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A phenomenological theory of the fluctuations of velocity occurring in a fully developed
homogeneous and isotropic turbulent flow is presented. The focus is made on the
fluctuations of the spatial (Eulerian) and temporal (Lagrangian) velocity increments.
The universal nature of the intermittency phenomenon as observed in experimental
measurements and numerical simulations is shown to be fully taken into account
by the multiscale picture proposed by the multifractal formalism, and its extensions
to the dissipative scales and to the Lagrangian framework. The article is devoted to
the presentation of these arguments and to their comparisons against empirical data.
In particular, explicit predictions of the statistics, such as probability density functions
and high order moments, of the velocity gradients and acceleration are derived. In the
Eulerian framework, at a given Reynolds number, they are shown to depend on a single
parameter function called the singularity spectrum and to a universal constant governing
the transition between the inertial and dissipative ranges. The Lagrangian singularity
spectrum compares well with its Eulerian counterpart by a transformation based on
incompressibility, homogeneity and isotropy and the remaining constant is shown to
be difficult to estimate on empirical data. It is finally underlined the limitations of
the increment to quantify accurately the singular nature of Lagrangian velocity. This is
confirmed using higher order increments unbiased by the presence of linear trends, as they
are observed on velocity along a trajectory.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons une théorie phénoménologique des fluctuations de vitesse dans un
écoulement turbulent pleinement développé isotrope et homogène. Nous mettons l’accent
sur les fluctuations des incréments spatiaux (Eulérien) et temporels (Lagrangien) de
vitesse. La nature universelle du phénomène d’intermittence observé sur les mesures
expérimentales et les simulations numériques est complètement pris en compte par
les arguments développés par le formalisme multifractal, et ses extensions aux échelles
dissipatives et au cadre Lagrangien. Cet article présente les prédictions de cette description
multifractale et les compare aux données empiriques. En particulier, des prédictions
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explicites sont obtenues pour des grandeurs statistiques, comme les fonctions de densité de
probabilité et les moments d’ordres supérieurs, des gradients de vitesse et de l’accélération.
Dans le cadre Eulérien, à un nombre de Reynolds donné, nous montrons que ces
prédictions ne dépendent que d’une fonction à paramètres, appelée spectre de singularités,
et d’une constante régissant la transition entre les régimes inertiels et dissipatifs. Le spectre
des singularités Lagrangien est relié à son homologue Eulérien par une transformation
basée sur la nature incompressible, homogène et isotrope de l’écoulement, alors que la
constante restante est difficile à estimer à partir des données. Nous montrons finalement
que l’incrément est inadapté à quantifier précisément la nature singulière de la vitesse
Lagrangienne. Cela est confirmé par l’utilisation d’incréments d’ordres supérieurs non
biaisés par la présence de comportements linéaires, comme nous l’observons sur la vitesse
le long d’une trajectoire.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

As a long-standing challenge in classical physics [1–9], fully developed turbulence is an archetypical non-linear and non-
local phenomenon. When a flow is stirred at a large-scale L, typically the mesh size of a grid in a wind tunnel or the
width of the blades in a von Karman washing machine, the input energy cascades towards the small scales without being
dissipated according to the classical picture of Richardson and Kolmogorov [1,2]. One of the most important objectives in
turbulence research is to understand the processes that lead to this very peculiar cascading structure of energy. As far as
we know, recent theoretical progress made in this long lasting field comes from the systematic analysis and description of
empirical (experimental and numerical) velocity data.

The first experimental measurements of turbulent velocity were performed in the Eulerian framework and focused on
the longitudinal velocity profile. In this context, the Taylor hypothesis allowed to interpret the time dependence of the
measurements obtained in a wind tunnel behind a grid or in an air jet as a spatial dependence [7]. These experiments gave
access to the longitudinal velocity increments, i.e.

δ�u(x) ≡ (
u(x + �) − u(x)

) · �

�
(1)

where u is the velocity vector and � a vector of norm �, and the respective structure functions are given by

Mn(�) = 〈|δ�u|n〉 (2)

For such flows, the Reynolds number defined as

Re = σ L

ν
(3)

where σ = √〈(δLu)2〉 is a characteristic velocity at the so-called integral length scale L and ν the kinematic viscosity,
can be considered as very large compared to unity. At these high Reynolds numbers, Kolmogorov showed, in a first seminal
article [2] using a dimensional analysis, that the second order structure function M2(�) behaves as a power law, i.e.

M2(�) = 〈
(δ�u)2〉 = σ 2

(
�

L

)2/3

= cK 〈ε〉2/3�2/3 (4)

where cK is the Kolmogorov constant of order unity [10,11] and 〈ε〉 the averaged dissipation that will be properly defined
latterly. Equivalently, the power spectrum, i.e. the Fourier transform of the velocity autocorrelation function, follows the
celebrated Kolmogorov law,

E(k) ∝ cK 〈ε〉2/3k−5/3 (5)

where the proportionality constant can be calculated [10,11]. As stated by Kolmogorov himself [2], the laws predicted
(Eqs. (4) and (5)) are only valid in a range of scales, called the inertial range ηK � � � L (or equivalently L−1 � k � η−1

K )

delimited by the Kolmogorov length scale ηK ∼ LR−3/4
e under which dissipative effects dominate the physics. These laws

have been successfully compared to empirical data [7]. If velocity fluctuations were Gaussian, these predictions could be eas-
ily generalized to higher order structure functions. As observed experimentally, the probability density functions (PDFs) of
velocity increments undergo a continuous shape deformation, starting from the integral length scale L at which statistics can
be considered as Gaussian, down to the dissipative scales where the PDF is highly non-Gaussian [12–14]. This phenomenon
is a manifestation of the intermittent nature of turbulence, as first underlined by Kolmogorov and Oboukhov [15,16].
We show in Fig. 1(a) the estimation of the PDFs of longitudinal velocity increments obtained in the giant wind tunnel of
Modane [17] at a high Taylor-based Reynolds number Rλ = 2500 (Eq. (26) provides a link between the large-scale Reynolds
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Fig. 1. (a) PDFs of signed longitudinal velocity increments in Modane data [17]. Represented scales (from top to bottom): ln(�/L) = −6.4137,
−5.6028,−4.6645,−3.6411,−2.7501,−1.8598,−0.8685,0.1226. All curves are arbitrarily vertically shifted for the sake of clarity and their variance is
set to unity. The solid curves correspond to our theoretical predictions (see text in Section 2.2.2 and Ref. [18]). (b) PDFs of Lagrangian temporal increments
from the ENS-Lyon experiment, for time lags (from bottom to top, symbols •) τ/T = 0.07,0.16,0.35,1 and from Cornell acceleration data (symbols ◦, from
Ref. [19]). Also, the curves are displayed with an arbitrary vertical shift for clarity, the variance is set to unity at any scales, and the original axis for the
acceleration PDF (◦) has been shrunk by a factor 4. Solid lines correspond to theoretical predictions (see Section 3.1.3 and Ref. [20]).

number Re and Rλ). The curves are arbitrarily shifted vertically for the sake of clarity. This continuous shape deforma-
tion of these PDFs motivated Castaing et al. to build a statistical description of these longitudinal velocity fluctuations [12].
Moreover, by a simple visual inspection, we can remark that the PDFs are not symmetric. This is related to the Skewness
phenomenon associated with the mean energy transfer of energy towards the small scales that takes place in the inertial
range. We will come back to this point latterly.

The first part of this article is devoted to review the predictions that can be made using both the so-called multifractal
formalism [7] and the propagator approach [12]. This description, that will be shown to depend only on a parameter
function D(h) and a universal constant R∗ (independent on the flow geometry and the Reynolds number), accurately
reproduces the non-Gaussian features formerly presented.

More recently, experimental [19–28] and numerical [20,24,25,29–31] data have revealed a similar phenomenon in the
Lagrangian framework (see recent review articles [32–34]). Lagrangian velocity is defined as the Eulerian velocity of a fluid
particle at the position X(t), initially at the position X(t0) via the following identity

v
(
X(t0), t

) = u
(
X(t), t

)
(6)

In this framework, the study of the Lagrangian velocity fluctuations focuses on the Lagrangian time increment defined as

δτ v(t) = v(t + τ ) − v(t) (7)

with v a component of the Lagrangian velocity vector v (Eq. (6)). A similar dimensional analysis à la Kolmogorov would give
a linear dependence of the second order structure function

M2(τ ) = 〈
(δτ v)2〉 = σ 2

(
τ

T

)
= cL

K 〈ε〉τ (8)

where T = L/σ is the integral time scale and cL
K the respective Lagrangian Kolmogorov constant [35,36]. This corresponds

to a Lagrangian power spectrum of the form

E(ω) ∝ cL
K 〈ε〉ω−2 (9)

Once again, these laws are valid only in the respective inertial range τηK � τ � T (or T −1 � ω � τ−1
ηK

). Unfortunately, these
laws cannot be easily generalized to higher order structure functions because of the fundamental non-Gaussian nature of
the velocity fluctuations. We show in Fig. 1(b) the estimation of the experimental velocity increments PDFs at various scales
obtained at ENS Lyon [24] and the acceleration PDF obtained at the university of Cornell [19]. Let us first remark that the
acceleration can be seen as a Lagrangian velocity increment at a scale τ much smaller than the Kolmogorov dissipative time
scale. Again we observe a continuous shape deformation from Gaussian statistics at large scale, to long-tail acceleration
statistics at vanishing scale. This is again a manifestation of the intermittency phenomenon.

We will show in this article that a similar statistical description can be developed in a Lagrangian context. The free
parameters are again the corresponding singularity spectrum and a constant, as in the Eulerian framework. The Lagrangian
singularity spectrum will be shown consistent with the prediction derived from its Eulerian counterpart using a transfor-
mation, presented latterly.

This article is devoted to the presentation of a phenomenological theory of the statistics of the Eulerian and Lagrangian
velocity increments, from the integral length scale L (or from the integral time scale T = L/σ ), down to the far dissipative
scales based on the so-called multifractal formalism [7]. In this approach, statistical properties in the inertial range are
assumed and compared to empirical data. This includes the classical K41 predictions “k−5/3” (Eq. (5)) and “ω−2” (Eq. (9)),
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Fig. 2. Behavior of the velocity increment flatness as a function of the scales in a normalized logarithmic representation. The universal constant entering in
the normalization is set to R∗ = 52. Different symbols represent different Reynolds numbers: Rλ = 140 (DNS by E. Lévêque [44]), Rλ = 208,463,703,929
(experimental helium jet [45]), Rλ = 380 (air jet measurements by C. Baudet and A. Naert), Rλ = 2500 (Modane’s wind tunnel [17]). A straight line of
slope −0.1 is superimposed on the data in the inertial range.

but also the intermittent (or multifractal) corrections. From this descriptive analysis, we predict the statistical properties of
the (Eulerian) velocity gradients and (Lagrangian) acceleration as functions of the Reynolds number and of the corresponding
singularity spectra. In this sense, we can consider the multifractal formalism, properly generalized to the dissipative range,
as a phenomenological theory, i.e. statistical properties are assumed in the inertial range (given some free parameters fully
encoded in the so-called singularity spectrum), and are predicted in the dissipative range. This was already recognized in
Ref. [37]. To this regard, multifractal formalism can be viewed as a standard model of turbulence, and, as far as we know,
it is the only formalism able to reproduce accurately higher order statistics of velocity increments. The most important
perspective would be to establish a link between this formalism (in particular the existence of a singularity spectrum) and
the equations of motion (i.e. the Navier–Stokes equations). This is out of the scope of the present article. Let us also mention
some alternative statistical formalisms that are able to reproduce the non-Gaussian nature of the underlying statistics,
such as, among others, “superstatistics” [38], continuous-time random walk models [39], vortex filament calculations [40]
and kinetic equations approach [41]. As an interesting application of this multifractal formalism, we reinterpret former
measurements by the group of Tabeling [42,43], concerning the velocity gradients flatness as a function of the Reynolds
number. We end with a general discussion of the skewness phenomenon and of its implications on the modeling of velocity
increments in the inertial range. In the Lagrangian framework, we introduce higher order velocity increments designed to
quantify accurately the singular nature of velocity and justify their use.

2. The Eulerian longitudinal velocity fluctuations

2.1. Behavior of the flatness of velocity increments from experimental investigation

We show in Fig. 2 the estimation of the flatness F = 〈(δ�u)4〉
〈(δ�u)2〉2 of the longitudinal velocity increments in various flow

configurations and various Reynolds numbers. The first set of data has been obtained in a helium jet [45] at four different
Reynolds numbers: Rλ = 208,463,703,929, where the Taylor-based Reynolds number Rλ is proportional to the square-root
of the large-scale Reynolds number Re (see Eq. (26)). Also are displayed the results in an air jet experiment at the ENS Lyon
at Rλ = 380 of C. Baudet and A. Naert. The higher Reynolds number (Rλ = 2500) comes from the wind tunnel experiment
in Modane [17]. For comparisons are also reported the results coming from a classical direct numerical simulation (DNS) of
E. Lévêque [44] at a moderate Reynolds number Rλ = 140 based on 2563 grid points in a periodic domain.

The flatness F as a function of the scale � is represented in a logarithmic representation. Flatness is divided by 3, i.e. by
the value of the flatness of a Gaussian random variable. The scales are renormalized by the length scale L estimated such
that the power-laws that are observed in the inertial range are indistinguishable. Then, ln(�/L) is itself normalized by the
Reynolds number, i.e. ln(Re/R∗), where R∗ = 52 is a universal constant, that will be shown to be linked to the Kolmogorov
constant (Section 2.1.2). A similar procedure is applied to ln(F/3).

In this representation, the Kolmogorov length scale can be seen directly as ln(ηK /L)/ ln(Re/R∗) = −3/4. It delimits the
inertial range, i.e. ln(�/L)/ ln(Re/R∗) ∈ [−3/4,0], and the dissipative range, i.e. ln(�/L)/ ln(Re/R∗) � −3/4.

