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Abstract Motivated by isotropic fully developed turbulence, we define a theory of sym-
metric matrix valued isotropic Gaussian multiplicative chaos. Our construction extends the
scalar theory developed by J.P. Kahane in 1985.
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1 Introduction

In the pioneering work [17], J.-P. Kahane introduced the theory of Gaussian multiplicative
chaos. Given a metric space and a reference measure, Gaussian multiplicative chaos gives a
mathematically rigorous definition to random measures defined as limits of measures with
a lognormal density with respect to the reference measure. The main application of this
theory was to define the Kolmogorov-Obhukov model of energy dissipation in a turbulent
flow (see [19, 21]): in this context, the metric space is the Euclidean space R

3 equipped with
the Lebesgue measure and the log density has logarithmic correlations. Since this seminal
work, the theory of Gaussian multiplicative chaos has found many applications in a broad
number of fields among which finance [3, 12] and 2-d quantum gravity (see [2, 11, 20] for
the physics literature and [4, 5, 13, 24] for the mathematics literature).

Three dimensional fluid turbulence is an archetypal out-of-equilibrium system in which
energy is constantly injected at large scale and dissipated at the small viscous scales in a
stationary manner. A statistical approach has been rapidly adopted in order to describe the
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complex multi-scale motions taking place in the flow. In the seminal work of Kolmogorov,
known as the K41 theory [15, 18], focusing on fully developed homogeneous and isotropic
turbulence, it is shown from the Navier-Stokes equations that energy is transferred from
large to small scales at a constant rate, independently on viscosity: this is the fourth-fifth law.
Further phenomenological extensions of this theory [15, 19] took into account the peculiar
statistical nature of the dissipation field that implies intermittent (or multifractal) corrections
and probably more importantly, a long range correlated structure of velocity fluctuations. At
this stage, scalar multiplicative chaos appears to be a good candidate to give a stochastic rep-
resentation of the dissipation field, although nothing is said on energy transfers that ask for a
stochastic model for the velocity field itself. Indeed, modern statistical studies underline the
importance of defining a probabilistic model for the velocity field. Ideally, one looks for a
field as close as possible to an invariant measure of the equations of motion (see for instance
[14]). One of the first attempts in this direction is proposed in Ref. [26] where the authors
use a scalar multiplicative chaos to disturb an underlying Gaussian velocity field. A great
success of this work is to propose an intermittent velocity field but unfortunately, the au-
thors failed at proposing an incompressible dissipative velocity field, i.e. a field that respects
the fourth-fifth law of Kolmogorov. One of the reasons is that the construction of the field
does not include a basic mechanism of the Euler equations, namely the vorticity stretching
phenomenon. This is the main novelty of the approach proposed in Ref. [8]. One of the key
steps of this construction is the introduction of the exponential of a Gaussian isotropic sym-
metrical random matrix in replacement of the scalar chaos used in Ref. [26]. Heuristically,
this symmetric matrix is reminiscent of the deformation field S , i.e. the symmetric part of
the velocity gradient tensor, that stretches vorticity ω = ∇ ∧ u, where u is the velocity field,
according to the Euler equations: Dω/Dt = Sω, with D/Dt = ∂/∂t + u.∇ the Lagrangian
derivative. It is easily seen that a Taylor development at short time τ of the former dynamics
leads to a linear differential equation that can be solved using matrix exponentials of the
initial deformation field τ S(0). Then, logarithmic correlations and the free parameter γ 2

quantifying the level of intermittency are introduced by hands. A numerical investigation of
the obtained velocity field shows indeed a mean energy transfer across scales.

As far as we know, there is no matrix valued theory of Gaussian multiplicative chaos that
would be crucial in further understandings of the mechanisms at the origin of this energy
transfer as observed numerically. The purpose of this work is thus to define such a theory for
Gaussian symmetric and isotropic matrices. In the next section, we present the framework
and the main results. Section 3 is devoted to the proofs of our main results. In the Appendix,
we gather general formulas which are useful in our proofs.

Notations: we denote by M(Rd) the set of measures on R
d and by Ms(R

d) the set of
signed measures on R

d . We denote by S(Ms(R
d)) the set of symmetric matrices whose

components belong to Ms(R
d). The N -dimensional identity matrix is denoted by IN and

PN = (1)1�i,j�N stands for the N × N matrix filled with the coefficient 1 in each entry.

2 Framework and Main Results

We first motivate the structure of our Gaussian matrix-valued random field. We remind that a
random matrix X is isotropic if for any real orthogonal matrix O , the matrices X and OXtO

have the same probability law (where tO denotes the transpose of the matrix O). If N is an
integer and if one considers a centered symmetric isotropic Gaussian N ×N -random matrix
(Xi,j )1�i,j�N , it takes on the following structure (see Lemma 4):
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• the diagonal entries (X1,1, . . . ,XN,N) are independent of the off-diagonal entries
(Xi,j )i<j ,

• the covariance matrix of the diagonal entries is given by (1 + c)σ 2IN − cσ 2PN where
c ∈ ]−1, 1

N−1 ] and σ 2 � 0,
• the off-diagonal entries (Xi,j )i<j are mutually independent with variance σ 2 1+c

2 .

Therefore, if one wishes to consider a general Gaussian field of symmetric isotropic ma-
trices, the natural construction of such a field is to introduce a spatial structure preserving
the above statistical structure. This is the main motivation for the construction of our field,
which we describe now.

