] , (2.12)
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in terms of the variance and the real part of the two-point correlation-function in time, equal
to

lim
t→∞

E[uH,0(t+ τ, x)u∗H,0(t, x)] =
1

c

∫
k∈R

e2πicτx|k|−H−1/21/L |k + cτ |−H−1/21/L

×
∫ k

s=−∞
|s|2H+1

1/L Ĉf (s) dsdk .

(2.13)

This equation shows an explicit oscillatory behavior with the position x, which is inherited by
the structure function. To see the behavior of the temporal second-order structure function
at small scales τ → 0, we perform a Taylor expansion of the integrand and get

lim
t→∞

E|δτuH,0(t, x)|2 = d1,H |τ |+ d2,H(x) τ2 +O(τ3) , (2.14)

where the constants are given by

d1,H = (2H + 1)

∫
k∈R

k|k|−2H−31/L

∫ k

s=−∞
|s|2H+1

1/L Ĉf (s) dsdk , and

d2,H(x) = 4cπ2x2
∫
k∈R
|k|−2H−11/L

∫ k

s=−∞
|s|2H+1

1/L Ĉf (s) dsdk

+
c

4
(2H + 1)

∫
k∈R

[
2/L2 − (2H + 3)k2

]
|k|−2H−51/L

∫ k

s=−∞
|s|2H+1

1/L Ĉf (s) dsdk .

(2.15)

Eq. (2.14) says that the spatio-temporal field uH,0(t, x) has the same local regularity in time
as a Brownian motion, as given by the linear term in the expansion. Remark that, contrary to
its spatial behavior, where it has been pinpointed a regularity similar to a fractional Brownian
motion of parameter H (Eq. 2.9), the regularity in time is independent of H. It can be observed
that the integrals in Eqs. (2.14) and (2.15) are finite given that the function Ĉf decays fast
enough. A Gaussian decay for instance, which is employed in the numerical simulations, is
sufficient. Furthermore, d1,H is positive, since it can be written as an integral over positive
terms only, and the first contribution of d2,H is already expressed as an integral of positive
terms. The second term of d2,H , which does not depend on x, can be shown to be positive for
the specific regularization we employ through an integration by parts, even though its exact
value is hard to obtain. We reinforce that the d1,H term is independent of x and of c, which
play a role only in the second order contribution.

An important quantity in the temporal dynamics of uH,0 is its integral correlation time, which
is usually defined as a time integral of the two-point correlation function in time (Eq. 2.13),
normalized by the variance. Nevertheless, it can be observed that Eq. (2.13) is not integrable
at τ → ∞ for H < 1/2. For this reason, in order to obtain a finite value of the integral
correlation time, we propose an estimation based on the Taylor expansion of the second-order
structure function in time. In the limit of large time intervals, Eq. (2.14) is no longer valid
and the temporal second-order structure function evolves to the homogeneous value of twice
the variance of uH,0, as can be seen in the exact expression, Eq. (2.12). We then define the
position-dependent correlation time TH(x) as the value in which the quadratic expansion
equals the asymptotic value at large times. The positive solution of this quadratic equation
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is

TH(x) =
−d1,H +

√
d21,H + 8d2,H(x)E|uH,0|2

2d2,H(x)
, (2.16)

which elicits that the asymptotic behavior at large x of TH(x) is a decay inversely proportional
to x. Since all terms in the above equation are finite and positive, TH(x) is positive for all
x. Furthermore, a numerical evaluation of TH(0) confirms the expectation from dimensional
analysis that this quantity is approximately inversely proportional to the integral length scale
L.

These results show that the statistical properties in space at fixed time of the fractional
linear cascade model, Eq. (1.2), reproduce well the fractional Gaussian field. On the other
hand, statistical properties in time are inhomogeneous, in contrast with the phenomenology
of stochastic Navier-Stokes turbulence, in which homogeneous statistics is observed both for
time and spatial increments. In turbulent velocity fields, the Eulerian structure function in
time (that is, increments in time measured at some fixed point in space) show the same local
regularity as their spatial equivalent, with a power-law structure function approximately given
by (for the second order) E(δτu)2 ∝ τ2/3 in the limit of vanishing viscosity, for a small time
interval τ . This effect, which has been measured in direct numerical simulations [30, 31],
can be phenomenologically explained with the sweeping effect [32], the random advection of
the small scales by the large scale motion of the flow, and reproduced with spatio-temporal
random fields [33, 34].