2.1.1. The inertial range
Let us first focus on the inertial range. Over this range, we observe a universal (i.e. independent on both the Reynolds

number and the flow geometry) power law (�/L)−0.1 of exponent 0.1. In the same range, the second order structure function
behaves as a power law, i.e. 〈(δ�u)2〉 ∼ (�/L)2/3 (data not shown). Furthermore, we can see that the statistics at scales �

larger than the integral length scale L are consistent with a Gaussian process since the Flatness is very close to 3. Indeed the
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flatness is slightly smaller than 3. This can be justified theoretically from PDF closures [46,47]. We will neglect this effect

in the sequel. At this stage, for � � L, a probabilistic description of the velocity increments is straightforward, i.e. δ�u
law=

σδ, where δ is a zero average unit variance Gaussian noise and σ 2 = 〈(δLu)2〉, independent on the scale �. Henceforth,

the symbol
law= stands for an equality in law, i.e. in probability. It means the PDF and all the moments of the random

variables on the two sides of the equality are equal.
In the inertial range, we need a probabilistic formulation of this power law behavior. This is clear at this stage that

a simple Gaussian modeling is not enough since it would predict a scale-independent flatness of constant value 3. Fur-
thermore, the parameters that we will use must be universal since the observed power-law is universal. The main idea
to build up a probabilistic description is to mix Gaussian variables and, for example, to use a Gaussian random variable
with a fluctuating variance. This was proposed in the so-called propagator approach [12]. The form of the fluctuations
of this stochastic variance will be given by the standard arguments of the multifractal formalism [7]. The corresponding
non-Gaussian modeling consists in writing:

δ�u
law= σ

(
�

L

)h

δ (10)

with h a fluctuating variable, independent on the unit-variance zero-average Gaussian noise δ, and characterized by its
distribution function

P(�)

h (h) = ( �
L )1−DE (h)∫ hmax

hmin
( �

L )1−DE (h) dh
(11)

In the limit of vanishing values of �, h and DE (h) gain the mathematical status of the Hölder exponent and the singu-
larity spectrum respectively. Let us stress that the h-distribution P (�)

h (h) (Eq. (11)) is indeed normalized, and the range of
integration [hmin;hmax] depends on the precise shape of the singularity spectrum. One of the main hypothesis of the mul-
tifractal formalism is to assume that DE (h) is independent on the scale � [7]. In this case, assuming minh[1 −DE (h)] = 0,
a steepest-descent calculation (see Appendix A) shows that (recall that h and δ are assumed independent)

〈|δ�u|p 〉 = σ p 〈|δ|p 〉 hmax∫
hmin

(
�

L

)ph

P(�)

h (h)dh ≈
�→0

σ p 〈|δ|p 〉( �

L

)minh[ph+1−DE (h)]
(12)

where 〈|δ|p〉 = �(
p+1

2 )/
√

2pπ and � is the Gamma function. Hence, the form of the density P (�)

h (h) (Eq. (11)) implies
that the structure functions behave as power-laws, with a set of exponents 〈|δ�u|p〉 ∼ �ζp linked to DE (h) via a Legendre
transform [7]

ζp = min
h

[
ph + 1 −DE (h)

]
(13)

It gives in a straightforward manner the behavior of the flatness in the inertial range, i.e. F = 3(�/L)ζ4−2ζ2 . Let us first
mention that in a K41 framework, without any intermittency corrections, the singularity spectrum is equal to DK41(1/3) = 1
and DK41(h) = −∞ for h �= 1/3. In this case, using Eq. (13), we can easily show that ζ K41

p = p/3, and because of the linearity
of the ζp function, the flatness is independent on the scale �. Clearly, the universal power-law behavior of the flatness in
the inertial range as shown in Fig. 2, is the signature of the presence of intermittency in turbulence.

In the literature, several models for DE (h) have been proposed. One of the most widely used is the log-normal ap-
proximation, giving the simplest quadratic form of the DE (h) spectrum including intermittency corrections, as proposed by
Kolmogorov and Oboukhov [15,16]:

DE(h) = 1 − (h − c1)
2

2c2
(14)

In this case, the proposed stochastic modeling of the velocity increments (Eq. (10)) has a simple probabilistic interpretation:
with hmin = −∞ and hmax = +∞, the velocity increments are modeled as a Gaussian noise δ multiplied by a log-normal

multiplicator σ(�/L)h . This was the proposition made in the propagator approach [12]. It is easily seen that ζp = c1 p − c2
p2

2 ,
leading to F = 3(�/L)−4c2 . In the sequel, we will choose hmin = 0 and hmax = 1 because (i) a numerical integration of Eq. (12)
shows no difference with the indefinite case, (ii) as we will see, the extension to the dissipative range implies hmin > −1
(see Section 2.1.2) and (iii) rigorously, only Hölder exponents greater than 0 and smaller than 1 are accessible when using
increments. Experimental and numerical data as displayed in Fig. 2 show that the flatness behaves as a universal power-
law of exponent −0.10 ± 0.01. This corresponds to c2 = 0.025, and c2 is called the intermittency coefficient. Also seen on
empirical data (data not shown), ζ3 ≈ 1 [48]. Thus, in the sequel, we will take c1 = 1/3 + 3c2/2 ≈ 0.37, very close to its K41
prediction 1/3. This defines completely the quadratic singularity spectrum (Eq. (14)).
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Another widely used singularity spectrum is the She–Lévêque spectrum [49],

DE(h) = −1 + 3

[
1 + ln(ln(3/2))

ln(3/2)
− 1

]
(h − 1/9) − 3

ln(3/2)
(h − 1/9) ln(h − 1/9) (15)

This spectrum is based on log-Poisson statistics [50] and yields ζ SL
p = p/9+2[1−(2/3)p/3]. This implies that F ≈ 3(�/L)−0.11,

a power-law behavior in good agreement with the empirical data shown in Fig. 2. More sophisticated methods based
on wavelets [51,52] agree on the difficulty to discriminate between log-normal and log-Poisson statistics, and none of
these approximations, for the moment, have been derived rigorously from first principles (i.e. the Navier–Stokes equations).
For these reasons, we will use, in the sequel, the simplest log-normal approximation (Eq. (14)) that compares well with
empirical data, at least for low order moments ζp with p � 6 and that gives a Gaussian distribution for the h-exponent,
that is easy to manipulate (see in particular in the stochastic modeling proposed in Section 2.2.3).

Finally, the proposed stochastic modeling (Eqs. (10) and (11)) includes a functional form for the probability density
functions of the velocity increments. A formal derivation of these PDFs, starting from the product of two independent
random variables is reported in Appendix B. In simple words, we can see that the random variable δ�u (Eq. (10)) is fully
defined when is given the law of h (Eq. (11)) and δ (let us say Pδ), that we assume, at this stage, independent. To simplify
the derivation of the PDF Pδ�u(δ�u) of δ�u (see Appendix B for a more rigorous derivation), let us consider only the absolute
value of the velocity increment. We get

ln |δ�u| = lnσ + h ln
�

L
+ ln |δ|

Given that the random variables h and ln |δ| are independent, the PDF of ln |δ�u| is the convolution product of the PDFs of
h ln �

L and ln |δ|, as it was noticed in Ref. [12], namely

P
ln

|δ�u|
σ

(
ln

|δ�u|
σ

)
=

∫
Pln |δ|

(
ln

|δ�u|
σ

− h ln
�

L

)
Ph ln �

L

(
h ln

�

L

)
d

(
h ln

�

L

)

=
∫

Pln |δ|
(

ln
|δ�u|
σ

− h ln
�

L

)
Ph(h)dh

Noticing that Pln |δ|(ln |δ|) = |δ|P|δ|(|δ|) and P
ln

|δ�u|
σ

(ln |δ�u|
σ ) = |δ�u|P|δ�u|(|δ�u|), we finally get

P|δ�u|
(|δ�u|) =

hmax∫
hmin

1

σ

(
�

L

)−h

P|δ|
[ |δ�u|

σ

(
�

L

)−h]
P(�)

h (h)dh (16)

which shows the expression of the PDF of the absolute value of the velocity increment. Without further assumptions, this
derivation cannot be generalized to derive the PDF of the signed velocity increment, since we are taking at one point
a logarithm, but it clarifies the fact that defining in probability a random variable (such as in Eq. (10)) allows to derive the
associated PDF.

Actually, Eq. (16) is also true for the signed velocity increment, as shown in Appendix B, and we get for the velocity
increment PDF Pδ�u(δ�u) at the scale � the following form:

Pδ�u(δ�u) =
hmax∫

hmin

1

σ

(
�

L

)−h

Pδ

[
δ�u

σ

(
�

L

)−h]
P(�)

h (h)dh (17)

where Pδ(x) = exp(−x2/2)/
√

2π is the PDF of a unit-variance zero-mean Gaussian variable. A numerical investigation (data
not shown) of the PDF (Eq. (17)) shows the characteristic continuous shape deformation associated to the intermittency
phenomenon, in a similar way than observed in Fig. 1(a). Once again, this PDF is symmetric, i.e. Pδ�u(δ�u) = Pδ�u(−δ�u)

and thus fails to describe the skewness phenomenon. We invite the reader to have a look at the Sections 2.2.1 and 2.2.3
that provide a formalism able to reproduce the asymmetry of the PDFs, as observed in empirical data. We will see in the
following section how to introduce the dissipative effects in order to obtain predictions on the statistics of the velocity
gradients.

2.1.2. The dissipative range
The flatness of velocity increments, shown in Fig. 2, behaves in a very different way in the dissipative range, i.e. for

scales ln(�/L)/ ln(Re/R∗) � −3/4. First of all, no power-law is observed. Then, we can see a strong Reynolds-number de-
pendence. This is very different from the behavior observed in the inertial range. In the limit of vanishing scales, the velocity
increments can be Taylor expanded and we obtain δ�u(x) = �∂xu(x), i.e. a linear behavior as a function of the scale. This im-

plies that the flatness tends to a Reynolds-number dependent function, independent on the scale �, i.e. F (�)→�→0
〈(∂xu)4〉

2 2 .
〈(∂xu) 〉
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The aim of this section is to understand and model the transition from the observed power-law behavior of the flatness
in the inertial range, to this scale-independent behavior in the dissipative range. But first of all, let us have a look at the
empirical data.

In Fig. 2, we see that not all of the measurements exhibit at very small scales a scale-independent flatness. Only the
DNS (Rλ = 140), the air-jet (Rλ = 380) and the helium jet (Rλ = 208) have succeeded in resolving scales smaller than
the Kolmogorov length scale. Indeed, the measurements are difficult because the Hot-wire size is usually of the order
of the Kolmogorov length scale. If the Reynolds number is too high, dissipative scales are too small to be resolved (as for
Rλ = 463, 703 and 929). In the Modane’s wind tunnel, the integral length scale is very large, and despite the large Reynolds
number (Rλ = 2500), ηK should have been accessible (which is of the order of the millimeter). Unfortunately, the noisy
local environment of the giant wind tunnel and the high temperatures reached (∼ 60◦ Celsius) implied by the strong level
of turbulence, prevented electronics from working properly at high frequency.

Given the experimental limitations, we see that the flatness underlies a rapid increase. This was the subject of Ref. [44].
The main underlying idea is the differential action of the viscosity. The multiplicator σ(�/L)h fluctuates in the inertial range.
In the dissipative range, up to a (random) coefficient, the multiplicator becomes linear with respect to the scale in order
to be consistent with the Taylor’s expansion. The viscosity will regularize this inertial-range singular behavior at a scale
that depends on the strength h of the singularity: the bigger is the multiplicator, corresponding to smaller h-exponents,
the smaller is the scale of regularization. Purely kinematic arguments, proposed in Ref. [44], show that the width of the so-
called intermediate dissipative range [η−, η+] [37], where η− and η+ are respectively the smallest and biggest dissipative
scales, indeed depends weakly on the Reynolds number

ln

(
η+

η−

)
∼

√
lnRe (18)

the Kolmogorov length scale ηK lying in between. In the representation chosen in Fig. 2, this prediction (Eq. (18)) implies
that the observed rapid increase occurring in the intermediate dissipative range should be steeper and steeper as the
Reynolds number increases. This is what is qualitatively observed as long as experimental technics were able to reach these
very small scales.

This can be fully modeled in the context of the multifractal formalism. To do so, one has to come up with a dissipative
scale that depends explicitly on the strength of the multiplicator, or in a more straightforward manner, on the exponent h.
Paladin and Vulpiani [53] first proposed such a h-dependent cut-off. Their reasoning was based on the local Reynolds num-
ber. For a scale lying in the inertial range, a fluctuating Reynolds number can be defined using a fluctuating characteristic
velocity v� = σ(�/L)h , leading to the local Reynolds number R� = v��/ν . We can see that at the integral length scale,
the associated Reynolds number RL is unique, does not fluctuate, and is given by RL = Re = σ L/ν . This allows to define
unambiguously a dissipative length scale: a scale η at which the local Reynolds number is of order unity Rη = R∗ = O (1).
The order one constant R∗ , is a free parameter of the formalism, a priori universal. It has been introduced phenomenologi-
cally in Refs. [45,54,55]. We will take it to be R∗ = 52 and we will show that it is related to the Kolmogorov constant cK .
From there, one obtains directly the main result of Ref. [53], namely

η(h) = L

(
Re

R∗

)− 1
h+1

(19)

Based on this result, Nelkin [56] showed the implication of a fluctuating dissipative scale (Eq. (19)) on the modeling of
the velocity increments for scales lying in the dissipative range. Within our approach summarized by Eq. (10), the velocity
increment at a scale smaller than the dissipative scale η(h) will be modeled in the following way:

δ�u
law=

��η(h)
σ

�

L

(
η(h)

L

)h−1

δ (20)

where δ, as in Eq. (10), is a zero-mean unit variance Gaussian random variable, σ 2 = 〈(δLu)2〉, independent of the ran-
dom exponent h. This probabilistic modeling (Eq. (20)) is consistent with the Taylor expansion of the velocity increment.
It implies a model for the velocity gradient [56], namely:

∂xu
law= σ

L

(
η(h)

L

)h−1

δ (21)

Also we see that the proposed modeling for � � η(h) (Eq. (10)) and for � � η(h) (Eq. (20)) is continuous at the dissipative
length scale � = η(h).