We introduce a probability space (Ω, F ,P ) and denote expectation by E. We want to
define a homogeneous field of symmetric isotropic Gaussian matrices with logarithmic spa-
tial correlations. The spatial correlation structure will be encoded by a kernel K : R

d → R

of positive type of the form

K(x) = γ 2 ln+
L

|x| + g(x)

where g is some continuous bounded function (in the sequel, we set g(0) = m) and L > 0.
Due to the divergence of this kernel at x = 0, it is well known that the construction of such a
field requires a cut-off approximation procedure to get rid of this singularity. Therefore, for
ε > 0 (which stands in a way for the cut-off approximation rate), we introduce a covariance
kernel Kε : R

d → R such that

σ 2
ε

def= Kε(0) = γ 2

(
ln

L

ε
+ 1

)
, and σ 2

|y−x|
def= Kε(x) = K(x) for all |x| > ε. (1)

Then we consider an integer N � 2 and c ∈ ]−1, 1
N−1 ]. On this probability space, for

ε > 0, we consider a centered symmetric random matrix-valued Gaussian process Xε(x) =
(Xε

i,j (x))1�i,j�N indexed by x ∈ R
d . We denote by

Xε
d(x) = (

Xε
1,1(x), . . . ,Xε

N,N (x)
)

the Gaussian vector made up of the diagonal entries of the matrix Xε(x). We assume:

• the diagonal entries (Xε
d(x))x∈Rd are independent of the off-diagonal entries

((Xε
i,j (x))i<j )x∈Rd ,

• the covariance matrix kernel of the diagonal entries is given by

E
[
tXε

d(x)Xε
d(y)

] = (
(1 + c)IN − cPN

)
Kε(x − y),

• the off-diagonal entries ((Xε
i,j (x))i<j )x∈Rd are mutually independent, each of which with

covariance kernel given by

E
[
Xε

i,j (x)Xε
i,j (y)

] = 1 + c

2
Kε(x − y).

We also define

σ̄ 2
ε

def= σ 2
ε (1 + c)

2
.
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Remark The canonical example of such a kernel K is when it coincides with γ 2 ln L
|x| for x

small enough. In dimension 1 and 2 we can even choose K(x) = γ 2 ln+ L
|x| . In dimension

greater than 3, we can use the constructions developed in [17, 25]: for examples of such
kernels, see Appendix A.1. Another approach is to use the convolution techniques developed
in [27]. This does not exactly fall into the framework set out above because the convoluted
kernel depends on ε at all scales, i.e. for |x − y| > ε. Nevertheless, this has no significant
influence on the forthcoming computations so that we also claim that our results remain
valid for such regularization procedures.

Remark Note that the diagonal terms are independent if and only if c = 0. In this case,
the above structure coincides with the usual Gaussian Orthogonal Ensemble (GOE) [1, 22].
Note also that the boundary case c = 1

N−1 corresponds to trace-free matrices.

Remark Application in turbulence. In the paper [8], the authors consider the following
boundary case as a building block of their random velocity fields

γ 2 = 8

3
λ2, N = 3, c = 1

N − 1
= 1

2

where λ2 is found to fit experimental data for λ2 ≈ 0.025 [8, 9]. Here, the zero trace property
is reminiscent of the incompressibility condition imposed on velocity fields.

We want to study the convergence of the following random variable which lives in
S(Ms(R

d))

Mε(A) = 1

cε

∫
A

eXε(x)dx, A ⊂ R
d , (2)

where cε stands for a renormalization constant. From the scalar theory, we know that the
constant cε is not trivial in order to avoid the blowing up of the above matrix integral. We
will show that we can choose cε so as to have E[Mε(A)] = |A|Id where |A| is the Lebesgue
measure of A. Unlike the scalar theory, the explicit form of such a cε is not straightforward
due to noncommutativity of the framework. We will prove that the normalization constant
cε has the following explicit form

cε = 1

N

Γ (1/2)

Γ (N/2)
(1 + c)(N−1)/2σN−1

ε e
σ2
ε
2

where Γ stands for the usual Gamma function.

Theorem 1 Let 0 < γ 2 < d . Then there exists a random matrix measure M which lives in
S(Ms(R

d)) and such that for all bounded A ⊂ R
d

E
[
tr
(
Mε(A) − M(A)

)2] →
ε→0

0.

We also have the following asymptotic structure

E
[
tr
(
M

(
B(0, 
)

)2)] ∼

→0

N2VN

Γ (N/2)eγ 2 lnL+m

(1 + c)(N−1)/2Γ (1/2)


2d−γ 2

(γ 2 ln 1


)(N−1)/2

(3)
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with VN = ∫
|v|,|u|�1

dudv

|v−u|γ 2 . Furthermore, we get the following limit for every integer k � 2

such that k < 2d

γ 2

lnE[tr(M(B(0, 
))k)]
ln


→

→0

ζ(k) (4)

where ζ(k) = (d + γ 2

2 )k − γ 2

2 k2.

Note that it would be interesting to prove that this matrix-valued Gaussian multiplicative
chaos admits a phase transition as in the scalar case, which is likely to occur at γ 2 = 2d .

Conjecture 2 Let 0 < γ 2 < d . The power law spectrum of M is given by the following
expression: for all q ∈ ]0, 2d

γ 2 [, ∀
 ∈ (0,1],

E
[
tr
(
M

(
B(0, 
)

)q)] 	 Cq

ζ(q)(− ln 
)

(q−1)(1−N)
2 ,

where Cq > 0 is a constant and the structure exponent is given by

ζ(q) =
(

d + γ 2

2

)
q − γ 2

2
q2.