We briefly mention that the aforementioned properties hold as well for the viscous fractional
equation, Eq. (1.2), and can be derived from its analytical solution [21]. With a finite viscosity,
the solution develops a finite inertial range where the behavior described by the spatial statistics
of Eqs. (2.5) and (2.9) is valid, but which is interrupted by the dissipative length introduced by
the viscosity, of the order of (ν/c)1/3. With the action of dissipation, the system furthermore
reaches its stationary state in a finite time of the order of 1/(c4/3ν1/3). One other consequence
of the dissipative term is regularizing the solution at small spatial scales, creating a dissipative
range in which the second order structure function in space is proportional to `2, as expected
for a smooth function. This regularization in space however is not transmitted to the time
dependence, which remains with the same roughness as a Brownian motion.

2.2 Numerical results

Numerical simulations of Eq. (1.2) have been performed with a pseudo-spectral method in space
and a first order predictor-corrector scheme for the time evolution, as described in Ref. [21],
where the same numerical method has been applied to the study of the equivalent nonlinear
equation. An important difference in the method is that a spatial truncation of the force is
applied in [21], through a smooth bump function which vanishes at the boundaries of the
domain, ±Ltot/2. This truncation is fundamental in the nonlinear setting, since the simulation
domain is finite and thus the operator L is discontinuous at these boundaries. The interaction
of the nonlinearities with this discontinuous operator leads to a numerical divergence which
is avoided by the truncation. The simulations performed in this work do not employ such
truncation, since the linear equation is much more well behaved numerically. An advantage of
this approach, without the truncation, is that the velocity field is homogeneous, as expected
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from the theory, and entire time slices of it can be used for the evaluation of statistical
observables, easily generating large statistical ensembles. The effects of the discontinuous
operator are small, but still noticeable, and will be discussed in the next paragraphs.

The chosen parameters for our simulations are the following: The spatial dimension, with a
total length of Ltot = 1.0 is composed of N = 212 points, with a spacing of ∆x = N/Ltot, which
leads to a maximum wavelength of kmax = N/2Ltot. For the external force, the functional
form Cf (x) = exp(−x2/2L2) was chosen, with three different values of the correlation length,
L = (Ltot/8, Ltot/16, Ltot/32). Three values were chosen for the Hölder exponent as well,
H = (1/3, 1/2, 2/3), where H = 1/3 is adopted for most figures because of its prominence in
the statistics of turbulence. H = 1/2 represents a standard Brownian motion and H = 2/3
is a random field which is more regular than Brownian motion. In order to show the action
of the dissipation in regularizing small scales, the following values of viscosity are chosen:
ν = (2×10−7, 3×10−8, 2×10−9, 2×10−10). We set the initial condition to uH,ν(0, x) = 0 and
the simulation first runs for a transient time large enough for the system to reach its statistically
stationary state. This transient time is estimated as Tstat = 212, since the transport rate can
be set to c = 1.0 without loss of generality. Since the L operator induces a linear transport in
Fourier space, this transient time is linearly proportional to the dissipative wavelength of the
system and the chosen value is enough for it to reach a statistically stationary state. After this
transient regime, the simulation runs for more Ttot = 212 units of time, and during this stage
we store the data for later analysis as several velocity profiles in space at different instants
in time and as profiles in time at different positions. The time steps were taken as ∆t = ∆x,
as in [21], a value which is seen to produce well-resolved velocity fields, since the PDE we
investigate is linear with a very small viscosity. For larger values of the viscosity, a choice of
∆t ∝ (∆x)2 would have been necessary, as expected from the stability analysis of the heat
equation (the dissipative term) [35].

In Fig. 1, the real part of the spatial profile of the velocity field uH,ν at a fixed time is shown
for two different values of the viscosity, ν = 2× 10−7 (a) and ν = 2× 10−10 (b), for all three
values of H, shown with different colors. The same random instance of the external forcing
was applied to all three velocity fields for each fixed viscosity, which explains the fact that all
three velocity fields at either (a) or (b) look very similar, since Eq. (1.2) is linear. Nevertheless,
the curves display different roughness based on their values of the parameter H, with the blue
curve (H = 1/3) being the one with highest fluctuations, while the red one (H = 2/3) is the
smoothest. The velocity fields look homogeneous over the whole system, since the forcing is
not truncated, and a discontinuity at the boundary can be noticed, due to the discontinuity
in the L operator. Furthermore, the effect of the large difference in viscosity between (a)
and (b) is noticeable in the fact that Fig. 1(b) develops more roughness and smaller scales
than at (a). Yet, both velocity fields share the same large scale correlation length L = Ltot/8,
noticeable in the large scale behavior of all curves. The chosen value for L as a few fractions
of Ltot allows for the easier visualization of the spatial correlations in uH,ν , but this value
must be small enough such that the correlation function Cf (x) is well resolved and sufficiently
small at the boundaries of the system, otherwise an extra numerical discontinuity would be
introduced. We have only shown the real part of the velocity fields since the imaginary part
looks similar.