As in Eqs. (10) and (11), to fully characterize in a probabilistic manner the random variable δ�u (Eq. (20)), we need to
define the distribution of the exponent h. The proposition of Ref. [56] is to take for the distribution of h at the dissipative
scales � � η(h) a scale-independent distribution (up to a normalizing function Z(�)) that also has to be continuous at the
transition � = η(h), namely
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P(�)

h (h) =
��η(h)

1

Z(�)

(
η(h)

L

)1−DE (h)

(22)

where DE (h) is the same universal function entering in the h-distribution of the inertial range (Eq. (11)), that we will
approximate to be quadratic (Eq. (14)).

As a general remark, as previously underlined in Ref. [37], the multifractal formalism becomes predictive. Indeed, given
the description of the inertial range (Eqs. (10) and (11)), and in particular given the singularity spectrum DE (h), we can
predict the behavior of the velocity increments in the dissipative range (Eqs. (20) and (22)) by a simple continuity argument.
As a consequence, using Eqs. (19), (21), and (22), the 2pth order moment of the velocity gradients is given by following
function of the Reynolds number:

〈
(∂xu)2p 〉 = 〈

δ2p 〉(σ

L

)2p 1

Z(0)

hmax∫
hmin

(
Re

R∗

)− 2p(h−1)+1−DE (h)
h+1

dh (23)

where 〈δ2p〉 = (2p)!
p!2p , and Z(0) = ∫ hmax

hmin
(Re
R∗ )

− 1−D(h)
h+1 dh. The distribution of a Gaussian variable δ is even, so all the odd

moments of both velocity increments (Eqs. (10), (20)) and gradients (Eq. (21)) are vanishing at this stage. To include the
skewness phenomenon, that requires further probabilistic modeling, we invite the reader to take a look at Section 2.2.1.

The explicit form of even order moments of velocity gradients (Eq. (23)) allows us to derive two important predictions:
the computation of the average dissipation and the dependence on the Reynolds number of the flatness of the velocity
derivatives. The dissipation ε is a key quantity in turbulence theory [7]. In an isotropic and homogeneous flow, the average
dissipation is related to the second order moment of the velocity gradients as 〈ε〉 = 15ν〈(∂xu)2〉. Using Eq. (23), one obtains

〈ε〉 = 15νσ 2 1

L2Z(0)

hmax∫
hmin

(
Re

R∗

)− 2(h−1)+1−DE (h)
h+1

dh (24)

In the limit of large Reynolds number, a steepest-descent calculation (see Appendix A) shows that, up to an order one

multiplicative constant, the former integral, is dominated by the term (Re/R∗)χ2 , where χ2 = −minh(
2(h−1)+1−DE (h)

h+1 ).
Because by construction, and for a wide class of singularity spectrum such that (via a Legendre transform, cf. Eq. (13))
ζ3 = 1, which is the case with the quadratic approximation (Eq. (14)) with c1 = 1/3 + 3c2/2, we can show [7] that χ2 = 1.
This implies that 〈ε〉 is independent on the Reynolds number. This verifies a basic hypothesis of Kolmogorov, namely the
finiteness of 〈ε〉 at infinite Reynolds number. A precise estimation of the integrals entering in Eq. (24) (see Appendix A)
shows that

〈ε〉 ≈
Re→+∞

15

R∗
σ 3

L
(25)

As shown in Refs. [18,44], Eq. (25) gives a prediction of the Kolmogorov constant cK . Indeed, in the inertial range, neglecting
intermittent corrections, the structure function is given by 〈(δ�u)2〉 = σ 2(�/L)2/3 = cK (〈ε〉�)2/3. Using Eq. (25), it gives
cK = (R

∗
15 )2/3, showing indeed that this constant R∗ is related to the Kolmogorov constant cK . Using R∗ = 52, one finds

cK = 2.33, which is slightly bigger than what has be measured on empirical data cK ≈ 2 [10,11]. One of the reasons of
this apparent discrepancy is related to the fact that the constant R∗ is clearly linked to the presence of intermittency
and the implied extension of the intermediate dissipative range, whereas the definition of the cK assumes the absence of
intermittency corrections. The prediction of the second order moment of the gradients allows also to link precisely the
(large-scale) Reynolds number Re to the Taylor based Reynolds number Rλ in the following way:

Re = 4

R∗R
2
λ (26)

Another important prediction is the dependence of the flatness of derivatives on the Reynolds number [56]. From
Eq. (23), using a steepest-descent argument, we can show that, up to multiplicative constants of order unity (given in Ap-
pendix A):

〈(∂xu)4〉
〈(∂xu)2〉2

≈
Re→+∞ 3

(
Re

R∗

)χ4−2χ2

with χp = min
h

[
− p(h − 1) + 1 −DE(h)

h + 1

]
(27)

Using the quadratic spectrum (Eq. (14)), R∗ = 52, and Eq. (26) for the Taylor-based Reynolds number dependence, we ob-
tain:

〈(∂xu)4〉
2 2

≈ 3

(
Re

∗

)0.18

= 1.47R0.18
e = 0.93R0.36

λ (28)
〈(∂xu) 〉 Re→+∞ R
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Fig. 3. (a) Theoretical predictions of the velocity increment flatness obtained using Eqs. (32) and (33) with a quadratic singularity spectrum (see text) at
different Reynolds numbers, as proposed in Fig. 2. The higher is the Reynolds number, the steeper the increase in flatness that takes place in the inter-
mediate dissipative range. (b) Direct comparison of the velocity increment flatness obtained at Modane Rλ = 2500 (symbols) and from the model (solid
line). (c) Comparison of various observations of the Reynolds number dependence of the flatness of the velocity derivatives with the present theoretical
predictions (Eq. (28)): F = 1.36R0.31

λ [61] (atmospheric measurements, dashed line), F = 0.91R0.39
λ [59] (wind tunnel measurements, dash-dotted line),

F = 1.14R0.34
λ [60] (DNS, dotted line) and F = 0.93R0.36

λ for the present prediction Eq. (28) (solid line). (d) Comparison of various observations of the
Reynolds number dependence of the skewness of the velocity derivatives with the present theoretical predictions (Eq. (36)): S = −0.26R0.11

λ [61] (at-
mospheric measurements, dashed line), S = −0.33R0.09

λ [59] (wind tunnel measurements, dash-dotted line), S = −0.32R0.11
λ [60] (DNS, dotted line) and

S = −0.175R0.134
λ for the present prediction Eqs. (36) and (39) (solid line).

which is consistent with empirical observations [57–60]. More precisely, we compare in Fig. 3 the multifractal prediction
(Eq. (28)) with various experimental measurements and numerical simulations as compiled in Ref. [60]. The present theo-
retical prediction reproduces quantitatively the empirical observations. Let us stress that the quantitative dependence of the
flatness of velocity derivatives on the Reynolds number (Eq. (28)) is a genuine consequence of the intermittent nature of
turbulence. In a K41 framework, this quantity would be Reynolds number independent.

2.1.3. Full multiscale description
In the preceding sections (2.1.1 and 2.1.2), we have seen how to model velocity fluctuations in respectively the inertial

and far-dissipative ranges. It remains to write down a formalism, based on these two well-known limiting ranges, that
reproduces velocity statistics in the entire range of scales, including the intermediate dissipative range.

A first naive idea to gather both the inertial and dissipative ranges in a unified description is to consider, at a given
scale � and Reynolds number Re , the h-exponents. Within the range [hmin;hmax], if h � h∗ , then the velocity increment
lies in the inertial range; On the opposite, if h � h∗ , then the velocity increment lies in the dissipative range. The transition
occurs at the exponent h∗ defined by � = η(h∗), namely

h∗(�,Re) = −
(

1 + ln(Re/R∗)
ln(�/L)

)
(29)

Using both the laws of the velocity increments in the inertial (Eqs. (10) and (11)) and dissipative (Eqs. (20) and (22)) ranges,
we then obtain

〈|δ�u|p 〉 = 〈|δ|p〉
Z(�)

[ h∗∫ (
Re

R∗

)− p(h−1)+1−D(h)
h+1

dh +
hmax∫
∗

(
�

L

)ph+1−D(h)

dh

]
(30)
hmin h
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where Z(�) normalizes the probability densities, namely

Z(�) =
h∗∫

hmin

(
Re

R∗

)− 1−D(h)
h+1

dh +
hmax∫
h∗

(
�

L

)1−D(h)

dh (31)

Unfortunately, this model does not compare well with empirical data because the transition is too sharp (data not shown,
see [62]). Furthermore, the present modeling gives a continuous but not differentiable modeling of the velocity increment.

A continuous and differentiable transition, inspired by the interpolation function of Batchelor to model the second order
structure function [63], has been proposed in Ref. [64] as the entire range of scales. In Ref. [18], a slight modification of the
proposition of Ref. [64] has been introduced in order to make the transition compatible with the far-dissipative predictions
of Ref. [56]. It reads

δ�u
law= σβ�δ with β� = ( �

L )h

[1 + ( �
η(h)

)−2](1−h)/2
(32)

where the random variable δ is again a zero-mean unit-variance Gaussian noise, σ 2 = 〈(δL u)2〉, and

P(�)

h (h) = 1

Z(�)

( �
L )1−D(h)

[1 + ( �
η(h)

)−2](D(h)−1)/2
(33)

The normalizing constant is again such that
∫ hmax

hmin
P(�)

h (h)dh = 1, namely

Z(�) =
hmax∫

hmin

( �
L )1−D(h)

[1 + ( �
η(h)

)−2](D(h)−1)/2
dh (34)

Note that at a fixed given scale �, the velocity increment (Eq. (32)) and the h-distribution (Eq. (33)) tend to the inertial
description (given by Eqs. (10) and (11)) in the limit of infinite Reynolds number. In the same manner, at a given finite
Reynolds number, this proposed description tends to the dissipative predictions (Eqs. (20) and (22)) in the limit of vanishing
scales � → 0.

We show in Fig. 3(a) the theoretical predictions of the flatness as a function of the scales � for the different Reynolds
numbers previously investigated in Fig. 2. To do so, we integrated numerically Eqs. (32) and (33) using a quadratic sin-
gularity spectrum, with c2 = 0.025 and c1 = 1/3 + 3c2/2, hmin = 0 and hmax = 1 and R∗ = 52. The Reynolds number Re
is obtained from the Taylor-based Reynolds number using Eq. (26). The proposed description based on Eqs. (32) and (33),
reproduces the main characteristics shown in Fig. 2, namely, the universal power-law behavior in the inertial range and the
rapid increase of the flatness in the dissipative range. Obviously, the theoretical predictions do not suffer from a lack of
resolution and so with the proposed renormalization of the scales and of the flatness, all the curves tend to a universal
plateau given by Eq. (28) when � → 0. The rapid increase that takes place in the intermediate dissipative range is consis-
tent with the kinematic prediction given in Eq. (18), namely the slope of this increase behaves as 1/

√
ln(Re/R∗) in this

representation. We can see indeed that the higher is the Reynolds number, the steepest is the increase.
In Fig. 3(b), we compare more precisely the velocity increment flatness obtained in Modane’s wind tunnel [17] to the

multifractal prediction. The model does reproduce both the inertial and intermediate dissipative ranges, given the experi-
mental limitations to reach the far dissipative range.

2.1.4. Reinterpretation of the Tabeling’s data as a non-trivial effect of the dissipative physics
As an example of the implications of the present theory, we reexamine in this section the observations of Tabeling

and Willaime [43]. These authors investigated fully developed turbulence in a von Karman flow in gaseous helium at low
temperature. Varying the pressure of the gas, they could span an unusually large range of Taylor scale based Reynolds
numbers 200 < Rλ < 2200. They measured the local velocity using a hot wire probe. Through the Taylor “frozen turbulence”
hypothesis, they could access to the longitudinal derivative of the velocity, and its flatness F (Eq. (28)). Up to Rλ = 600,
their results are in good agreement with previous literature and the present prediction (Eq. (28)). Surprisingly, at Rλ � 650,
F presents a maximum, and goes down up to Rλ � 1000, then raises again slowly (Fig. 4). Tabeling and Willaime interpreted
their results as some evidence of a transition in turbulent flows. Some comments suggested that this behavior of F could be
due to the finite size of the probe. However, as remarked by Tabeling and Willaime, this size (about 10 μm) is much smaller
than the Kolmogorov dissipation length η at Rλ = 650. Moreover, such a limitation was expected to yield a saturation of F
at a constant value, not a well pronounced maximum.

Indeed, following the present multifractal theory, identifying the “velocity derivative” with a finite difference at a con-
stant length �o gives a maximum for the flatness as shown in Fig. 4. This is due to the rapid rise of the longitudinal velocity
difference flatness in the intermediate dissipative range. This maximum occurs when the length �o coincides with the low-
est scale of this intermediate range, which is much smaller than η. Using Eqs. (32) and (33) with a quadratic singularity
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Fig. 4. Flatness of the velocity derivatives as a function of the Taylor-based Reynolds number in a (a) linear and (b) logarithmic representation: (◦) exper-
imental data from a von Karman flow in gaseous helium at low temperature [43], (solid line) multifractal prediction for the velocity derivative flatness
(Eq. (28)), (stars) multifractal prediction for the velocity increment flatness at a fixed scale �o/L = 2.5 10−3.

spectrum (Eq. (14)), R∗ = 52, stars in Fig. (4) show the behavior predicted for F if �o/L = 2.5 10−3, in reasonable agreement
with the size of the sensor.

However, the present theory cannot predict a further rise of F as observed experimentally. Also, the width of the pre-
dicted peak is much wider than observed. The present theory can explain some of the surprising features observed, not all.