We give in the Appendix a heuristic derivation of the above equivalent. If this conjecture
is true, this would show that noncommutativity yields an extra log factor in the power-law
spectrum of M .

Remark Note that one can define a notion of “metric” (actually a measure) through the
quantity

A ∈ B
(
R

d
) 
→ trM(A).

Therefore we can define the notion of Hausdorff dimension associated to this “metric” (see
[5, 13, 24]). It would be interesting to prove a corresponding KPZ formula and relate it with
a KPZ framework.

3 Proofs of the N -Dimensional Case

Let us first mention that several results about isotropic matrices and related computations
are gathered in the Appendix and will be used throughout this section.

3.1 Joint Law of the Eigenvalues of Gaussian Isotropic Matrices

We consider a symmetric random matrix X = (Xi,j )1�i,j�N made up of centered Gaussian
variables with the following covariance structure: the off-diagonal terms (Xi,j )i<j are i.i.d.
with variance σ 2. The diagonal term (X1,1, . . . ,XN,N) is independent from the off-diagonal
and it has the following covariance structure

KN = (
E[Xi,iXj,j ]

)
1�i,j�N

= (1 + c)σ 2
d IN − cσ 2

d PN
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where IN is the identity matrix, PN = (1)i,j and c ∈ ]−1, 1
N−1 [. By noting that P 2

N = NPN ,
we get the following inverse for K if c �= 1

N−1

K−1
N = 1

σ 2
d (1 + c)

IN + c

σ 2
d (1 + c)

1

(1 + c(1 − N))
PN

The density of the random matrix, with respect to the Lebesgue measure (dxi,j )i�j , is there-
fore given by

f
(
(xi,j )i�j

) = 1

ZN

e
− 1

2σ2
d

(1+c)

∑N
i=1 x2

i,i
− c

2σ2
d

(1+c)

1
(1+c(1−N))

(
∑N

i=1 xi,i )
2− 1

2σ2
∑

i<j x2
i,j

where

ZN = (2π)N(N+1)/4σN
d σN(N−1)/2(1 + c)(N−1)/2

√
1 − (N − 1)c

is a normalization constant.
Therefore if we have the following condition

σ 2
d (1 + c) = 2σ 2, (5)

as we have required in Sect. 2, we can rewrite the above density in the following matrix form

f (X) = 1

ZN

e
− c

2σ2
d

(1+c)

1
(1+c(1−N))

(trX)2− 1
2σ2

d
(1+c)

trX2

(6)

with ZN = 2N/2πN(N+1)/4σ
N(N+1)/2
d (1 + c)(N−1)(N+2)/4

√
1 + c(1 − N). This shows that the

matrix is isotropic, namely that for any real orthogonal matrix O , the matrices X and OXtO

have the same probability law. Therefore by applying [1, Proposition 4.1.1, page 188], we
get the density of the unordered eigenvalues

f
(
(λi)1�i�N

) = 1

Z̄N

e
−α(

∑N
i=1 λi )

2− 1
2σ2

d
(1+c)

∑N
i=1 λ2

i
∏
i<j

|λj − λi |, (7)

where α = c

2σ 2
d
(1+c)

1
(1+c(1−N))

and Z̄N = 2N(N−1)/4 ρ(U1(R))N N !
ρ(UN (R))

ZN (notations of [1]). We re-

mind that ρ(UN(R)) = 2N/2(2π)N(N+1)/4
∏N

k=1
1

Γ (k/2)
(see [1, page 198]) and thus

Z̄N = N !(2π)N/2

(
N∏

k=1

Γ (k/2)

Γ (1/2)

)
σ

N(N+1)/2
d (1 + c)(N−1)(N+2)/4

√
1 + c(1 − N). (8)

The isotropic condition (Eq. (5)) ensures also that the collection of eigenvectors (vi)1�i�N

is independent of the eigenvalues (λi)1�i�N , and they are distributed uniformly on the unit
sphere according to the Haar measure [1, Corollary 2.5.4, page 53].

3.2 Computations of the Renormalization

We consider here isotropic symmetric matrices Xε(x) = (Xε
i,j (x))1�i,j�N as defined in

Sect. 2 and compute the renormalization of order 1, i.e. the constant cε such that

E
[
eXε(x)

] = cεIN = E[tr eXε(x)]
N

IN.
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The isotropic nature of the matrices ensures the proportionality of the former expectation to
the identity matrix IN . We want more precisely an equivalent of cε as ε → 0. We have

cε = 1

Z̄N

∫
RN

eλ1e
−αε(

∑N
i=1 λi )

2− 1
2σ2

ε (1+c)

∑N
i=1 λ2

i
∏
i<j

|λj − λi |dλ1 · · ·dλN,

where αε = c

2σ 2
ε (1+c)

1
(1+c(1−N))

and the normalization constant Z̄N is given by Eq. (8) with

σ 2
d = σ 2

ε = γ 2(ln L
ε

+ 1).
We set ui = λi

σε
and therefore we get

cε = σN(N+1)/2
ε

Z̄N

∫
RN

eσεu1e
−α(

∑N
i=1 ui )

2− 1
2(1+c)