The second order statistical properties in space of the velocity field uH,ν(t, x) are depicted in
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Figure 1: Spatial profile of the real part of the numerical solution of Eq. (1.2) at a fixed
time t in the statistically stationary regime for different values of the parameter H (see
legend), for N = 212, L = Ltot/8 and c = 1.0. In (a), the viscosity is ν = 2× 10−7 and
in (b) it is ν = 2× 10−10. The same random space-time realization of the forcing was
used for the three values of H for each value of viscosity.

Fig. 2, namely the power spectrum (a) and the second order structure function in space (b).
The estimation of the power spectrum is obtained from the periodogram, as the square norm
of the discrete Fourier transform of the numerical solution divided by N , averaged over several
independent instants in time, obtained from a single long realization of Eq. (1.2). In (a), the
periodogram is shown for different values of the viscosity, ν = (2×10−7, 3×10−8, 2×10−9, 2×
10−10), with different colors, along with the analytical expression for the power spectrum of
the inviscid velocity field (Eq. 2.4), in a black dashed curve. It can be observed that the
numerical curves exactly follow the analytical result up to some maximum wavelength where
the numerical power spectrum rapidly decays. Furthermore, this maximum wavelength grows
as the viscosity is reduced, and for the smallest value of viscosity a large inertial range with a
power-law decay of k−(2H+1) can be observed. We mention that, since the viscous fractional
equation also possesses an explicit analytical solution, we can also plot its analytical power
spectrum, and observe that it matches the numerical curve not only on the energy containing
and inertial range, but also on the dissipative range (data not shown), up to a new maximum
wavelength where boundary effects in the simulations can be noticed. These boundary effects
can be seen in Fig. 2(a) as a change of slope in the dissipative range. This is a consequence
of the discontinuity of the operator L due to the finite size of the system in the numerical
simulations, but we remark that it only differs from the analytical results in the far dissipative
range. The inset of this figure shows the negative part of the spectrum, which is not symmetric
in k, a consequence of the complex nature of the velocity field uH,ν . The negative part of the
spectrum is dominated solely by the forcing correlation function and decays fast, as can be seen
in the numerical or in the analytical result. Nevertheless, the effect of the discontinuity can be
more clearly noticed as the accumulation of energy at negative frequencies, as seen in the inset.
This deviation from the analytical results leads to a numerical variance which is slightly bigger
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Figure 2: Numerical estimations of the power spectrum (a) and second order structure
function in space (b) of the solution uH,ν with the same parameters as in Fig. 1 but
only one value of the Hölder exponent, H = 1/3. Different colors represent different
viscosities, following the legend. The dashed black lines show the asymptotic analytical
expressions, for the inviscid equation, of the power spectrum (Eq. 2.4) in (a) and of
the increment variance (Eq. 2.9) in (b), together with their corresponding power-law
dependence indicated. The inset shows the negative part of the power spectrum and its
analytical result.

than the analytical result, since the variance is an integral of the power spectrum (Eq. 2.7),
this difference is however numerically quite small. Additionally, the inverse cascade due to the
discontinuity of L has been analogously observed in Ref. [23], where this operator is replaced
by a periodic version, as 2iπcx → iLtot sin(2πcx/Ltot), but the regions of negative slope in
the sine produce a strong accumulation of energy at the boundaries. For these reasons, the
original operator is directly employed in our simulations without periodization.

In Fig. 2(b) the second order structure function in space is shown, as a function of the
separation distance `, rescaled by the integral length scale L, in log-log scale. To estimate this
quantity, we average the square norm of the increment, δ`uH,ν(t, x) = uH,ν(t, x+`)−uH,ν(t, x),
over independent instants in time and in space as well. This velocity field is homogeneous,
hence a large number of samples can be obtained. An inertial range with an `2H power law
behavior, which agrees with the analytical predictions at vanishing viscosity (black dashed
line) can be noticed, although it is smaller than the inertial range for the power spectrum. At
small separation, the dissipative range manifests as an `2 behavior in the structure function,
signaling a smooth velocity field. It can be observed as well that the transition from the inertial
range to the dissipative range happens at smaller scales for the smallest values of viscosity. At
large separations, all curves converge to twice the value of the variance of the velocity field,
where the small difference in the variance of each curve is due to dissipation.