2.2. Consistent description of the skewness phenomenon

2.2.1. General discussion on the skewness phenomenon
This section is devoted to the modeling of the skewness of the velocity increments. As we just saw, modeling the

velocity increment as a Gaussian random variable multiplied by a random amplitude (see Eq. (32)) cannot reproduce the
asymmetric nature of the distribution of velocity increments since the Gaussian random variable δ, and its independence
on the amplitude β� lead to vanishing odd order moments, i.e. ∀p ∈ N, 〈(δ�u)2p+1〉 = 0. Nevertheless, keeping the same
probabilistic description as in Eqs. (32) and (33) for the second order moment of velocity increments, allows us to predict
in a consistent way the third order moment of velocity increments if we use the Karman–Howarth–Kolmogorov equation:

〈
(δ�u)3〉 = −4

5
〈ε〉� + 6ν

d〈(δ�u)2〉
d�

(35)

In Ref. [18] (see also Ref. [65]), we compared experimental data to the predictions obtained for 〈(δ�u)3〉 using the Karman–
Howarth–Kolmogorov equation (35) and the second order structure function 〈(δ�u)2〉 obtained from Eqs. (32) and (33).
Predictions and empirical data compares well in the whole range of scales [18] without additional free parameters. In par-
ticular, the level of skewness in the inertial range is well reproduced and can be shown to be related to the universal
constant R∗ . If we neglect dissipative effects in the exact relation Eq. (35), and the intermittent corrections on the second
order structure function, it is easy to see that S(�) = 〈(δ�u)3〉/〈(δ�u)2〉3/2 is independent on the scale � and can be further
approximated to S = −12/R∗ = −0.23, in excellent agreement with empirical data [18]. Moreover, applying a Taylor devel-
opment on both Eq. (35) and on the multifractal predictions (Eqs. (32) and (33)) for the second order structure function,
in the limit of vanishing scales, we get the following multifractal prediction for the third order moment of the derivatives:

〈
(∂xu)3〉 = −6νσ 2

L4

[
2

Z(0)

hmax∫
hmin

[
2h − 1 −DE(h)

](Re

R∗

)− 2(h−2)+1−DE (h)
h+1

dh +F
]

(36)

where F is a negligible additive term, coming from the Taylor’s development of the normalizing factor Z(�) (Eq. (34)) [18].
This prediction of the third order moment of the velocity gradient (Eq. (36)) using a Batchelor–Meneveau type of transition
between the inertial and dissipative ranges (Eqs. (32) and (33)), depends on the singularity spectrum DE , measured in
the inertial range on empirical data, and on the universal constant R∗ . We show in Fig. 3(d) the numerical estimation of
the multifractal prediction of the Skewness of derivatives (using Eqs. (32), (33) and (36)) as a function of the Taylor-based
Reynolds number, using the quadratic singularity spectrum (Eq. (14)) and R∗ = 52. This prediction is compared to empirical
data [59–61] as described in the figure caption and compiled in Ref. [60]. We observe some dispersion between the three
different empirical skewnesses, although the dependence on the Reynolds number seems to be universal. The difference in
amplitude could be due to a lack of experimental and numerical resolution, and/or to a lack of statistical convergence. Thus,
if the multifractal approach fails to predict the value of the skewness, it does reproduce accurately the Reynolds number
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dependence. Indeed, using Eq. (36), a steepest-descent calculation shows that the skewness of the derivatives behaves as
a power law of the Reynolds number, i.e.

ln
(−S(0)

)
/ ln(Re) ∼ χS − 1 (37)

with

χS = min
h

[
−2(h − 2) + 1 −DE(h)

h + 1

]
− 3

2
min

h

[
−2(h − 1) + 1 −DE(h)

h + 1

]
(38)

Using a quadratic approximation for the parameter function DE (Eq. (14)), we get χS − 1 = 0.067. This power-law depen-
dence on the Reynolds number has been already obtained by Nelkin [56] using a different, although related, approach based
on the asymptotically exact relationship 〈(∂xu)3〉 = −2ν〈(∂2

x u)2〉. As shown is Fig. 3(d), further numerical estimations of
relation (36), once rephrased in terms of Taylor-based Reynolds numbers using Eq. (26), leads to the following dependence
of the velocity derivative skewness on Rλ:

〈(∂xu)3〉
〈(∂xu)2〉3/2

≈
Re→+∞−0.175R0.134

λ (39)

2.2.2. Modeling the velocity increments probability density function
Indeed, consistent predictions for higher odd order structure functions are needed to predict the shape of the full velocity

increment probability density function (PDF). Several propositions were made in the literature to account for the asymmetry
of the PDF linked to the skewness phenomenon [12,18]. To do so, we must modify the noise δ entering in the probabilistic
formulation Eq. (32), and/or correlate this noise δ with the exponent h. Asymmetric PDFs can be obtained if we change the
Gaussian random variable δ to a non-Gaussian noise, still independent on the scale � and on the multiplicator β� . More
precisely, it was proposed in Ref. [12] to consider the random variable δ as being a variable of density Pδ(δ) that now reads

Pδ(δ) ∝ exp

[
−δ2

2

(
1 + aS

δ√
1 + δ2

)]
(40)

where aS ≈ 0.18 is a universal constant, independent on both Reynolds number and scales. The main problem using this
peculiar noise (Eq. (40)) is that it leads to non-zero average velocity increments. This could be fixed by introducing a scale
dependent free parameter that centers the whole velocity increment PDF. Furthermore, to reproduce the non-trivial behavior
of the skewness in the dissipative range, we need to modify the parameter aS , and to make it dependent on both scale
and Reynolds number. In this spirit, still based on the hypothesis of independence of the two random variables h and δ,
a general development of the PDF of δ on a basis made of the successive derivatives of a Gaussian, called the Edgeworth’s
development, was proposed in Ref. [18]:

Pδ(δ) = 1√
2π

+∞∑
n=0

λn(�)
dn

dδn
e− δ2

2 (41)

where the coefficients λn(�) are functions of the scale �. As previously shown, the symmetric part (even terms) is well
described by a Gaussian noise, which means that λ0(�) = 1 and λ2n(�) = 0 for n � 1. The coefficient λ1(�) is set to
zero since, from Eq. (41), 〈δ�u〉 = −σ 〈β�〉λ1(�) = 0. Under these hypotheses, the third order moment is then given by
〈(δ�u)3〉 = −6σ 3〈β3

� 〉λ3(�), which fully determines the coefficient λ3(�) thanks to the Karman–Howarth–Kolmogorov equa-
tion (Eq. (35)). Importantly, λ3(�) does depend on scale and Reynolds number. As Eq. (35) is the only available constraint
on λn , it is tempting (as a first approximation) to restrict the expansion to λ3: λ2n+1(�) = 0 for n � 2. Additional statistical
equations involving higher order odd moments of δ�u would be needed to give the next λ2n+1(�). This would require fur-
ther modeling (primarily to get ride of pressure terms), which is outside the scope of the present work. Unfortunately, this
crude approximation for the odd terms λ2n+1 leads to severe pathologies, such as negative probability for rare large events,
and is not consistent with higher order statistics such as hyperskewness 〈(δ�u)5〉/〈(δ�u)2〉5/2 (data not shown). To remedy
for this weakness, Ref. [18] proposed to modify the variance of the Gaussian associated to the third term in the development
(Eq. (41)), in the following way:

Pδ(δ) = 1√
2π

[
e−δ2/2 − λ3(�)δ

(
δ2 − 1

)
e−δ2/(2a2)

]
(42)

where λ3 is fully determined by the exact relation (35), and a an ad-hoc free parameter, close to unity [18], aimed at
describing higher order odd statistics. Then, from Eqs. (32), (33) and (42), the velocity increment PDF can be written, under
the hypothesis of independence of δ and h as (see Appendix B):

Pδ�u(δ�u) =
hmax∫

dh

σβ�(h)
P(�)

h (h)Pδ

[
δ�u

σβ�(h)

]
(43)
hmin
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Then, using a quadratic singularity spectrum (Eq. (14)), R∗ = 52 and the ad-hoc coefficient a = √
0.9 (see Ref. [18]), the pre-

dicted PDF (Eq. (42)) successfully compares to empirical data [18] as shown in Fig. 1(a) for various scales. The shape of the
experimental velocity increment PDFs, from the inertial, to the intermediate dissipative and far dissipative ranges is well
captured by the present theoretical prediction (Eq. (42)), consistently with the behaviors of the flatness and skewness of the
velocity increments. Unfortunately, at this stage, it is not possible to motivate the choice of the additional free parameter a.
To avoid having recourse to this parameter, we are forced to abandon the hypothesis of independence of the singularity
exponent h and the noise δ. A formalism that takes into account possible correlations between these two random variables
is presented in the following section.

2.2.3. Probabilistic modeling of the skewness in the inertial range
It remains to give a consistent description of the asymmetric part of velocity increment PDFs in both the inertial and

dissipative ranges without invoking an additional free parameter a in the PDF of the noise δ (Eq. (42)). In this section,
we propose such a formalism for the inertial range, and leave the extension to the dissipative range to future investigations.
The main idea is to correlate the exponent h and the noise δ in the multifractal description provided by Eq. (32).

Let us first assume that the velocity increment can be written as a product of a Gaussian noise δ and an amplitude

(�/L)h: δ�u
law= σ(�/L)hδ, as in Eq. (32). The main difference with former assumptions is to let possible a correlation be-

tween h and δ. The simplest way to deal with such a probabilistic formalism is to assume h and δ jointly Gaussian. In this
case, see Appendix B, the velocity increment PDF Pδ�u(δ�u) can be written as

Pδ�u(δ�u) =
∞∫

−∞

1

σ

(
�

L

)−h

Pδ,h

[
δ�u

σ

(
�

L

)−h

,h

]
dh (44)

where Pδ,h(δ,h) is the joint probability of the random variables δ and h given by:

Pδ,h(δ,h) = 1

2πσδσh

√
1 − ρ2

exp

{
− 1

2(1 − ρ2)

[
(δ − mδ)

2

σ 2
δ

+ (h − mh)
2

σ 2
h

− 2ρ(δ − mδ)(h − mh)

σδσh

]}
(45)

In Eq. (45), mδ and σ 2
δ (resp. mh and σ 2

h ) stand for the mean and variance of the random variable δ (resp. h). The correlation

coefficient ρ(�) = 〈hδ〉
σhσδ

lies in the range [−1,1]. At large-scale � = L one has to recover σ 2 = 〈(δLu)2〉. This implies σδ = 1.
Consistently with Eqs. (11) and (14), the multifractal formalism sets the mean and variance of the random variable h to:

mh = 1

3
+ 3c2

2
and σ 2

h = c2

ln(L/�)
(46)

where c2 remains the intermittency coefficient (c2 = 0.025 in empirical data, cf. Fig. 2). Using the Legendre transform
(Eq. (13)), the h-distribution leads to a set of structure function exponent

ζp = mh p − c2 p2/2 (47)

Using Eq. (44), we can show that

〈δ�u〉 =
∞∫

−∞
xPδ�u(x)dx = σ

(
�

L

)ζ1[
mδ − ρ(�)

√
c2 ln(L/�)

]
(48)

The velocity increment statistics are of zero-mean if and only if

mδ = ρ(�)
√

c2 ln(L/�) (49)

For such parameters, we obtain the following velocity increment moments

〈δ�u〉 = 0

〈
(δ�u)2〉 = σ 2

(
�

L

)ζ2[
1 + ρ2c2 ln(L/�)

]
〈
(δ�u)3〉 = −2σ 3

(
�

L

)
ρ
√

c2 ln(L/�)
[
4ρ2c2 ln(L/�) + 3

]
(50)

The remaining free parameter is the correlation coefficient ρ(�) that will be fully determined by the Karman–Howarth–
Kolmogorov equation (Eq. (35)) and the Kolmogorov constant cK (or equivalently by R∗). Indeed, neglecting dissipative
effects, Eq. (35) gives 〈(δ�u)3〉 = − 4

5 〈ε〉�. The average dissipation is given as 〈ε〉 = ασ 3/L, where α = 15/R∗ = 0.2885
(Eq. (25)). Using the expression of 〈(δ�u)3〉 given in Eq. (50), we obtain for ρ(�), after solving a polynomial of third order,
the following scale dependence
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Fig. 5. (a) Numerical estimation of the theoretical prediction of the velocity increment PDFs at various scales in the inertial range (Eq. (44)). All PDFs are
of unit variance and the scales used are (from bottom to top) �/L = 10−1,10−1.5,10−2,10−2.5,10−3,10−3.5,10−4,10−4.5,10−5. (b) Numerical estimation
of the velocity increments flatness F (�) (◦) and the skewness S(�) (�) from Eq. (44). Solid lines correspond to theoretical calculations (Eq. (53)). (c) and
(d) Pre-multiplied PDFs (δ�u)2Pδ�u(δ�u) and (δ�u)4Pδ�u(δ�u), abscissa are renormalized by

√〈(δ�u)2〉 and ordinates are renormalized such that the integrals
are unity.

ρ(�) = A(α)√
c2 ln(L/�)

(51)

with

A(α) = 1

10

[
50α + 25

√
25 + 4α2

]1/3 − 5

2[50α + 25
√

25 + 4α2 ]1/3
(52)

Using the scale dependence of the correlation coefficient ρ(�) (Eq. (51)), we can see that the proposed description is consis-
tent as long as the coefficient ρ(�) remains bounded in between −1 and 1. It corresponds to scales �/L � exp(−A2(α)/c2) =
0.94, using α = 15/R∗ and c2 = 0.025. We finally obtain for the Skewness and Flatness factors

S = 〈(δ�u)3〉
〈(δ�u)2〉3/2

=
(

�

L

)ζ3− 3
2 ζ2 2A(α)[4A2(α) − 3]

[1 + A2(α)]3/2

α=15/R∗= −0.23

(
�

L

)ζ3− 3
2 ζ2

F = 〈(δ�u)4〉
〈(δ�u)2〉2

= 3

(
�

L

)ζ4−2ζ2 27A4(α) + 18A2(α) + 1

[1 + A2(α)]2
α=15/R∗= 3.07

(
�

L

)ζ4−2ζ2

(53)

We see that the proposed description (Eqs. (44) and (45)), fully determined by the intermittent coefficient c2, the Karman–
Howarth–Kolmogorov equation (Eq. (35), setting ν = 0) and the Kolmogorov constant cK (or equivalently R∗), gives consis-
tent predictions (Eq. (53)). Indeed, if intermittency is neglected, ζ3 ≈ 3

2 ζ2, the skewness is constant S ≈ −0.23 and compares
well with empirical skewness in the inertial range [18]. Let us also notice that the flatness does not tend to its Gaussian
value 3 when � → L, but to 3.07. This could be corrected if a large-scale cut-off is introduced in an ad-hoc way.