∑N
i=1 u2

i

∏
i<j

|uj − ui |du1 · · ·duN,

where α = c
2(1+c)

1
(1+c(1−N))

. We thus introduce

ϕ(u1, . . . , uN) = σεu1 − α

(
N∑

i=1

ui

)2

− 1

2(1 + c)

N∑
i=1

u2
i

The function ϕ is maximal for u1 = Sε(1 + 2α(1 + c)(N − 1)), i � 2: ui = −2αSε(1 + c)

with Sε = σε
1

1+c
+2αN

. We thus set u1 = v1 + Sε(1 + 2α(1 + c)(N − 1)), i � 2: ui = vi −
2αSε(1 + c) to get

cε = σN(N+1)/2
ε e

σ2
ε
2

Z̄N

∫
RN

e
−α(

∑N
i=1 vi )

2− 1
2(1+c)

∑N
i=1 v2

i

∏
2�i

∣∣v1 − vi + (1 + c)σε

∣∣

×
∏

2�i<j

|vj − vi |dv1 · · ·dvN .

Therefore, we get the following equivalent by using the Laplace method

cε ∼
ε→0

σN(N+1)/2
ε (1 + c)N−1σN−1

ε e
σ2
ε
2

Z̄N

∫
RN

e
−α(

∑N
i=1 vi )

2− 1
2(1+c)

∑N
i=1 v2

i

∏
2�i<j

|vj −vi |dv1 · · ·dvN

By using Eq. (26) in the Appendix, this leads finally to the following equivalent as ε → 0

cε ∼
ε→0

1

N

Γ (1/2)

Γ (N/2)
(1 + c)(N−1)/2σN−1

ε e
σ2
ε
2 . (9)

3.3 Computation of the Moment of Order 2

In order to study the convergence, for ε → 0, of the Gaussian chaos Mε(A) (Eq. (2)), we
need to consider first the second-order moment E(Mε(A)2) = 1

c2
ε

∫
A×A

E(eXε(x)eXε(y))dxdy,
that involves the following quantity

E
(
eXε(x)eXε(y)

) = 1

N
E

[
tr
(
eXε(x)eXε(y)

)]
IN . (10)
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We will show that E(Mε(A)2) converges to a limit as ε → 0. Similarly, one can also prove
that the sequence (Mε(A))ε>0 is a L2 Cauchy sequence. Indeed, if ε, ε′ > 0 are two positive
real numbers, we can write:

E
[
tr
((

Mε(A)−Mε′
(A)

)2)] = E
[
tr
(
Mε(A)

)2]+E
[
tr
(
Mε′

(A)
)2]−2E

[
tr
(
Mε(A)Mε′

(A)
)]

.

We can then conclude along the same lines as below that E[tr(Mε(A))2] and
E[tr(Mε(A)Mε′

(A))] converge to the same limit as ε, ε′ go to 0.
Again, the proportionality to the identity matrix in (10) comes from the isotropic char-

acter of matrices and we will see moreover that, because the so-defined field of matrices is
homogeneous, the former quantity will depend only on |x−y|. The purpose of this section is
to compute this quantity. We will restrict to the case |y −x| > ε as the case |y −x| � ε, once
integrated, leads to vanishing terms in the limit ε → 0. It requires first the derivation of the
joint density of the two matrices Xε(x) and Xε(y). We will see indeed that the quantity will
depend only on |x − y|. We will also notice that, contrary to the one-point density (Eq. (6))
from which it can be shown that eigenvectors and eigenvalues are independent, eigenvalues
at point x are not only correlated to eigenvalues at point y, but also with eigenvectors at
point y. This intricate correlation structure is reminiscent of the noncommutative nature of
this field of matrices and is encoded in the so-called Harish-Chandra-Itzykson-Zuber inte-
gral over the orthogonal group, or angular-matrix integral, and its related moments. This is
an active field of research in random matrix theory and up to now, no explicit formula are
known in dimension N � 3 (see for instance [6, 7, 10] and references therein). Nonetheless,
we will succeed to get an explicit result in the asymptotic limit ε → 0.

3.3.1 Joint Density of Two Isotropic Matrices

We consider here two isotropic symmetric matrices Xε(x) = (Xε
i,j (x))1�i,j�N and Xε(y) =

(Xε
i,j (y))1�i,j�N as defined in Sect. 2. We recall that matrix components are logarithmically

correlated over space. We note xi,j = Xε
i,j (x) and yi,j = Xε

i,j (y), and in matrix form X =
Xε(x) and Y = Xε(y).

Let us first consider the diagonal terms

(x1,1, . . . , xN,N , y1,1, . . . , yN,N ).

The covariance structure K2N of these elements is given by

K2N =
(

σ 2
ε AN σ 2

|y−x|AN

σ 2
|y−x|AN σ 2

ε AN

)
,

where AN = (1 + c)IN − cPN and we recall that σ 2
ε = γ 2(ln L

ε
+ 1) and σ 2

|x−y| = γ 2 ln L
|x−y| .