We now turn to a discussion of the statistical properties in time of uH,ν when driven by a
delta-correlated force. In Fig. 3, the profile in time of the real part of the velocity field is
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Figure 3: Profile in time of the real part of the numerical solution at its stationary
state at two different positions, with the same parameters as in the previous figures and
H = 1/3. In (a), the evolution in time is shown at the origin of the system, and in (b),
at x = 0.1Ltot. Each plot shows two values of viscosity, a large one and a small one.
The plots have been rescaled in terms of the position-dependent integral correlation
time of the velocity field, as given by the estimation in Eq. (2.16), and show equivalent
intervals after this rescaling. The inset of (b) shows the profile in time at x = 0.1Ltot

but for the same total time as in (a), in the units of the simulation.

shown, at two different positions, x = 0 (a) and x = Ltot/10 (b), with two different values
of viscosity in each plot, as indicated in the legend. The regularity in time of this random
process is that of a Brownian motion, independently of the spatial Hölder parameter, as shown
by Eq. (2.14). For this reason, only H = 1/3 is shown, with a similar behavior observed in
other cases. We also observe that viscous dissipation does not affect the small time scales,
since both curves at each plot are roughly indistinguishable in a statistical sense, showing the
same correlation time, amplitude of fluctuations and level of roughness. The horizontal axes
in (a) and (b) have been rescaled in terms of the local integral correlation time, according to
Eq. (2.16), and it can be seen that the large scale patterns are similar in both figures. Since
TH(x) at (b) is a few times smaller than TH(0), we also show, in the inset of (b), the profile
in time of the numerical solution for the same total time as in (a), in units of the simulation.
In this inset, many multiples of the integral time behavior can be noticed. This reinforces the
relevance of a position-dependent integral time scale, since the large-scale behavior in (a) and
the inset of (b) show strong qualitative differences.

The nonhomogeneities of the velocity profile in time are inherited by the temporal second
order structure function, which is shown in Fig. 4 for two different positions, the same as in
the previous figure. In Fig. 4(a), the analytical prediction at small time separations given by
Eq. (2.14) is plotted in a black dashed curve, with the coefficients d1,H and d2,H evaluated
numerically. It can be seen that, at small times, the analytical curve matches all numerical
observations with different values of viscosity, confirming the claim that the local regularity
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Figure 4: Estimations of the second order structure function in time of uH,ν at its
stationary state for different values of viscosity ν (see legend). In (a), the structure
function is measured at the origin of the system and in (b) at x = 0.1Ltot. Black dashed
lines indicate asymptotic analytical results, given by Eq. (2.14), and each plot is rescaled
by its respective position-dependent integral correlation time TH(x). In the inset, the
second order structure function in time, at the origin, for ν = 2× 10−10 and different
forcing correlation lengths L is shown, with the following values: Ltot/8 (blue), Ltot/16
(green) and Ltot/32) (red). The inset has not been rescaled by TH(0), since it depends
on L, but by Tstat, which depends only on the viscosity.

in time is determined only by the correlations in time of the force and not by viscosity. The
analytical curve, furthermore, has a slope of one for small times, corresponding to the local
regularity of a Brownian motion. The concavity of the black curve, nonetheless, is positive,
since it was obtained from a quadratic approximation, and to capture the negative concavity
of the numerical curves a higher order expansion in τ would be required. The inset of (a)
shows the same observable for the smallest viscosity and three different values of L, along with
the analytical prediction which does not depend on ν or L. The correlation length influences
the value of the variance, leading thus to different correlation times, as given by Eq. (2.16).
Moreover, the reasoning behind the approximation taken to obtain Eq. (2.16) is visible in the
inset, where we observe a rapid transition from the linear behavior to the large separation
constant behavior. In Fig. 4(b), the same analytical prediction is seen (Eq. 2.14), calculated at
x = 0.1Ltot. The numerical curves are seen to agree on the positive concavity of the analytical
approximation, for small values of τ . Just as in Fig. 3, a different rescaling is used at (a) and
(b), corresponding to each local integral time scale, calculated numerically. In the inset, the
chosen rescaling is Tstat, which does not depend on L, but only on the viscosity, unlike the
correlation time TH(0) which depends on L but not on the viscosity.
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3 Correlated in time forcing