In Fig. 5 are shown the results of the numerical integration of Eqs. (44) and (45), using c2 = 0.025 and α = 15/R∗ .
In Fig. 5(a) we recover the characteristic shape deformation of the velocity increments PDFs. In Fig. 5(b), the velocity
increments Skewness and Flatness are estimated and compared successfully to the analytical calculations given in Eq. (53).
We also display in Fig. 5(c) and (d) the second and fourth order pre-multiplied PDFs. We can see that the core of velocity
increments PDF dominates in the second pre-multiplied PDFs, whereas the tails of the velocity increments PDFs contribute
significantly to the fourth order one.
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3. The Lagrangian framework

Recently, several experimental technics [19–28,66] and massive numerical computations [20,24,25,29,31,66,67] have been
developed aiming following fluid particles along their trajectory in a fully developed turbulent flow. As stated in the intro-
duction, a phenomenology similar to the Eulerian one can be developed in a Lagrangian context. The goal of this section
is to present such a phenomenology introduced in Ref. [20], that has been compared to a compilation of empirical data
in [20,33].

3.1. Probabilistic formalism of the inertial and dissipative ranges

3.1.1. The inertial range
In the same spirit as in Section 2.1.1 devoted to the Eulerian framework, a probabilistic formulation of the Lagrangian

velocity time fluctuations can be written down [20]. As observed experimentally, at the large integral time scale T , related to
the integral length scale L = σ T , the statistics of both velocity increments and velocity are very close to Gaussian statistics.
Indeed, in stationary, incompressible, homogeneous and isotropic turbulent flows, the Lagrangian velocity statistics can be
related to their Eulerian counterparts [4] (see also Section 3.2.1). The statistics of the velocity time increments at a time
scale τ (Eq. (7)) can be modeled once again as the product of two independent random variables:

δτ v
law= σ

(
τ

T

)h

δ (54)

where δ is a zero-mean unit variance Gaussian random variable and σ 2 = 〈(δT v)2〉 = 〈(δLu)2〉 = 2〈u2〉. The exponent h is
independent on δ and fluctuates according to the distribution law:

P(τ )

h (h) = ( τ
T )1−DL(h)∫ hmax

hmin
( τ

T )1−DL(h) dh
(55)

where, according to the multifractal formalism assumptions, the Lagrangian singularity spectrum DL(h) is universal
(i.e. Reynolds number independent) and independent on the time scale τ . As with Eqs. (10), (11) and (13), this probabilistic
modeling (Eqs. (54) and (55)) is consistent with a power-law behavior of the Lagrangian structure functions 〈|δτ v|p〉 ∼ τ ξp ,
the exponents ξp are related to the Lagrangian singularity spectrum DL(h) via a Legendre transform:

ξp = min
h

[
ph + 1 −DL(h)

]
(56)

Dimensional analysis (Eqs. (8) and (9)) leads to a K41 description of Lagrangian turbulence neglecting intermittency. In this
case, DL(1/2) = 1 and DL(h) = −∞ for h �= 1/2. Experimental and numerical data actually revealed the presence of inter-
mittency [20,24,29,31,33] that can be characterized by a quadratic singularity spectrum [20]:

DL(h) = 1 − (h − cL
1)

2

2cL
2

, with cL
1 = 1

2
+ cL

2 and cL
2 = 0.085 (57)

Note that the obtained value of c1 is consistent with empirical data and with the dimensional prediction ξ2 = 1. As in
the Eulerian framework, the bounds of the integration domain in Eq. (55) are hmin = 0 and hmax = 1 (see Section 4.1).
We will see in the following (Section 3.3) that the quadratic approximation (Eq. (57)) is too crude to describe the statistics
of the acceleration and is not compatible with a quadratic Eulerian singularity spectrum via the Borgas’ transformation
(see Section 3.2). Nevertheless, it gives a consistent description of the Lagrangian velocity statistics in the inertial range as
well as in the intermediate and far-dissipative range [20].

3.1.2. The dissipative range
As previously reported, the quadratic Eulerian spectrum (Eq. (14)) has been extensively compared to a large set of

empirical data, some of them displaying a large inertial range [ηK , L] (in particular the Modane wind tunnel data, Rλ =
2500). Sophisticated signal analysis procedures [52,68] concluded that this quadratic approximation cannot be distinguished
from the data and this for both the increasing part (positive order structure functions) and the decreasing part (negative
order structure functions) of the DE (h) spectrum. In the Lagrangian framework, such an analysis is much more difficult
because the experimental technologies (silicon strip detectors [22], acoustic scattering [24], rapid cameras [27,28], etc.) are
not as efficient as a well-known hot-wire probe under the Taylor’s hypothesis [7]. More fundamentally, at a same Reynolds
number, the width of the inertial range is much greater in the Eulerian framework than in the Lagrangian counterpart.
Indeed, dimensional analysis predicts a Kolmogorov dissipative scale τηK proportional to LR−1/2

e , and in turn στηK /ηK ∼
R1/4

e � 1.
Let us now adapt the arguments justifying a fluctuating dissipative length scale in Ref. [53] to the dissipative time

scales [69]. A local Reynolds number can be defined as Rτ = v2
τ τ/ν , where vτ is a characteristic fluctuating velocity at the

time scale τ . From Eq. (54), we obtain:
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Rτ =
(

τ

T

)2h+1

Re (58)

Reproducing the argumentation developed in Refs. [53,69], a h-dependent dissipative time scale can be defined as the scale
such that the local Reynolds number (Eq. (58)) is of order unity: Rτη = R† = O (1). A priori, the universal constant R† is
different from the corresponding Eulerian one R∗ . We thus obtain [69],

τη(h) = T

(
Re

R†

)− 1
2h+1

(59)

If we neglect the intermittency corrections (in a K41 framework), then the exponent h = 1/2 is unique, and we recover the
Kolmogorov’s dimensional prediction

τηK = T

(
Re

R†

)− 1
2

(60)

For a time scale τ smaller than the dissipative time scale τη(h), the velocity time increment can be Taylor expanded,
i.e. δτ v = τa + o(τ 2), a being the acceleration. Like for the Eulerian velocity increments (Eq. (20)), we obtain the following
stochastic modeling of the velocity time increments in the far dissipative range:

δτ v
law=

τ�τη(h)
σ

τ

T

(
τη(h)

T

)h−1

δ (61)

In analogy with the Eulerian framework (Eq. (22)) [56,69], the distribution of the h-exponents does not depend on the scale
τ (up to the normalizing function Z(τ )) and is a function of the Reynolds number:

P(τ )

h (h) =
τ�τη(h)

1

Z(τ )

(
Re

R†

)− 1−DL (h)
2h+1

(62)

From Eqs. (59), (61) and (62), we can derive the expression of the high order moments of the acceleration, in the same way
we derived the prediction of the moments of the velocity gradients in the Eulerian framework (Eq. (23)):

〈
a2p 〉 = 〈

δ2p 〉(σ

T

)2p 1

Z(0)

hmax∫
hmin

(
Re

R†

)− 2p(h−1)+1−DL (h)
2h+1

dh (63)

where Z(0) = ∫ hmax
hmin

(Re
R† )

− 1−DL (h)
2h+1 dh and 〈δ2p〉 = (2p)!

p!2p . Let us stress that the acceleration odd order moments are predicted

to vanish: 〈a2p+1〉 = 0 as observed in data. Finally, acceleration PDF can be expressed as a function of the singularity
spectrum DL(h) and the constant R†:

Pa(a) = T

σ

1

Z(0)

hmax∫
hmin

(
Re

R†

) h−1
2h+1 − 1−DL (h)

2h+1

Pδ

[
aT

σ

(
Re

R†

) h−1
2h+1

]
dh (64)

where Pδ(x) = e−x2/2/
√

2π . A detailed discussion of the Reynolds number dependence of acceleration variance and flatness
is provided in Section 3.3.

3.1.3. Full multiscale description
As in Section 2.1.3, we need an interpolation formula linking the velocity increments statistics in the inertial (Eqs. (54)

and (55)) and dissipative (Eqs. (61) and (62)) ranges. An adapted Batchelor–Meneveau form inspired from the Eulerian
framework (Eqs. (32) and (33)) was proposed in Ref. [20]:

δτ v
law= σβτ δ with βτ = ( τ

T )h

[1 + ( τ
τη(h)

)−γ ](1−h)/γ
(65)

where again the random variable δ is a Gaussian noise of zero-mean and unit-variance, and

P(τ )

h (h) = 1

Z(τ )

( τ
T )1−DL(h)

[1 + ( τ )−γ ](DL(h)−1)/γ
(66)
τη(h)
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with

Z(τ ) =
hmax∫

hmin

( τ
T )1−DL(h)

[1 + ( τ
τη(h)

)−γ ](DL(h)−1)/γ
(67)

As in Eq. (33), the normalizing function Z(τ ) is determined by imposing
∫ hmax

hmin
P(τ )

h (h)dh = 1. The free parameter γ

entering in Eqs. (65) and (66) actually controls the transition from inertial to dissipative physics: the bigger γ is, the steeper
the transition. In the sequel, we will use the Batchelor value γ = 2, as in the Eulerian framework. Let us point out that we
have found γ < 2 when dealing with experimental signals and focusing on the second order log-cumulant [20] whereas the
value γ = 4 was used in Refs. [33,67] to describe the logarithmic local slope. Following Appendix B, the velocity increment
PDF then reads (Eqs. (65) and (66)):

Pδτ v(δτ v) =
hmax∫

hmin

dh

σβτ (h)
P(τ )

h (h)Pδ

[
δτ v

σβτ

]
(68)

We show in Fig. 1(b) the numerical estimation of the Lagrangian velocity increment PDF (Eq. (68)) at different scales us-
ing a quadratic singularity spectrum (Eq. (57)) and for two Reynolds numbers corresponding to the two sets of experiments
(Rλ = 740 for the acoustic scattering measurements at the ENS Lyon [24] and Rλ = 690 [19] for the Cornell’s silicon strip
detectors). We can see that the multifractal model predictions for the PDFs compared well to both sets of experimental
velocity measurements [20]. We have used cL

2 = 0.0753, cL
1 = 1/2 + cL

2, γ = 1.08 and R† = 30 to describe ENS Lyon PDFs.
For the Cornell acceleration data, we have used Eq. (68) with cL

2 = 0.079, cL
1 = 1/2 + cL

2, γ = 1.3 and R† = 30. As far as
ENS Lyon data are considered, to obtain these free parameters, we have fitted the second order cumulant, i.e. the variance
of ln |δτ v|, over the whole range of scales (inertial and dissipative), Re , R† and T assumed known, and defining cL

2 and γ
as the minimizers of the quadratic error of the theoretical and empirical second order cumulant [20]. We have further
shown [20] that a similar fitting procedure on DNS Data (Rλ = 140) leads to cL

2 = 0.086 and γ = 1.98, a value of the transi-
tion parameter γ closer to its Eulerian counterpart (i.e. γ = 2, Eqs. (32) and (33)). The low value of the parameter γ found
in experiments can be interpreted as resulting from a low-pass filtering induced by the finite size of the particle tracers.

As for Cornell’s data, we did not use the true acceleration PDF (Eq. (64)) because the measured flatness is much lower
than (i) the one predicted by the present multifractal formalism and (ii) what is obtained in DNS (see the discussion
in Section 3.3). We chose in Ref. [20] to consider the Cornell’s PDF shown in Fig. 1(b) as a velocity increment PDF at
a small time scale τ = 0.0029T , corresponding to τ = τηK /8.62 in units of the Kolmogorov’s dissipative time scale (Eq. (60)).
Then, the respective intermittency coefficient cL

2 and γ are extracted from Cornell’s acceleration data while minimizing the
quadratic error of the theoretical and experimental PDF.

In Fig. 6(a) is shown the behavior of the flatness of Lagrangian velocity time increments as a function of the scale τ ,
for various Reynolds numbers (from Rλ = 130 to Rλ = 740) and flow configurations (DNS and experimental von Karman
flows), as previously done in the Eulerian framework (Fig. 2). As expected for scales τ greater than the integral time scale T ,
the statistics of velocity increments are close to Gaussianity. This can be deduced from the Gaussianity of Eulerian velocity
increments for � � L, using an ergodicity argument (see Section 3.2).

In the inertial range, for time scales in the range −1/2 � ln(τ/T )/ ln(Re/R†) � 0, a universal Reynolds number indepen-
dent behavior is observed. Recall that in the Lagrangian framework, at a given Reynolds number, the width of the inertial
range T /τηK ∼R1/2

e is expected smaller than its Eulerian counterpart L/ηK ∼R3/4
e . Therefore, we may think that observing

clear power-laws for Lagrangian velocity fluctuations asks for higher Reynolds number than in the Eulerian framework. In-
deed, for the range of Reynolds number available, no clear power laws are observed. This is confirmed when we display in
Fig. 6(c) the local logarithmic slope where no plateau is observed in the inertial range at any Reynolds number. Thus, as far
as Flatness is concerned, no clear power laws are observed.

Scales ln(τ/T )/ ln(Re/R†) � −1/2 correspond to the intermediate dissipative scales. Note that the extension of the in-
termediate dissipative range in the Lagrangian framework is much wider than in the Eulerian framework. This is related to
the fact that, as we will see, Lagrangian velocity is more intermittent than the Eulerian one, implying stronger fluctuations
of the local dissipative time scale τη(h) defined in Eq. (59). In this range of scales, we can also notice a Reynolds number
dependence, that could be interpreted, as previously done in the Eulerian framework (Section 2.1.2), as a direct consequence
of the fluctuating nature of the dissipative time scale. When the scale τ tends to zero, we observe a saturation of the veloc-
ity increments flatness to the corresponding acceleration flatness. This representation shows clearly the Reynolds number
dependence of the acceleration flatness that will be further discussed in Section 3.3.