We know that the inverse of K2N is given by

K−1
2N = 1

σ 4
ε − σ 4

|y−x|

(
σ 2

ε A−1
N −σ 2

|y−x|A
−1
N

−σ 2
|y−x|A

−1
N σ 2

ε A−1
N

)
,

where A−1
N = 1

(1+c)
IN +2αPN with α = c

2(1+c)
1

(1+c(1−N))
which leads to the following density
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f
(
(xi,i )1�i�N ; (yj,j )1�j�N

)

= cNe
− σ2

ε /(1+c)
∑

i x2
i,i

+2ασ2
ε (

∑
i xi,i )

2+σ2
ε /(1+c)

∑
i y2

i,i
+2ασ2

ε (
∑

i yi,i )
2−2σ2|y−x|/(1+c)

∑
i xi,i yi,i−4σ2|y−x|α(

∑
i xi,i )(

∑
i yi,i )

2(σ4
ε −σ4|y−x|)

where cN = 1

(2π)N
√

det(K2N )
. Now, det(K2N) = (σ 4

ε − σ 4
|y−x|)

N(1 + c)2(N−1)(1 + c(1 − N))2

and therefore cN = 1
(2π)N (σ 4

ε −σ 4|y−x|)N/2(1+c)(N−1)(1+c(1−N))
. A similar procedure can be per-

formed for the remaining N(N − 1) off-diagonal terms of the two matrices. The density
of the couple (X = Xε(x),Y = Xε(y)) is thus given by, in matrix form

f (X,Y )

= c̄Ne
− σ2

ε

2(1+c)(σ4
ε −σ4|y−x|)

(trX2+trY 2)− ασ2
ε

(σ4
ε −σ4|y−x|)

((trX)2+(trY)2)+ σ2|y−x|
(1+c)(σ4

ε −σ4|y−x|)
trXY+ 2ασ2|y−x|

σ4
ε −σ4|y−x|

trX trY

(11)

where c̄N = cN
1

πN(N−1)/2(1+c)N(N−1)/2(σ 4
ε −σ 4|y−x|)N(N−1)/4 . We can see in the expression of the

joint density of the two matrices X and Y (Eq. (11)) two different contributions. The first
one, with terms of the form trX2 + trY 2 and (trX)2 + (trY )2, relates the density of two
symmetric isotropic matrices as if they were independent. The second contribution relates
an interaction term coming from the logarithmic correlation of the components. Indeed, the
former vanishes if the matrices are independent, i.e. σ 2

|y−x| = 0.
At this stage, it is convenient to introduce two i.i.d. random matrices M = (Mi,j ) and

M ′ = (M ′
i,j ). These random matrices are taken to be living in the Gaussian Orthogonal

Ensemble (GOE), namely they are symmetric and isotropic with independent components
with the following distribution: the components (Mi,j )i�j are independent centered Gaus-
sian variables with the following variances

E
[
M2

i,j

] = (1 + c)(σ 4
ε − σ 4

|y−x|)
2σ 2

ε

, i < j ; E
[
M2

i,i

] = (1 + c)(σ 4
ε − σ 4

|y−x|)
σ 2

ε

.

With this, we get the following expression for E[F(X(x),X(y))], where F is any functional
of the two matrices X(x) and X(y)

E
[
F

(
X(x),X(y)

)]

= 1

Z
E

[
F

(
M,M ′)e− ασ2

ε

(σ4
ε −σ4|y−x|)

((trM)2+(trM ′)2)+ σ2|y−x|
(1+c)(σ4

ε −σ4|y−x|)
trMM ′+ 2ασ2|y−x|

σ4
ε −σ4|y−x|

trM trM ′]
,

where

Z = E
[
e

− ασ2
ε

(σ4
ε −σ4|y−x|)

((trM)2+(trM ′)2)+ σ2|y−x|
(1+c)(σ4

ε −σ4|y−x|)
trMM ′+ 2ασ2|y−x|

σ4
ε −σ4|y−x|

trM trM ′]
. (12)

By using classical theorems about isotropic matrices (see [1]), we know that M =
OD(λ)tO , M ′ = O ′D(λ′)tO ′ where O (resp. O ′) is uniformly distributed on the orthogo-
nal group of R

N and is independent of the diagonal matrix D(λ) (resp. D(λ′)) the diagonal
entries of which are the eigenvalues of M (resp. M ′).
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3.3.2 Joint Density of Eigenvalues of Two Correlated Isotropic Matrices

We are interested here in computing the renormalization constant Z (Eq. (12)). To do so,
we diagonalize the matrices M and M ′, and perform an integration over the remaining
degrees of freedom left by the eigenvectors (see [6] for instance). We define the eigen-
values of M as λ = (λ1, . . . , λN) ∈ R

d and we denote the Vandermonde determinant by
Δ(λ) = ∏

1�i<j�N |λi − λj |. We get

Z = 1

Rε
N

∫
RN ×RN

∣∣Δ(λ)
∣∣∣∣Δ(

λ′)∣∣e− σ2
ε

2(1+c)(σ4
ε −σ4|y−x|)

∑N
i=1 λ2

i
− σ2

ε

2(1+c)(σ4
ε −σ4|y−x|)

∑N
i=1 λ′2

i

× e
− ασ2

ε

(σ4
ε −σ4|y−x|)

((
∑N

i=1 λi )
2+(

∑N
i=1 λ′

i
)2)+ 2ασ2|y−x|

σ4
ε −σ4|y−x|

(
∑N

i=1 λi )(
∑N

i=1 λ′
i
)

J
(
D(λ),D

(
λ′))dλdλ′,

where Rε
N is a renormalization constant such that

1

Rε
N

∫
RN ×RN

∣∣Δ(λ)
∣∣∣∣Δ(

λ′)∣∣e− σ2
ε

2(1+c)(σ4
ε −σ4|y−x|)

∑N
i=1 λ2

i
− σ2

ε

2(1+c)(σ4
ε −σ4|y−x|)

∑N
i=1 λi ′ 2

dλdλ′ = 1,

and J is the following Harish-Chandra-Itzykson-Zuber integral [6, 7, 10], also called matrix
angular integral (dO stands for the Haar measure on ON(R))

J
(
D(λ),D

(
λ′)) =

∫
ON (R)

e

σ2|y−x|
(1+c)(σ4

ε −σ4|y−x|)
tr D(λ)OD(λ′)O−1

dO,

obtained while integrating over the eigenvectors that enter in the term trMM ′ of Eq. (12).