The natural limit to contrast the results of a delta-correlated forcing would be that of a frozen
force, a random force correlated in space on a length L but constant in time. Nevertheless,
it can be shown that the variance of uH,0 at the origin, that is, limt→∞ E|uH,0(t, x = 0)|2,
diverges under a frozen force if the Hölder parameter is smaller than 1/2. This means the
dynamical evolution of Eq. (1.2) is not able to regularize a constant forcing scheme, producing
a state of infinite variance at the origin which is unphysical. As we have said, the range
H < 1/2 is of great interest due to its connection with the phenomenology of turbulence, and
for this reason we concentrate in this section on a forcing scheme with finite correlation time
T . We choose the correlation function in time as

χ(t) =
1

2T
e−|t|/T , (3.1)

such that the results of the previous section can be reobtained in the limit of T → 0, in which
the above correlation function is reduced to a Dirac delta. In the next section, we revisit
analytical and numerical results of Eq. (1.2), now driven by an exponentially correlated in
time forcing. As will be discussed, the statistical homogeneity of the spatial observables is
broken, a strong qualitative difference in comparison to the delta-correlated forcing case. We
discuss the time statistics as well, which were already not homogeneous under a white-in-time
forcing.

3.1 Numerical results

Under a correlated forcing in time, a numerical scheme for deterministic differential equations
must be employed to obtain uH,ν , since the external force is now continuous in time and space.
For this reason, we generate the forcing with a numerical scheme for stochastic differential
equations, and for the time evolution of the system, given the forcing, we use a fourth-order
Runge-Kutta scheme. The stochastic scheme for the forcing is the same as in the previous
section, a first-order predictor-corrector algorithm [36]. A forcing with the specific correlation
profile of Eq. (1.6) is provided by an Ornstein-Uhlenbeck process, defined by the solution of
the following dynamics:

df(t, x) = − 1

T
f(t, x)dt+

1

T
dη(t, x) . (3.2)

To completely specify the random force dη, we furthermore say it is of zero mean, smooth
in space and delta-correlated in time, with independent real and imaginary parts. These
conditions can be stated precisely in terms of the integration against a smooth test function
h(t) as

E
∫
h(t)dη(t, x) = 0, (3.3)

E
∫
h(t1)h(t2)dη(t1, x)dη(t2, y) = 0 and (3.4)

E
∫
h(t1)h(t2)dη(t1, x)dη∗(t2, y) = Cf (x− y)

∫
h2(t)dt, (3.5)
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Figure 5: Spatial profile of the real part of the numerical solution of the fractional
equation (Eq. 1.2) in the statistically stationary state, under an exponentially correlated
in time forcing (Eq. 3.2), for different correlation times. The parameters in the figures
are N = 212, L = Ltot/8, c = 1.0 and ν = 2× 10−10. Each figure shows three different
values of the H parameter for the same space-time realization of the force, these values
are H = 1/3 (blue), H = 1/2 (green) and H = 2/3 (red). Each figure corresponds to
a different forcing correlation time, respectively, T = 0.5 (a), T = 2.0 (b) and T = 5.0
(c).

where Cf (x) is chosen the same as in Eq. (1.6). The drift and diffusion terms entering in Eq.
3.2 have been chosen such that the correlation function of the solution, f , in its statistically
stationary state, is

E[f(t+ τ, x)f∗(t, y)] =
1

2T
e−|τ |/TCf (x− y) , (3.6)

as stated before. The correlations in space of the force are obtained from a circulant embedding
algorithm, that is, the convolution of independent complex variables (of mean zero and variance√
dx/2 for their real and imaginary parts) with a Gaussian kernel, which produces a random

series with Gaussian autocorrelation function. To begin the simulations, the force must be at
its stationary state, a process that takes a time of the order of T . After this first transient
phase, the force is then used in the numerical solution of Eq. (1.2) in the same manner a
deterministic external contribution would be. Despite the different algorithm, at this stage
the simulation occurs as described in Sec. 2.2: There is a second transient phase determined
by the linear transport in Fourier space, which takes a time of the order of Tstat ∝ ν−1/3,
and after that a stationary phase, from which we collect random series in space and in time.
The parameters chosen for these numerical simulations are similar to the ones already used:
N = 212, Ltot = 1.0, L = Ltot/8, c = 1.0, ν = 2× 10−10 and ∆t = ∆x. The same three values
of the Hölder parameter were used, H = 1/3, H = 1/2 and H = 2/3, and for the forcing
correlation time the following values were chosen: T = (0.1, 0.2, 0.5, 2.0, 5.0, 10.0).