As we see, estimating the intermittency coefficient is difficult since, contrary to the Eulerian framework, no strict power
laws are observed. Nevertheless, using Eqs. (65) and (66), we can predict the behavior of Flatness over the entire range
of scales, not only the inertial range. In Fig. 6(b), we compare the DNS data (Rλ = 290) against the proposed formal-
ism (Eqs. (65) and (66)), using a quadratic singularity spectrum DL(h), an intermittency coefficient cL

2 = 0.085 (and cL
1 =

1/2 + cL
2), the Batchelor value γ = 2 for the transition and R† = 30. Thus, we find that Lagrangian turbulence is more in-

termittent than its Eulerian counterpart. The present formalism reproduces quantitatively the behavior of the flatness in the
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Fig. 6. (a) Flatness of Lagrangian velocity time increments as a function of the normalized scales τ/T . Lower Reynolds numbers correspond to numerical data
(Rλ = 130,180,290 from E. Lévêque [20,26] and Rλ = 400 from the Roma group [31,67]). The highest Reynolds number Rλ = 740 has been achieved
experimentally at the ENS Lyon [24]. Time scales are renormalized by the integral time scale T and we use R† = 30. (b) Comparison of the proposed
predictions (using Eqs. (65) and (66)), using a quadratic singularity spectrum (Eq. (57)) with c2 = 0.085, c1 = 1/2 + c2, γ = 2 and R† = 30 (solid line)
to the numerical data at Rλ = 290. (c) Logarithmic local slope of the Flatness of the data displayed in (a). (d) Theoretical logarithmic local slope of the
Flatness obtained from a numerical integration of Eqs. (65) and (66), using a quadratic singularity spectrum (Eq. (57)) with c2 = 0.085, c1 = 1/2 + c2, γ = 2
and R† = 30, and for the various Reynolds numbers as shown in (a). We furthermore display (solid line, without symbols) a theoretical logarithmic local
slope at a very high Reynolds number (Re = 1010).

inertial and intermediate dissipative ranges. In the far-dissipative range (when τ → 0), this formalism seems to overpredict
the value of the acceleration flatness (see the discussion in Section 3.3). Given this limitation, the comparison between
theory and empirical data is very satisfactory.

We can see that, even if no clear power laws are observed, the present formalism gives a realistic picture of the Flatness
at any scale. We can also see that, even if the multifractal formalism assumes the existence of power-laws in the asymp-
totic limit of very high Reynolds numbers, the predicted Flatness does not exhibit a clear power law at the finite Reynolds
numbers under investigation. This can be clearly seen in Fig. 6(d) where the predicted logarithmic local slopes of Flatness,
for the various Reynolds numbers given in Fig. 6(a), are shown. Theoretically speaking, the fact that no power laws are
obtained in the model is mostly related to the wide extension of the dissipative range implied by the strong level of in-
termittency that prevents from getting an extended inertial range. Another reason that explains why no clear inertial range
power-laws are obtained in the model is that, for the largest scales of the inertial range for which the ratio τ/T cannot be
considered as small, the steepest-descent calculation (Eq. (56)), that predicts power-laws, is not a good approximation of
Eqs. (65) and (66). To this regard, studying the behavior of structure functions in a relative way [31,33,66], in the spirit of
the extended self similarity, allows to weaken large-scale anisotropic effects and shows more clearly power-law behaviors.
Nevertheless, when working at a very high Reynolds number, the model indeed exhibits a clear power-law for the Flat-
ness. This can been seen in Fig. 6(d) where we superimpose (solid line with no symbols), as an illustration, the predicted
logarithmic local slope of Flatness for Re = 1010. We see indeed the presence of a plateau in the inertial range.

3.2. The Borgas’ argument: linking Eulerian and Lagrangian intermittencies

This section is devoted to establish a link between the Eulerian singularity spectrum DE (h) and its Lagrangian coun-
terpart DL(h) [20]. We will mainly recall the work of Borgas [69] and invite the reader to have a look at this reference
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for a detailed derivation. An alternative dimensional derivation of an equivalent relationship has been also proposed in the
literature [70]. Let us also mention more general arguments developed on kinematic bases [71,72].

3.2.1. Ergodicity principle
Establishing a relationship between Eulerian and Lagrangian fluctuations requires as basic statement some principle of

ergodicity. In simple words, we will admit that in an isotropic, homogeneous, incompressible and stationary flow, the Eule-
rian average of a physical variable, obtained from summing up its realizations over space is equal to its Lagrangian average,
obtained from summing up its values along the trajectory of a particle. This was first recognized and formalized by Tennekes
and Lumley [4].

More formally, let us consider a one-point physical variable F (e.g. velocity, dissipation, pressure and its derivatives, etc.)
that does not depend on the scale. In the Eulerian framework, this variable depends on the spatial coordinates and time
F E(x, y, z, t). In a Lagrangian description of the flow, this variable can be written as a function of the initial positions of the
particles and time F L(x0, y0, z0, t). The assumption of incompressibility allows the following relationship

lim
V →+∞

1

V

∫ ∫ ∫
V

F E(x, y, z, t)dx dy dz = lim
V →+∞

1

V

∫ ∫ ∫
V

F L(x0, y0, z0, t)dx0 dy0 dz0 (69)

that expresses the fact that an incompressible fluid continues to fill the box as it moves around [4]. The next step requires
the assumptions of isotropy and homogeneity. When ensemble averaging the equality, this expectation can be taken inside
the integrals by linearity. Then, homogeneity and isotropy allow us to remove these expectations from these integrals
because of the independence over the space. Thus we are left with〈

F E(x, y, z, t)
〉 = 〈

F L(x0, y0, z0, t)
〉

(70)

The particular case of the observables F E(x, y, z, t) = exp[i�k · �u(x, y, z, t)] and F L(x0, y0, z0, t) = exp[i�k · �v(x0, y0, z0, t)]
was treated in Ref. [4]. The expectation of these variables are the characteristic function the Eulerian �u and Lagrangian �v
velocities. The equality of these characteristic functions implies the equality of the distribution and of all the moments
of each velocity components, namely ∀q, 〈uq

i 〉 = 〈vq
i 〉. As observed in data, the Eulerian velocity has statistics close to

Gaussian, which implies from the ergodicity principle the Gaussianity of the Lagrangian velocity. This has been checked in
experiments as well as in simulations (see the Gaussian values of the Eulerian and Lagrangian velocity increments flatness
shown in respectively Figs. 2 and 6).

The idea of Borgas was to apply this ergodicity principle to the (scalar) observable dissipation ε , i.e. F E(x, y, z, t) =
exp[ikε(x, y, z, t)] and F L(x0, y0, z0, t) = exp[ikε(x0, y0, z0, t)], with as a main outcome the equality of the moments of the
Eulerian dissipation and of the moments of the dissipation as seen by the particle along its trajectory. The next subsection
is devoted to recall the Eulerian multifractal predictions for the moments of dissipation, and to extend these predictions to
the Lagrangian framework [69].

3.2.2. Multifractal description of dissipation fluctuations
For the sake of completeness, we repeat here the arguments developed in Ref. [69]. Multifractal predictions have been

historically developed [7,15,16,73–75] for the coarse-grained dissipation over a ball of size � centered on the position �r:

ε�(�r, t) = 1
4
3π�3

∫
|�r−�r′|��

ε
(�r′, t

)
d�r′ (71)

For a scale � lying in the inertial range, a formalism similar to the one developed for the velocity increment can be writ-
ten (Eqs. (10) and (11)) using an exponent α and a singularity spectrum f E(α). Using the notations of Ref. [69], we can
write ε� = 〈ε〉(�/L)α−1 (equality in probability law), and the probability to get an exponent α at scale � being given by
P(�)

α (α) ∼ (�/L)1− f E (α) . When the scale � enters the dissipative range, we must take into account the fluctuating nature of
the dissipative scale (Eq. (19)) parametrized by the exponent α, i.e. η(α) ∼ R−3/(3+α)

e . The choice of Borgas to apply the
ergodicity principle to the dissipation was influenced by the fact that, in the limit of vanishing scales, the coarse-grained dis-
sipation leads to predictions for the pointwise moments of dissipation. We get, neglecting multiplicative (Reynolds number
independent, but q dependent) constants,

lim
�→0

〈
ε

q
�

〉 = 〈
εq〉 ∼ 〈ε〉q

αmax∫
αmin

R−3 q(α−1)+1− f E (α)
α+3

e dα ∼ 〈ε〉qR−minα [3 q(α−1)+1− f E (α)
α+3 ]

e (72)

In a Lagrangian formulation, we will consider the average of dissipation during a time scale τ :

ετ (�r0, t) = 1

τ

∫
′

ε
(�r0, t′) dt′ (73)
|t−t |�τ
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In a similar fashion as developed for the Eulerian description, the multifractal description of the statistical proper-
ties of ετ can be written down using the exponent κ and the respective Lagrangian singularity spectrum f L(κ) [69],
i.e. ετ = 〈ε〉(τ/T )κ−1 (equality in probability law) and the probability to get an exponent κ at scale τ being given by
P(τ )

κ (κ) ∼ (τ/T )1− f L (κ) . When taking into account the fluctuating nature of the dissipative time scale τηK (κ) ∼ R−1/(1+κ)
e ,

we get

lim
τ→0

〈
ε

q
τ

〉 = 〈
εq〉 ∼ 〈ε〉q

κmax∫
κmin

R− q(κ−1)+1− f L (κ)
κ+1

e dκ ∼ 〈ε〉qR−minκ [ q(κ−1)+1− f L (κ)
κ+1 ]

e (74)

Identifying the leading order Reynolds number power laws exponents entering in the Eulerian and Lagrangian predictions
of the pointwise moments of dissipation (Eqs. (72) and (74)), we get a relationship between the Eulerian f E (α) and La-
grangian f L(κ) singularity spectra:

f L(κ) = −1

2
κ +

(
1 + 1

2
κ

)
f E

(
3κ

κ + 2

)
(75)

This relationship is the main result (Eq. (5.6)) of Ref. [69].

3.2.3. Refined similarity hypotheses
To investigate the implications of the Borgas’ relationship between the singularity spectra f E,L of dissipation and the

singularity spectra DE,L of velocity, we need to use a dictionary [7] between the statistical properties of the coarse-grained
dissipation and of the velocity increments. This is provided by the Refined Similarity Hypothesis (RSH) of Kolmogorov and
Oboukhov [15,16]. In the Eulerian framework in a d-dimensional Euclidean space, this hypothesis reads:〈

(δ�u)q〉 ∼ 〈
ε

q/3
�

〉
�q/3 ↔ h = α

3
and DE(h) = f E(α) + d − 1 (76)

Similarly, in the Lagrangian framework, the RSH hypothesis reads〈
(δτ v)q〉 ∼ 〈

ε
q/2
τ

〉
τ q/2 ↔ h = κ

2
and DL(h) = f L(κ) + d − 1 (77)

Only recently the Lagrangian RSH hypothesis (Eq. (77)) has been verified in numerical simulations [76,77]. Using Eqs. (76)
and (77) to reinterpret Eq. (75), we easily derive the following relationship between the Eulerian DE (h) and La-
grangian DL(h) velocity singularity spectra (with d = 1) [20]:

DL(h) = −h + (1 + h)DE
(

h

1 + h

)
(78)

This relation (Eq. (78)) can be inverted

DE(h) = h + (1 − h)DL
(

h

1 − h

)
(79)

To end this section, let us emphasize that the relation (78) is consistent with a non-intermittent (K41) picture of turbulence.
In this case, the Eulerian singularity spectrum is such that DE (1/3) = 1 and DE (h) = −∞ if h �= 1/3. Using relation (78),
we obtain DL(1/2) = 1 and DL(h) = −∞ if h �= 1/2. This is consistent with 〈(δτ v)2〉 ∝ τ and more generally with Eq. (77).

We represent in Fig. 7 various singularity spectra used in the present article, in both the Eulerian and Lagrangian frame-
work, as it was done in Refs. [20,62]. First of all, we display the Eulerian quadratic (Eq. (14)) and the She–Lévêque (Eq. (15))
singularity spectra using respectively a thick solid and dashed lines. One can see that the increasing part of the spectra
superimposes on each others. It means that, in a purely inertial description of turbulence, the quadratic and She–Lévêque
spectra are indistinguishable when using positive order structure functions. The decreasing parts are distinct. More sophis-
ticated signal analysis methods than computing velocity increment moments are required to investigate the decreasing part
of the singularity spectra, such as the wavelet transform modulus maxima (WTMM) [51], the inverse structure functions
method [78] or the wavelet leaders [52]. The conclusion of these investigations is that, given the statistical limitations
and linearization effects, experimental signals are consistent with a quadratic singularity spectrum (Eq. (14)) for both the
increasing and decreasing parts.

We furthermore display on the same plot (Fig. 7) the three different singularity spectra we are using. This includes the
quadratic Lagrangian spectrum (Eq. (57)) represented using a thin dotted lines, and the transformed Eulerian spectra using
the Borgas’ relation (Eq. (78)) displayed using thin solid and dashed lines. One can see that the increasing parts coincide
for the three cases, quantitative differences are shown concerning the decreasing part. Let us stress clearly that the Borgas’
relation being non-linear, a quadratic spectrum in the Eulerian spectrum is transformed into a non-quadratic spectrum in
the Lagrangian framework. This explains why the thin dotted and solid lines are distinct. In the sequel, we will see that
the decreasing part has a strong influence on the statistics of dissipative quantities in Lagrangian turbulence such as the



L. Chevillard et al. / C. R. Physique 13 (2012) 899–928 919
Fig. 7. Comparing Eulerian and Lagrangian singularity spectra: Eulerian quadratic singularity spectrum (Eq. (14), thick solid line), Eulerian She–Lévêque
spectrum (Eq. (15), thick dashed line), the thin solid and dashed lines correspond to their Lagrangian counterpart using the Borgas’ transformation (Eq. (78)),
dotted thin line correspond to the Lagrangian quadratic spectrum (Eq. (57)).

acceleration flatness (see Section 3.3), giving several arguments to discriminate these spectra when compared to empirical
data. Another important remark can be made at this stage. The Borgas’ transformation (Eq. (78)), given the Eulerian spectra
formerly introduced, predicts the existence of h-exponent greater than unity. This has strong implications on the singular
nature of Lagrangian velocity fluctuations as quantified with velocity increments and the universal character of acceleration.
We invite the reader to Sections 4.1 and 4.2 for further discussions of this important point.