We make the change of variables ui = σε√
σ 4
ε −σ 4|y−x|

λi , u′
i = σε√

σ 4
ε −σ 4|y−x|

λ′
i (set γε =

√
σ 4
ε −σ 4|y−x|

σε
)

and get:

Z = γ N(N+1)
ε

Rε
N

∫
RN ×RN

∣∣Δ(u)
∣∣∣∣Δ(

u′)∣∣e− 1
2(1+c)

∑N
i=1 u2

i
− 1

2(1+c)

∑N
i=1 u′2

i

× e
−α((

∑N
i=1 ui )

2+(
∑N

i=1 u′
i
)2)+ 2ασ2|y−x|

σ2
ε

(
∑N

i=1 ui )(
∑N

i=1 u′
i
)
J
(
D(u),D

(
u′))dudu′,

where we have set

J
(
D(u),D

(
u′)) =

∫
ON (R)

e
1

1+c

σ2|y−x|
σ2
ε

∑N
i,j=1 uiu

′
j
|Oi,j |2

dO.

Therefore, since J (D(u),D(u′)) converges pointwise towards 1 as ε → 0, we can use the
Lebesgue dominated convergence theorem to get the following equivalent as ε → 0

Z ∼
ε→0

γ N(N+1)
ε

Rε
N

∫
RN ×RN

∣∣Δ(u)
∣∣∣∣Δ(

u′)∣∣e− 1
2(1+c)

∑N
i=1 u2

i
− 1

2(1+c)

∑N
i=1 u′2

i

× e−α((
∑N

i=1 ui )
2+(

∑N
i=1 u′

i
)2)dudu′,

that is straightforward to compute (see the Appendix).
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3.3.3 Two-Points Correlation Structure of the Matrix Chaos

We want to get an equivalent as ε → 0 of the quantity given in Eq. (10). To do so, we
consider the following quantity

Z̄ = E
[
tr
(
eMeM ′)

e
− ασ2

ε

(σ4
ε −σ4|y−x|)

((trM)2+(trM ′)2)+ σ2|y−x|
(1+c)(σ4

ε −σ4|y−x|)
trMM ′+ 2ασ2|y−x|

σ4
ε −σ4|y−x|

trM trM ′]
.

In the same spirit as formerly, we diagonalize the matrices M and M ′ and perform the
integration over the eigenvectors. We get

Z̄ = 1

Rε
N

∫
RN ×RN

∣∣Δ(λ)
∣∣∣∣Δ(

λ′)∣∣e− σ2
ε

2(1+c)(σ4
ε −σ4|y−x|)

∑N
i=1 λ2

i
− σ2

ε

2(1+c)(σ4
ε −σ4|y−x|)

∑N
i=1 λ′2

i

× e
− ασ2

ε

(σ4
ε −σ4|y−x|)

((
∑N

i=1 λi )
2+(

∑N
i=1 λ′

i
)2)+ 2ασ2|y−x|

σ4
ε −σ4|y−x|

(
∑N

i=1 λi )(
∑N

i=1 λ′
i
)

I
(
D(λ),D

(
λ′))dλdλ′,

where I is the following moment of the angular integral

I
(
D(λ),D

(
λ′)) =

∫
ON (R)

tr
(
eD(λ)OeD(λ′)O−1

)
e

σ2|y−x|
(1+c)(σ4

ε −σ4|y−x|)
tr D(λ)OD(λ′)O−1

dO.

We make again the change of variables ui = σε√
σ 4
ε −σ 4|y−x|

λi , u′
i = σε√

σ 4
ε −σ 4|y−x|

λ′
i (set γε =

√
σ 4
ε −σ 4|y−x|

σε
)

Z̄ =
N∑

i,j=1

γ N(N+1)
ε

Rε
N

∫
RN ×RN

∣∣Δ(u)
∣∣∣∣Δ(

u′)∣∣e− 1
2(1+c)

∑N
k=1 u2

k
− 1

2(1+c)

∑N
k=1 u′2

k

× e
−α((

∑N
k=1 uk)2+(

∑N
k=1 u′

k
)2)+ 2ασ2|y−x|

σ2
ε

(
∑N

k=1 uk)(
∑N

k=1 u′
k
)
e

γε (ui+u′
j
)
I i,j

(
D(u),D

(
u′))dudu′,

where we have set

I i,j

(
D(u),D

(
u′)) =

∫
ON (R)

|Oi,j |2e
1

1+c

σ2|y−x|
σ2
ε

∑N
k,k′=1 uku′

k′ |Ok,k′ |2
dO,

known as the Morozov moment [6]. We make the following change of variables in the above
integral: ui = vi + γε , uk = vk − cγε for k �= i and u′

j = v′
j + γε , u′

k = v′
k − cγε for k �= j .