In Fig. 5, the spatial profile of some of these numerical simulations is shown at a fixed time, in
the stationary state. Analogously to Fig. 1, the same space-time realization of the forcing was
applied to three different values of the Hölder parameter, and a different roughness can be
observed for each curve. On the other hand, all of the profiles shown display the same value
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of viscosity, ν = 2 × 10−10, with each figure corresponding to a different forcing correlation
time, where in (a) it is the smallest, equal to T = 0.5, in (b) it is T = 2.0 and in (c), T = 5.0.
The velocity fields in (a) look homogeneous and similar to those shown in Fig. 1(b), while
in Fig. 5(b), as the correlation time grows, a tendency of accumulation at the center of the
domain can be noticed, an effect that is confirmed in (c), where the nonhomogeneity of the
system is clear and the correlation time is the largest.

To understand these observations, let us consider the spatio-temporal correlation of the solution
uH,0(t, x). After some calculations, we obtain

E
[
uH,0(t+ τ, x+ `)u∗H,0(t, x)

]
=

1

2T

∫ t+τ

s1=0

∫ t

s2=0
e2iπc[s1`+x(s1−s2)]D`(s1, s2)e−

|τ+s2−s1|
T ds1ds2,

(3.7)
where enters the symmetric quantity

D`(s1, s2) =

∫
k∈R

e2iπk`|k + cs1|−H−1/21/L |k + cs2|−H−1/21/L |k|2H+1
1/L Ĉf (k)dk

= D`(s2, s1).
(3.8)

Concerning the variance at large times, consider the expression provided in Eq. (3.7) for ` = 0
and τ = 0. Using the symmetry of the function D`, we get

lim
t→∞

E |uH,0(t, x)|2 =
1

2T

∫
(s1,s2)∈(R+)2

cos(2πcx(s1 − s2))D0(s1, s2)e
− |s2−s1|

T ds1ds2, (3.9)

which depends explicitly on the position x and is bounded by its value at the origin x = 0.
First, remark again that, for a frozen force, obtained by replacing e−|s1−s2|/T /2T → 1, this
expression diverges at x = 0 and H < 1/2. Going back to the correlated in time forcing (Eq.
3.9), we can see its finiteness for H > 0 while noticing that, along the diagonal s1 = s2, using
the expression of D` (Eq. 3.8) and the rapid decay of Ĉf (k), all integrals converge at large
arguments. This explains the observations made in Fig. 5.

The spatial statistics of this velocity field is shown in Fig. 6, for different correlation times
of the forcing. Similarly to Fig. 2(a), we begin displaying in Fig. 6(a) the periodogram. For
a direct comparison, we reproduce the white-in-time forcing case, indicated by T = 0.0 and
plotted with a dark purple curve. For small values of the correlation time, T = 0.1 and
T = 0.2, the curves can be hardly distinguished from the white-in-time case, both of them also
matching the analytical prediction of Eq. (2.4), in a black dashed line. As the correlation time
grows, the general shape of the curve is preserved, with an inertial range displaying power-law
decay with an exponent of −(2H + 1), but at significantly smaller values, due to the 1/T
prefactor in the time correlation of the force. In the inset, the power spectrum at negative
frequencies is shown for the same parameters, and the agreement with the original simulation
is observed for small correlation times, while smaller values with the same shape are observed
for larger correlation times.

As we have seen, in particular while considering the variance in presence of a forcing term
which is correlated in time (Eq. 3.9), the solution is not statistically homogeneous. This is
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Figure 6: Estimation of the spatial statistics of the fractional equation for different
correlation times of the forcing, in comparison to a solution with delta-correlated forcing
(in purple, indicated by T = 0 in the legend). The parameters H = 1/3 and L = Ltot/8
are used and all correlation times are indicated in the legend. In (a), the power spectrum
shown is estimated from the periodogram, as E|ûH,ν |2/N , and the black dashed line
corresponds to the analytical expression of the power spectrum in the inviscid and
white-in-time case (Eq. 2.4). The inset shows the corresponding negative frequencies of
the power spectrum, with the same analytical expression in a black dashed line. In (b),
the second order structure function, calculated with respect to the origin (see text) is
shown, along with the analytical prediction for the inviscid delta-correlated equation
(Eq. 2.9).

why we calculate the second order structure function in space of the nonhomogeneous velocity
fields with respect to the origin. That is, all velocity increments at scale ` are defined as