3.3. Prediction of the variance and flatness of acceleration

This section is devoted to the multifractal predictions of acceleration. We will mainly focus on the variance and on
the flatness. The even order moments of acceleration are given by Eq. (63). Recall that 〈δ2〉 = 1 by definition, we get for
the acceleration variance:

〈
a2〉 = (

σ

T

)2 1

Z(0)

hmax∫
hmin

(
Re

R†

)− 2(h−1)+1−DL (h)
2h+1

dh (80)

Using a Gaussian approximation of the former integral (see Appendix A), we get

〈
a2〉 ≈ (

σ

T

)2

√√√√√ (
∂2θ L(h,0)

∂h2 )h=hL
0

(
∂2θ L(h,2)

∂h2 )h=hL
2

(
Re

R†

)−minh[ 2(h−1)+1−DL (h)
2h+1 ]

(81)

where

θ L(h, p) = p(h − 1) + 1 −DL(h)

2h + 1
(82)

and hL
p is the h-exponent for which f L(h, p) is minimum (in the same spirit as it is presented for the Eulerian case in

Appendix A). Once rephrased in terms of mean dissipation (using Eq. (25), we obtain σ 2/T = 〈ε〉R∗/15) and in terms of
Taylor-based Reynolds number Rλ (using Eq. (26)), we obtain〈

a2〉 = a0〈ε〉3/2ν−1/2 (83)

where a0 is a remaining non-dimensional quantity that includes intermittent corrections, tabulated in various flow condi-
tions in Refs. [23,79]

a0 ≈
(
R∗

15

)3/2 1√
R†

√√√√√ (
∂2θ L(h,0)

∂h2 )h=hL
0

(
∂2θ L(h,2)

∂h2 )h=hL
2

(
4

R∗
R2

λ

R†

)−minh[ 2(h−1)+1−DL (h)
2h+1 ]− 1

2

(84)

When using the quadratic Lagrangian singularity spectrum (Eq. (57)) with R† = 30, we get:

a0 = 0.6443R0.1548 (85)
λ
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Fig. 8. Multifractal predictions for the variance and flatness of acceleration. Different curves correspond to different sets of parameters DL(h) and R†:
quadratic Lagrangian spectrum (Eq. (57)) and R† = 30 (dotted line), quadratic Eulerian spectrum (Eq. (14)) with R† = 6 (solid line), and the She–Lévêque
spectrum (Eq. (15)) with R† = 2 (dashed line). In the last two cases, the Borgas’ transformation has been used (Eq. (78)). (a) Acceleration variance given
by Eqs. (85), (86) and (87). (b) Acceleration flatness based on the numerical integration of Eq. (88). Symbols correspond to numerical data: Rλ = 130,180
and 290 (�) and Rλ = 400 (∇) (Fig. 6), symbols ◦ and � correspond respectively to the flatness of acceleration and pressure gradient from Ref. [60].

Alternatively, when introducing the Eulerian quadratic spectrum (Eq. (14)) into the Lagrangian frame using Eq. (78), and
R† = 6, we obtain:

a0 = 1.3493R0.1342
λ (86)

A very similar result is obtained when plugging the Eulerian She–Lévêque spectrum (Eq. (15)) into the Lagrangian frame
using Eq. (78), and R† = 2:

a0 = 1.7603R0.141
λ (87)

These three predictions show similar dependence on the Reynolds number [69], but the multiplicative pre factor depends
strongly on the constant R† (Eq. (84)) that is found itself strongly dependent on the shape of the singularity spectrum
(see also the following discussion on the acceleration flatness). We show in Fig. 8(a) the Reynolds number dependence of
the factor a0 (Eq. (84)) for the three different sets of singularity spectrum DL(h) and constants R† (Eqs. (85), (86) and (87)).

Similar predictions can be derived for the acceleration flatness. This study will underline the limitations of the quadratic
Lagrangian singularity spectrum (Eq. (57)), to describe the fluctuations of the velocity increments. The acceleration flatness
can be expressed as the following function of the Reynolds number (Eq. (63))

F(a) = 〈a4〉
〈a2〉2

= 3Z(0)

∫ hmax
hmin

(Re
R† )

− 4(h−1)+1−DL (h)
2h+1 dh

(
∫ hmax

hmin
(Re
R† )

− 2(h−1)+1−DL (h)
2h+1 dh)2

(88)

The predictions of the acceleration flatnesses obtained by numerical integration of the integrals entering Eq. (88) are shown
in Fig. 8(b). These predictions are compared to DNS data, the ones used in Fig. 6 and the ones provided in Ref. [60].
Some quantitative differences are observed for both the Reynolds number dependence and the multiplicative pre factor that
depends strongly on the value of R†. An analytical expression of the flatness (Eq. (88)) can be obtained once again using
a Gaussian approximation (cf. Appendix A):

F(a) ≈ 3
b4

b2
2

(
Re

R†

)χa
4 −2χa

2

(89)

where

χa
p = −min

h

[
p(h − 1) + 1 −DL(h)

2h + 1

]
and bp =

√√√√√ (
∂2θ L(h,0)

∂h2 )h=hL
0

(
∂2θ L(h,p)

∂h2 )h=hL
p

(90)

and θ L(h, p) is defined in Eq. (82). The exponents χa
p control the Reynolds number dependence of the acceleration flatness.

They depend only of the shape of the singularity spectrum DL(h). In contrast, the multiplicative pre factor depends on both
the shape of DL(h) and R†. When using the quadratic Lagrangian spectrum (Eq. (57)) with R† = 30, we get
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F(a) = 0.0115R1.73
λ (91)

When introducing the Eulerian quadratic spectrum (Eq. (14)) into the Lagrangian framework using Eq. (78), and R† = 6,
we obtain

F(a) = 0.4107R0.9174
λ (92)

whereas for the Eulerian She–Lévêque spectrum (Eq. (15)) and R† = 2, we get

F(a) = 1.1192R0.715
λ (93)

The three predictions (Eqs. (91)–(93)) we made using the three different sets of parameters (DL(h) and R†) show different
behaviors. First, we can see quantitative differences on the dependence on the Reynolds number. When compared to data,
the quadratic Lagrangian singularity spectrum (Eq. (57)) gives an exponent 1.73 much bigger than for the two other pa-
rameter sets. This seems to be consistent with data only at the lowest Reynolds numbers, but not at the highest Reynolds
numbers where the predicted exponent leads to some overestimate of the flatness. On the opposite, the quadratic Eulerian
singularity spectrum (Eq. (14)) and the log-Poisson one (Eq. (15)), once re-expressed in the Lagrangian framework using
the Borgas’ transformation (Eq. (78)), give a Reynolds number dependence consistent with data, especially at high Reynolds
numbers. Second, the multiplicative pre factors depend strongly on the shape of the respective DL and on R†.

Let us stress that the analytical approximations given in Eqs. (91)–(93) differ from a numerical estimation of the inte-
grals entering in Eq. (88). In particular, when the quadratic Lagrangian spectrum is chosen, differences are quantitatively
significant. This is clearly due to the range of integration [hmin;hmax] that is finite in the numerical integration (i.e. hmin = 0
and hmax = 1) whereas it is assumed infinite (i.e. hmin = −∞ and hmax = +∞) in the Gaussian approximation in order to
get simple analytical formula (thus avoiding any corrections given by the error function Erf). Let us point out that if we
instead use (i) the range hmin = 0 and hmax = 1 is used when working with the Eulerian quadratic singularity spectrum
further transformed using Eq. (75), and (ii) the range hmin = 1

8 and hmax = 1 when working with the She–Lévêque spectrum
(Eq. (15)), then the analytical predictions (Eqs. (92) and (93)) are very close to the numerical estimations of Eq. (88). This
underlines the limitations of the quadratic Lagrangian singularity spectrum (Eq. (57)) to represent the statistics of accelera-
tion. Indeed, additional analytical work shows that the exponent h that minimizes the function θ L(h,4) (Eq. (82)) and leads
to χa

4 (cf. Eq. (90)) is negative when using the quadratic Lagrangian singularity spectrum (Eq. (57)). This would imply the
existence of unphysical negative h-exponents. This drawback does not exist when using the Eulerian quadratic (Eq. (14)) or
the She–Lévêque spectra (Eq. (15)). Once again, this tells us that the quadratic Lagrangian singularity spectrum (Eq. (57)) is
not able to reproduce the acceleration statistics (see Section 4.1 for more detailed discussion about the range of integration
[hmin;hmax]).

4. Further discussions regarding the singular nature of velocity

4.1. Comments on the integration bounds hmin and hmax

This section is devoted to present further discussions on the choice of the integration bounds [hmin;hmax] that has been
made to define the probabilistic models of Eulerian (cf. Eqs. (32) and (33)) and Lagrangian (cf. Eqs. (65) and (66)) velocity
increments. This requires a clear definition of the Hölder exponents h. Let us stress that the dissipative cut-offs, as given by
the fluctuating dissipative length scale η(h) (Eq. (19)) and by the fluctuating dissipative time scale τη(h) (Eq. (59)), imply
that hmin � −1 in the Eulerian frame and hmin � −1/2 in the Lagrangian counterpart. In the sequel, we will consider only
inertial range fluctuations because the mathematical theory of singularities is well established (see Ref. [51] and references
therein). Our choice of the integration domain will be based on these considerations. In Ref. [67], in which only the She–
Lévêque spectrum is considered, other choices have been made.

The Hölder exponent h(x0) at a point x0 of a singular signal u(x) (the Lagrangian velocity v(t) could be chosen without
loss of generality) is defined as the biggest exponent h such that it exists a polynomial P N of order N and a positive
constant C verifying∣∣u(x) − P N(x − x0)

∣∣ � C |x − x0|h(x0) (94)

Let us stress that P N is the Taylor’s development of order N of the signal u and typically, N � h(x0) < N + 1. In other words,
h(x0) is the exponent that defines the first singular behavior entering in the Taylor development of u in the neighborhood
of x0:

u(x) = u(x0) + (x − x0)u(1)(x0) + · · · + (x − x0)
N

N! u(N)(x0) + C ′|x − x0|h(x0) (95)

where u(N) = dN u/dxN and C ′ a constant. This shows that the velocity increment is only sensitive to exponents 0 � h � 1
because it is orthogonal to constants only. Thus, we chose for the Eulerian framework hmin = 0 and hmax = 1 when deal-
ing with the quadratic spectrum (Eq. (14)) and hmin = 1/9 and hmax = 1 when dealing with the She–Lévêque spectrum
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Fig. 9. Velocity increment Flatness for various sets of empirical data and increment order. Different lines correspond to different velocity increments orders:
first (solid), second (dashed-dot), third (dashed) and fourth (dotted). (a) Eulerian velocity flatness using the data from Modane’s wind tunnel (Rλ = 2500).
(b) Experimental Lagrangian velocity flatness Rλ = 740 from Ref. [24]. (c) and (d) Numerical Lagrangian velocity flatness Rλ = 290.

(Eq. (15)). Similar choices have been made in the Lagrangian framework, namely hmin = 0 and hmax = 1 when dealing with
the Lagrangian quadratic spectrum (Eq. (57)) and the Eulerian quadratic spectrum (Eq. (14)) once transformed in the La-
grangian frame using Borgas’ relation (Eq. (78)), hmin = 1/8 and hmax = 1 when dealing with the She–Lévêque spectrum
(Eq. (15)) once re-expressed in the Lagrangian frame.

As far as the quadratic spectrum (Eq. (14)) is considered, let us stress that the Eulerian predictions based on Eqs. (32)
and (33) are similar if one uses hmin = 0 and hmax � 1 or hmin = c1 − √

2c2 ≈ 0.1472 and hmax = c1 + √
2c2 ≈ 0.5944,

the two values of h such that DE (h) � 0. In the Lagrangian framework, considering the quadratic spectrum (Eq. (57)),
the predictions based on Eqs. (65) and (66) depend quantitatively on the range of integration. This is related to the fact that
the decreasing part of the Lagrangian quadratic spectrum (Eq. (57)) reaches the zero value at h ≈ 1. This would strongly
suggest the possible existence of h-exponents greater than unity, exponents that cannot be measured with an increment,
as explained at the beginning of this section. This is thus very tempting to study Lagrangian velocity fluctuations with
multiscale objects orthogonal to polynomials as it may appear in the Taylor development (Eq. (95)) if singularities h are
greater than unity. This is the subject of the following section in which higher order increments are considered, as they
were in Refs. [20,62,80,81].

4.2. Wavelet analysis of Eulerian and Lagrangian fluctuations

In order to check whether it exists singularities h greater than unity, we perform a higher order increments study of
velocity fluctuations. In the Eulerian framework, we will consider Nth order velocity increments defined as

δ�u(x) = δ
(1)
� u(x) = u(x + �) − u(x)

∀N � 2, δ
(N)
� u(x) = δ

(N−1)
� u(x + �) − δ

(N−1)
� u(x) (96)

With such defined δ
(N)
� u velocity increments, singularities 0 � h < N become accessible (see the discussion provided in

Section 4.1).
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We display in Fig. 9(a) the results of the statistical analysis of the first four velocity increments on the experimental
signal obtained in the Modane’s wind tunnel [17] that provides the highest Reynolds number Rλ = 2500. We choose to
display only the velocity increment flatness F (N)(�) defined as

F (N)(�) = 〈(δ(N)
� u)4〉

〈(δ(N)
� u)2〉2

(97)

In the inertial range of scales, namely � ∈ [10−2.5L; L], one can see that the observed power-law is independent on the
increment order N . This means that singularities h greater than unity are not observed on Eulerian fluctuations, as it could
have been expected from the shape of the well accepted quadratic or She–Lévêque singularity spectra. This has an important
implication on the multifractal formalism: the Eulerian singularity spectrum DE (h) is indeed measurable with the first order
N = 1 velocity increment.