We obtain the following equivalent

Z̄ ∼
ε→0

N∑
i,j=1

γ N(N+1)
ε eσ 2

ε (1 + c)2(N−1)σ 2(N−1)
ε

Rε
N

Ii,j

∫
RN ×RN

∣∣Δi(v)
∣∣∣∣Δj

(
v′)∣∣

× e
− 1

2(1+c)

∑N
k=1 v2

k
− 1

2(1+c)

∑N
k=1 v′2

k
−α((

∑N
k=1 vk)2+(

∑N
k=1 v′

k
)2)+2ασ 2|y−x|(1+c(1−N))2

dvdv′,

where |Δi(v)| = ∏
l<l′,l,l′ �=i |vl − vl′ | and:
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Ii,j =
∫

On(R)

|Oi,j |2e
1

1+c
σ 2|y−x|

∑N
k,k′=1(−c+(1+c)1k=i )(−c+(1+c)1k′=j )|Ok,k′ |2

dO

= e
σ 2|y−x|( c2N

1+c
−2c)

∫
ON (R)

|O1,1|2eσ 2|y−x|(1+c)|O1,1|2
dO,

which is independent of i, j . Therefore, we get

Z̄ ∼
ε→0

N2 γ N(N+1)
ε eσ 2

ε (1 + c)2(N−1)σ 2(N−1)
ε

Rε
N

I1,1

∫
RN ×RN

∣∣Δ1(v)
∣∣∣∣Δ1

(
v′)∣∣

× e
− 1

2(1+c)

∑N
k=1 v2

k
− 1

2(1+c)

∑N
k=1 v′2

k
−α((

∑N
k=1 vk)2+(

∑N
k=1 v′

k
)2)+2ασ 2|y−x|(1+c(1−N))2

dvdv′.

In conclusion, we get

Z̄/Z ∼
ε→0

(1 + c)N−1

(
Γ (1/2)

Γ (N/2)

)2

eσ 2
ε σ 2(N−1)

ε e
−cσ 2|y−x|

∫
ON (R)

|O1,1|2eσ 2|y−x|(1+c)|O1,1|2
dO.

Including furthermore the normalization constant cε (Eq. (9)), we get

Z̄/
(
Zc2

ε

) ∼
ε→0

N2e
−cσ 2|y−x|

∫
ON (R)

|O1,1|2eσ 2|y−x|(1+c)|O1,1|2
dO.

3.3.4 Computation of the Moment of Order 2

From the above subsections, we deduce that

E
(
trMε(A)2

) →
ε→0

N2
∫

A×A

e
−cσ 2|y−x|

∫
ON (R)

|O1,1|2eσ 2|y−x|(1+c)|O1,1|2
dO dxdy

We recall that the law of |O1,1|2 is the one of the square of one component of a vector
uniformly distributed on the unit sphere, and has thus a density given by (see Lemma 3)

f (v) = Γ (N/2)

Γ (1/2)Γ ((N − 1)/2)
v−1/2(1 − v)(N−3)/2.

We get the following equivalent as |y − x| → 0:

N2e
−cσ 2|y−x|

∫
ON (R)

|O1,1|2eσ 2|y−x|(1+c)|O1,1|2
dO ∼

|y−x|→0
N2 Γ (N/2)

Γ (1/2)

e
σ 2|y−x|

(1 + c)(N−1)/2σN−1
|y−x|

,

which entails (3).

3.4 Computation of the Moment of Order k

We are interested here in studying the convergence, when ε → 0, of the Gaussian chaos
Mε(A) (Eq. (2)) for higher order moments such as, k ∈ N,

E
(
Mε(A)

)k = 1

ck
ε

∫
Ak

E

( ∏
1�i�k

eXε(xi )

)
dx1 · · ·dxk,



690 L. Chevillard et al.

that involves the following quantity

E

( ∏
1�i�k

eXε(xi )

)
= 1

N
E

[
tr

∏
1�i�k

eXε(xi )

]
IN . (13)

In this subsection, we will suppose that k is an integer greater or equal to 2 such that k < 2d

γ 2 .
This condition ensures that all the integrals we consider below are finite and that one can
apply the dominated convergence theorem to justify the inversions between limit and integral
we will perform with no further justification. To generalize the former calculations in the
case k = 2, we will first derive the joint density of k-matrices (Xε(xi))1�i�k . A generalized
version to k-points of the Harish-Chandra-Itzykson-Zuber integral enters the expression of
the density. An exact evaluation of these integrals remains an open issue. As far as we
know, only their behavior in the asymptotic limit of large matrices (N → +∞) has been
considered in the literature [10]. Nonetheless, a logarithmic equivalent of the quantity of
interest (Eq. (13)) can be obtained and allows us to show the multifractal behavior of the
multiplicative chaos (i.e. ζ(k) is a nonlinear function of the order k, see Theorem 1).

3.4.1 Joint Density of k Isotropic Gaussian Matrices

We consider here k isotropic Gaussian matrices (Xε(xi))1�i�k . The ensemble made of the
kN diagonal terms, i.e.