δ`uH,ν = uH,ν(t, `)− uH,ν(t, 0) , (3.10)

and averaged only over independent instants in time. Our results are displayed in Fig. 6(b).
Being calculated only with respect to the origin, the statistics available is much smaller and
the numerical curves are not as well resolved. Nevertheless, a tendency to follow the power-law
behavior with a 2H exponent is still observed, and even the variance of the system at the
origin, as measured by the large separation results, has a similar value to that of the T = 0
curve. For larger correlation times, this agreement is lost, since the horizontal asymptote is
E|uH,ν(t, `)|2 +E|uH,ν(t, 0)|2, which differs significantly from 2E|uH,ν(t, 0)|2, as already shown
in Eq. (3.9). An analytical expression for the increment variance can be obtained from Eq.
(3.7):

E|δ`uH,0|2 =
1

T

∫
(s1,s2)∈(R+)2

(
D0(s1, s2)−Re2iπcs1`D`(s1, s2)

)
e−|s1−s2|/Tds1ds2 . (3.11)

This expression is positive and real, as expected, and in the limit T → 0, the delta-correlated
result, Eq. (2.9), is recovered.
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Figure 7: Profile in time of the velocity field uH,ν at the origin (a) and at x = 0.1Ltot

(b), each rescaled by the local integral correlation time calculated for the white-in-time
forcing case in Eq. (2.16). Each figure shows two values of the correlation time: T = 0.1
(blue) and T = 10.0 (red). The inset of (b) shows the same velocity profile as in (b), for
a total time equal to the one of (a), in units of the simulation.

The statistical properties in time of Eq. (1.2) under correlated forcing in time are investigated
in the next two figures. For these observables, we remind that their statistics under delta-
correlated force was already nonhomogeneous, as shown in Eq. (2.14) and discussed in Figs. 3
and 4. An important difference, though, is that the solution uH,ν under correlated forcing
is continuous and differentiable in time as well as in space, as can be seen in Fig. 7, where a
profile in time is shown at different positions, the origin (a) and at x = 0.1Ltot (b). In each
figure, two values of the forcing correlation time are shown, T = 0.1 (blue) and T = 10.0 (red),
and it can be noticed that, for the small correlation time, the curve looks rough exactly as the
one in Fig. 3(a), its regularization in time happening only at very small scales, while the red
curve, with a larger correlation time, is noticeably smoother. Outside the origin, as shown in
Fig. 7(b), the horizontal axis has been rescaled by the corresponding integral time (Eq. 2.16),
and an equivalent interval as in (a) is shown. In the inset, a total time equal to the one in
(a), in units of the simulation, is shown, and many multiples of the integral time can be seen.
An important difference with the case of white-in-time forcing, though, is that the variance
is almost homogeneous when the correlation time is small, while it decays fast for larger T ,
reason for which the red curve has a smaller amplitude than the blue curve, as can be clearly
noticed in the inset.

The corresponding statistical properties in time are reported in Fig. 8, where we plot the
temporal second order structure function for different correlation times of the forcing and at
two different positions, the origin (a) and at x = 0.1Ltot (b). In (a), the black dashed curve,
corresponding to the small-time analytical result for the delta-correlated forcing (Eq. 2.14 with
x = 0) can be seen to match only the corresponding delta-correlated numerical simulation
(dark purple) at very small time intervals. All other curves, with a finite correlation time,
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Figure 8: Numerical estimation of the second order structure function in time of Eq. (1.2)
under correlated forcing in time. The colors follow the same pattern as in Fig. 6, where
the purple curve represents a delta-correlated simulation and yellow represents the
largest correlation time (T = 10.0). In (a), this structure function is evaluated at the
origin and in (b), at x = 0.1Ltot. Each horizontal axis has been rescaled according to
the local integral correlation time, as given by the estimate of Eq. (2.16) and the black
dashed curves are the same as in Fig. 4.

show a dissipative range in time, where this structure function is proportional to τ2 instead
of τ . This can be understood by looking at the derivatives of the correlation function in time
in the stationary state. Consider the Taylor expansion of Eq. (3.7) around τ , with ` = 0. The
first order contribution is proportional to

dE[uH,0(t+ τ, x)u∗H,0(t, x)]

dτ
=

1

2T

∫ t

s2=0
e2πicx(t+τ−s2)D0(t+ τ, s2)e

−|t−s2|/Tds2

+
1

2T 2

∫ t+τ

s1=0

∫ t

s2=0
e2πicx(s1−s2)D0(s1, s2)e

−|τ+s2−s1|/T τ + s2 − s1
|τ + s2 − s1|

ds1ds2 .