At smaller scales � lying in the dissipative range, one can see a quantitative dependence on the increment order N: as N
increases, the transition from the inertial and dissipative ranges is steeper and steeper. This can be easily understood while
generalizing the present probabilistic approach (Eqs. (32) and (33)) to any Nth order velocity increments, with thus the
same singularity spectrum DE (h). Indeed, the dependence on the order N comes from the behavior in the dissipative range
of the Nth order velocity increment, which, to be consistent with the Taylor development of velocity, reads

δ
(N)
� u(x) ∼

�→0
�N∂N

x u(x) (98)

The fluctuating nature of the dissipative scale η(h) (Eq. (19)) is independent on the way one is looking at velocity fluc-
tuations and thus can be parametrized with the exponent h, although the constant R∗ might depend on the order N .
The probabilistic modeling of velocity increments, consistent with the Taylor development (98), follows:

δ
(N)
� u

law= σ (N)β
(N)
� δ with β

(N)
� = ( �

L )h

[1 + ( �
η(h)

)−2](N−h)/2
(99)

the random variable δ being again a zero average unit variance Gaussian noise, (σ (N))2 = 〈(δ(N)
L u)2〉 = (2N)!

(N!)2 〈u2〉 (this can

be easily obtained using the binomial theorem), and the h-distribution being unchanged and given by Eq. (33), but, in this
case, hmin = 0 and hmax = N . A numerical investigation of the Nth order velocity increment flatness (Eq. (97)) based on the
proposed probabilistic modeling (Eqs. (99) and (33)) shows the same type of behavior as observed on the Modane’s wind
tunnel velocity data and depicted in Fig. 9(a), namely a N-independent power-law in the inertial range and an intermediate
dissipative steeper and steeper as the order N increases (data not shown, see Ref. [62]). In the Eulerian framework, the first
order increment allows to measure fully the singular nature of velocity, the Nth order increment appears as a tool that
highlights unambiguously the dissipative range.

A similar study can be performed on the Lagrangian velocity using the Nth order velocity time increments defined in
the following way:

δτ v(t) = δ
(1)
τ v(t) = v(t + τ ) − v(t)

∀N � 2, δ
(N)
τ v(t) = δ

(N−1)
τ v(t + τ ) − δ

(N−1)
τ v(t) (100)

We display the statistical analysis of the experimental measurements (in Fig. 9(b), Rλ = 740) and of the numerical sim-
ulations (in Fig. 9(c)–(d), Rλ = 290) of the Lagrangian velocity using the four first Nth order velocity time increments
(Eq. (100)). The results and interpretations are very different from the Eulerian case (presented in Fig. 9(a)). We can in-
deed see that, in the inertial range (τ ∈ [10−1.5T ; T ] for the experimental signal and τ ∈ [10−0.7T ; T ] for the numerical
simulation), the Nth order flatness F (N)(τ ) underlies a transition between the N = 1 and N = 2 velocity time increment.
Recall that in the Lagrangian framework, no clear power-laws are observed (see the discussion of Fig. 6). We display never-
theless the slope (i.e. −0.34 = −4cL

2) that we would be observed if experimental data and simulations were performed at
higher Reynolds numbers. As for N = 1 velocity increments, higher order (N � 2) velocity increments do not exhibit clear
power laws but still do exhibit a steeper behavior. We are thus led to the conclusion that high order velocity increments
do behave differently depending on the order N: the level of intermittency for N = 1 is lower than the one observed for
N � 2. This can be seen as a proof of the existence of singularities h greater than unity but smaller than 2, since the inertial
range is found independent of the order N as long as N � 2. It also says that the singular nature of Lagrangian velocity
can be captured by an increment δ(N) of order N � 2, the first order increment giving a biased singularity spectrum, that
underestimates the intermittency coefficient, because of the existence of singularities greater than unity.

In the dissipative range, in a similar fashion than in the Eulerian case, the rapid increase of the flatness is steeper and
steeper as the order N of the analyzing increment increases. This can be obtained using a similar probabilistic modeling of
the velocity increment, as it was generalized in the Eulerian frame (i.e. Eq. (99)):

δ
(N)
τ v

law= σ (N)β
(N)
τ δ with β

(N)
τ = ( τ

T )h

[1 + ( τ )−γ ](N−h)/γ
(101)
τη(h)
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the expressions of the dissipative time scale τη(h) (Eq. (59)) and the h-distribution (Eq. (66)) being unchanged, although

the constant R† might depend on N and the range of integration being hmin = 0 and hmax = N , and (σ (N))2 = 〈(δ(N)
T v)2〉 =

〈(δ(N)
L u)2〉 = (2N)!

(N!)2 〈u2〉.

We have thus shown that some singularities exponent h greater than unity and smaller than 2 exist in the Lagrangian
frame, and not in the Eulerian frame. This observation is consistent with the Borgas’ transformation (Eq. (78)) that indeed
does predict these smooth behaviors in the Lagrangian trajectories starting from the well accepted Eulerian singularity spec-
tra (Eqs. (14) and (15)). This has a direct implication on the Lagrangian acceleration. Indeed, it suggests that acceleration
might not be the right quantity to look at from a multiscale perspective. More precisely, it appears to be difficult to under-
stand properly acceleration statistics as the dissipative limit of velocity increments statistics in the inertial range as it can
be done in the Eulerian framework. This is also tempting to interpret the non-universal features observed in empirical ac-
celeration as a manifestation of the biased behavior of a first order increment and underlines the importance of Lagrangian
velocity higher order derivatives as unbiased quantities.

5. Conclusions – perspectives

We have shown all along the article that a phenomenological theory of turbulent velocity fluctuations can be written
down. Assuming the probability laws in the inertial range, we can derive explicit predictions for the statistics of velocity
gradients and acceleration that can be compared to experimental and numerical data. In the Eulerian framework, assuming
a quadratic (Eq. (14)) or a log-Poisson (Eq. (15)) singularity spectra, and a universal constant R∗ , we can predict accurately
the statistics of velocity gradients, including the flatness (Eq. (28)) and skewness (Eq. (39)).

In the Lagrangian framework, predictions, when compared to experimental and numerical data, are not as satisfactory as
in the Eulerian framework. In particular, the remaining constant R† is shown to depend strongly on the precise shape of the
Lagrangian singularity spectrum DL(h). Furthermore, it is shown, using the Borgas’ transform (Eq. (78)), that the two widely
accepted Eulerian singularity spectra (Eqs. (14) and (15)) lead to quantitative differences when computing the acceleration
flatness (Eqs. (92) and (93)), whereas a quadratic approximation for DL(h) (Eq. (57)) leads to an irrealistic acceleration
flatness (Eq. (91)) at high Reynolds number. Nevertheless, these significant differences appear as a way to discriminate in
the Eulerian framework the two former singularity spectra (Eqs. (14) and (15)). We also mention the intrinsic limitations of
the (first order) velocity increment to quantify accurately the singular nature of the Lagrangian velocity (Section 4.2). We
thus propose to study higher order velocity increments (Eqs. (96) and (100)) in order to quantify precisely the singular
nature of the velocity fluctuations. We showed that indeed singularities greater than unity do exist in the Lagrangian
framework.

As perspectives, we can mention:

– To investigate further the multifractal predictions of the velocity derivatives skewness (see Section 2.2.1). The present
formalism underestimates the skewness of derivatives when compared to data (see Fig. 3(d)), although the predicted
Reynolds number dependence is realistic and a lot scatter is found in experimental data. To that regard, the experimen-
tal resolution is a key issue. Specially designed numerical experiments could give some hints on the influence of the
resolution on this quantity, as it has been done in Ref. [82].

– A theoretical explanation of the value of the universal constant R∗ (or similarly of the Kolmogorov constant cK ) would
be welcome. More precisely, we may wonder how this value depends on the shape of the singularity spectrum DE (h).
This issue is even more crucial in the Lagrangian framework since (see Section 3.3) the constant R† is very different if
we work with different singularity spectra.

– We have seen that the (first order) Lagrangian velocity increment is not adapted to study the singular nature of the
velocity along the trajectories. The acceleration appears to be thus an ill-posed quantity and we could question its
universality. Indeed, depending on the flow geometry (von Karman flow, wind tunnel, fully periodic DNS, etc.), a lot of
scatter is found in data (see [79]). To this regard, the second order time derivative of Lagrangian velocity d2 v/dt2 may
be more independent on the large-scale geometry of the flow than the first order one. Performing such a measurement
(or a numerical simulation) will be much more difficult because of the presence of noise. It would be very interesting
to quantify precisely the Reynolds number dependence of the variance and flatness of this quantity, as it was initiated
in Ref. [60].

– The derivation of the Eulerian singularity spectrum from first principles is still missing. Recently, some progresses
have been made while studying the dynamics of the velocity gradient tensor Aij = ∂u j/∂xi along Lagrangian trajecto-
ries [83–91]. In particular, in Refs. [89,90] is proposed a stationary process for the velocity gradient tensor that predicts
in a realistic way the longitudinal and transverse intermittencies. This theoretical investigation gives an Eulerian singu-
larity spectrum consistent with the one observed on data (Eq. (14)).

– In this article, we focus on two-points quantities, namely the velocity increments, fully determined by the corresponding
probability densities Pδ�u(δ�u) and Pδτ v(δτ v). Nothing is said on the long-range correlated nature of velocity. Indeed,
it is shown in Refs. [25] and [19] that the acceleration amplitude is correlated over the integral time scale T . In a similar
fashion, it has been known for a long time that dissipation is correlated over the integral length scale L [6,92]. Taking
into account this peculiar correlation structure of velocity allows to propose stochastic processes (one-dimensional
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in the Lagrangian case, three-dimensional vectorial for the Eulerian case) able to mimic the behavior of velocity in
the inertial range [25,93]. It remains to propose such stochastic processes able to reproduce velocity statistics in the
intermediate and dissipative ranges and more generally, to give a stochastic representation of the differential action of
viscosity as pointed out by the fluctuating nature of the dissipative scales (Eqs. (19) and (59)).
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Appendix A. Gaussian approximation and steepest-descent estimation

The aim of this appendix is to elaborate on a Gaussian approximation that can be made to compute analytically the
integrals entering, for example in Eq. (24) or (28). Let us consider, without loss of generality, the integral

I(p) =
hmax∫

hmin

(
Re

R∗

)− p(h−1)+1−DE (h)
h+1

dh (A.1)

with Re → +∞. We first perform a Taylor’s development of the exponent of the Reynolds number around the exponent hp

that minimizes it, namely

θ E(h, p) = p(h − 1) + 1 −DE(h)

h + 1
= θ E(hp, p) +

(
∂2θ E

∂h2

)
h=hp

(h − hp)2

2
+ o

[
(h − hp)2] (A.2)

When assuming that hmin = −∞ and hmax = +∞, we can approximate the integral I(p) as a Gaussian integral, i.e.

I(p) ≈
(
Re

R∗

)−minh[ p(h−1)+1−DE (h)
h+1 ] +∞∫

−∞

(
Re

R∗

)−( ∂2θ E

∂h2 )h=hp
(h−hp )2

2

dh

=
√

2π

(∂2θ E

∂h2 )h=hp

(
Re

R∗

)−minh[ p(h−1)+1−DE (h)
h+1 ]

(A.3)

Then, the even order moment of velocity gradient (Eq. (23)) can be obtained in the following approximate way (including
the normalizing constant Z(0)):

〈
(∂xu)2p 〉 =

√√√√√ (
∂2θ E (h,0)

∂h2 )h=h0

(
∂2θ E (h,2p)

∂h2 )h=h2p

(
Re

R∗

)−minh[ 2p(h−1)+1−DE (h)
h+1 ]

(A.4)

Moreover from Eqs. (A.4) and (24), we get a precise estimation of the dissipation:

〈ε〉 ≈
Re→+∞

√√√√ (
∂2θ E (h,0)

∂h2 )h=h0

(
∂2θ E (h,2)

∂h2 )h=h2

15

R∗
σ 3

L
(A.5)

Using the quadratic singularity spectrum (Eq. (14)) with c2 = 0.025, we get

〈ε〉 ≈
Re→+∞ 0.97

15

R∗
σ 3

L
(A.6)

in very good agreement with the approximation made in Eq. (25). Similar calculations can be made for the velocity deriva-
tive flatness, and we get (for the quadratic singularity spectrum (Eq. (14)) with c2 = 0.025):

〈(∂xu)4〉
〈(∂xu)2〉2

≈
Re→+∞ 3 × 0.99 ×

(
Re

R∗

)0.18

(A.7)

once again is very close agreement with the approximation made in Eq. (28) without taking into account these corrections.
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Appendix B. Velocity increment and gradient probability density functions

We follow here the presentation of a classical textbook on random variables [94]. Consider two random variables x and y,
and a function g(x, y). We form the random variable z as a function of the two random variables x and y, namely

z = g(x,y) (B.1)

Consider the domain Dz such that{
(x,y) ∈ Dz

} = {
g(x,y) � z

}
(B.2)

The distribution function F z(z) defined as the probability P to have z � z is given by [94]

F z(z) = P {z � z} = P
{
(x,y) ∈ Dz

} =
∫ ∫

Dz

Px,y(x, y)dx dy (B.3)

where Px,y is the joint-density of the random variables x and y. Then, the probability density function Pz(z) = dF z(z)/dz
is given by the derivative, with respect to z, of the distribution function F z(z).

Consider now the random variable δ�u formed as the product of two random variables written as δ�u = σβ�(h)δ, with
the function β�(h) > 0 definite positive (Eqs. (32), (65) or (44)). In this case, the domain Dδ�u is easily obtained

{(
β�(h), δ

) ∈ Dδ�u
} =

{
h ∈ [hmin,hmax], δ ∈

]
−∞,

δ�u

β�(h)

]}
(B.4)

We get for the distribution function Fδ�u of the velocity increments

Fδ�u(δ�u) =
hmax∫

h=hmin

δ�u
σβ�(h)∫

δ=−∞
Pδ,h(δ,h)dδ dh (B.5)

The probability density function of the random variable δ�u is readily obtained from Eq. (B.5) taking a derivative with
respect to δ�u, and we get

Pδ�u(δ�u) = dFδ�u(δ�u)

dδ� u
=

hmax∫
h=hmin

1

σβ�(h)
Pδ,h

(
δ�u

σβ�(h)
,h

)
dh (B.6)

which justifies Eq. (44). If furthermore, the random variables h and δ are assumed independent, as in Eqs. (32) and (65),
then the joint density can be factorized, i.e. Pδ,h(δ,h) =Pδ(δ)Ph(h) and the distribution (Eq. (43)) is justified.
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