(3.12)

The first term in this equation vanishes in the limit t→∞ and the second term is identically
zero at τ = 0 because it is odd under the exchange of s1 and s2. Therefore, the contribu-
tion proportional to τ vanishes. Deriving Eq. (3.12) with respect to τ , we obtain a single
nonvanishing contribution in the stationary limit, equal to

lim
t→∞

d2E[uH,0(t+ τ, x)u∗H,0(t, x)]

dτ2

∣∣∣∣∣
τ=0

= − 1

2T 3

∫
(s1,s2)∈(R+)2

cos(2πcx(s1 − s2))

×D0(s1, s2)e
−|s1−s2|/Tds1ds2 ,

(3.13)

which is proportional to the variance, and is thus finite for any H > 0. Moreover, this
contribution is negative, since the autocorrelation function at τ must necessarily be smaller
than the variance. This confirms the numerical observation in Fig. 8 that the introduction of

19



a finite time correlation in the forcing induces a smooth behavior of the velocity field at small
time intervals.

This new dissipative range depends only on the correlation time and not on viscosity, but it
can still be seen that, for small values of T , there is an inertial range where the linear behavior
is recovered, in agreement with Eq. (2.14) at x = 0. Furthermore, we observe that the variance
of all of these solutions is approximately the same, as can be seen in the large time separation
end of the graph. Hence, at the origin the velocity field uH,ν retains a variance close to that
of the white-in-time scenario, as already observed in Fig. 6 for small correlation times.

In Fig. 8(b), the second order structure function in time is shown at the position x = 0.1Ltot.
Again, it can be noticed that, for small values of the correlation time, the darker curves
closely follow the behavior of the delta-correlated solution, but differ only at very small time
increments, where the finitely correlated solutions show smooth behavior, proportional to τ2,
while the white-in-time forcing solution resembles a Brownian motion in time, as given by
Eq. (2.14) at very small values of τ . For larger correlation times, the same general behavior is
observed, with a dissipative range at small time separations, oscillations with the same pattern
as those of the delta-correlated forcing, but significantly smaller values of the variance, as
given by the asymptotic values of these curves at large time. This is again a consequence of the
loss of homogeneity of the solution uH,ν as the correlation time of the force is increased.

4 Concluding remarks

We have investigated the statistical properties in space and in time of a linear dynamical model
of the turbulent energy cascade, introduced in Ref. [21]. This is a linear stochastic partial
differential equation with a smooth large-scale forcing in space and general correlation in
time. The spatial statistics under a white-in-time forcing were first investigated in [21], where
it is observed that the solution, at fixed times, is homogeneous and resembles a fractional
Gaussian field with Hölder parameter H, a stationary state which is reached even in the
absence of viscosity. Hence, with the specific choice of H = 1/3, the spatial profiles of the
solution offer a representation of the K41 framework of turbulence as the result of a stochastic
PDE. Nevertheless, the statistics in time under delta-correlated forcing, first investigated in
the present work (Sec. 2), are not homogeneous, and are not influenced by the regularity in
space, displaying the same local regularity in time as a Brownian process. At the origin of the
system, the correlation time of the solution is larger, but it rapidly decays as one moves away
from this point. One can contrast this picture with turbulent velocity fields in the Eulerian
setting, in which the same local roughness in time and in space is observed [30, 31].

The effects of a finitely correlated in time forcing were investigated in Sec. 3. For very small
correlation times T , many of the previous results for a delta-correlated in time force are
reproduced, but as T is increased, the solution becomes clearly nonhomogeneous, as can be
seen in its spatial profiles (Fig. 5). The local roughness of H is preserved for small spatial
scales, but these nonhomogeneous velocity fields are no longer a good portrait of turbulent
flows. Since the forcing is now smooth in space and time, the solution is smooth in time
as well, as shown by its second order structure functions, which display a dissipative range
(Figs. 6 and 8). This dissipative regime in time is again not influenced by viscous dissipation
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or by the Hölder exponent of the solution.

This simple cascade model allows for the construction of fractional Gaussian fields in a
dynamical setting, starting from a smooth force in space. In [21], a nonlinearity which induces
non-Gaussian statistics on this velocity field was investigated, but only for a delta-correlated
in time forcing. Therefore, the combined effects of nonlinearity and correlations in time of the
forcing in this model remain to be understood. In particular, we notice the contrast between
the model and hydrodynamic turbulence, in which correlations in time of the stirring do not
crucially change statistical properties of the solution.
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