(
Xε

1,1(x1), . . . ,X
ε
N,N (x1), . . . ,X

ε
1,1(xk), . . . ,X

ε
N,N (xk)

)
,

has covariance structure KkN

KkN =

⎛
⎜⎜⎜⎜⎜⎝

σ 2
ε AN σ 2

|x1−x2|AN · · · · · · σ 2
|x1−xk |AN

σ 2
|x2−x1|AN σ 2

ε AN · · · · · · σ 2
|x2−xk |AN

· · · · · · · · · · · · · · ·
σ 2

|xk−1−x1|AN σ 2
|xk−1−x2|AN · · · σ 2

ε AN σ 2
|xk−1−xk |AN

σ 2
|xk−x1|AN σ 2

|xk−x2|AN · · · σ 2
|xk−xk−1|AN σ 2

ε AN

⎞
⎟⎟⎟⎟⎟⎠

,

where again, AN = (1 + c)IN − cPN . We know that the inverse of KkN is approximately
given by (ε → 0)

K−1
kN = 1

σ 4
ε

⎛
⎜⎜⎜⎜⎜⎝

σ 2
ε A−1

N −σ 2
|x1−x2|A

−1
N · · · · · · −σ 2

|x1−xk |A
−1
N

−σ 2
|x2−x1|A

−1
N σ 2

ε A−1
N · · · · · · −σ 2

|x2−xk |A
−1
N

· · · · · · · · · · · · · · ·
−σ 2

|xk−1−x1|A
−1
N −σ 2

|xk−1−x2|A
−1
N · · · σ 2

ε A−1
N −σ 2

|xk−1−xk |A
−1
N

−σ 2
|xk−x1|A

−1
N −σ 2

|xk−x2|A
−1
N · · · −σ 2

|xk−xk−1|A
−1
N σ 2

ε A−1
N

⎞
⎟⎟⎟⎟⎟⎠

,

where A−1
N = 1

(1+c)
IN + 2αPN , with α = c

2(1+c)
1

(1+c(1−N))
. The density of diagonal compo-

nents, considering the N -dimensional vector X(l) = (Xε
1,1(xl), . . . ,X

ε
N,N (xl)), is thus given

by

f
(
X(1), . . . ,X(k)

) = cNe
− 1

2σ4
ε

∑k
i,j=1(δi,j σ 2

ε −(1−δi,j )σ 2|xi−xj |)t X(i)( 1
(1+c)

IN +2αPN )X(j)
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where cN = 1

(2π)kN/2
√

det(KkN )
. For the off-diagonal terms, the situation is simpler. If i < j ,

the covariance matrix of the vector (Xε
i,j (x1), . . . ,X

ε
i,j (xk)), which is independent on all the

remaining diagonal and off-diagonal components, is

1 + c

2

⎛
⎜⎜⎜⎜⎜⎝

σ 2
ε σ 2

|x1−x2| · · · · · · σ 2
|x1−xk |

σ 2
|x2−x1| σ 2

ε · · · · · · σ 2
|x2−xk |

· · · · · · · · · · · · · · ·
σ 2

|xk−1−x1| σ 2
|xk−1−x2| · · · σ 2

ε σ 2
|xk−1−xk |

σ 2
|xk−x1| σ 2

|xk−x2| · · · σ 2
|xk−xk−1| σ 2

ε

⎞
⎟⎟⎟⎟⎟⎠

,

whose inverse is approximately given by (ε → 0)

2

(1 + c)σ 4
ε

⎛
⎜⎜⎜⎜⎜⎝

σ 2
ε −σ 2

|x1−x2| · · · · · · −σ 2
|x1−xk |

−σ 2
|x2−x1| σ 2

ε · · · · · · −σ 2
|x2−xk |

· · · · · · · · · · · · · · ·
−σ 2

|xk−1−x1| −σ 2
|xk−1−x2| · · · σ 2

ε −σ 2
|xk−1−xk |

−σ 2
|xk−x1| −σ 2

|xk−x2| · · · −σ 2
|xk−xk−1| σ 2

ε

⎞
⎟⎟⎟⎟⎟⎠

.

This leads to the following density, using the notations x
(r)
i,j = Xε

i,j (xr)

f
(
x

(1)
i,j , . . . , x

(k)
i,j

) = kNe
− 1

(1+c)σ4
ε

∑k
r,l=1(δr,lσ

2
ε −(1−δr,l )σ

2|xr −xl |)x
(r)
i,j

x
(l)
i,j

.

Therefore, we get the following density for the k matrices (we omit superscript ε for the
sake of clarity)

f
(
X(x1), . . . ,X(xk)

) = c̄Ne
− 1

2σ4
ε

∑k
r,l=1(δr,lσ

2
ε −(1−δr,l )σ

2|xr −xl |)
t X(r)( 1

(1+c)
IN +2αP )X(l)

× e
−∑

i<j
1

(1+c)σ4
ε

∑k
r,l=1(δr,lσ

2
ε −(1−δr,l )σ

2|xr −xl |)x
(r)
i,j

x
(l)
i,j

,

which we rewrite under matrix notation

f
(
X(x1), . . . ,X(xk)

) = c̄N e
− 1

2(1+c)σ2
ε

∑k
r=1 tr(X(xr )

2)− α

σ2
ε

∑k
r=1(trX(xr ))

2

× e
1

(1+c)σ4
ε

∑
r<l σ 2|xr −xl | trX(xr )X(xl )+ 2α

σ4
ε

∑
r<l σ 2|xr −xl | trX(xr ) trX(xl )

.

We introduce k i.i.d. random matrices M(l) = (M
(l)
i,j ) pertaining to the GOE ensemble.

These random matrices are symmetric and isotropic with independent components with the
following distribution: the components (M

(l)
i,j )i�j are independent centered Gaussian vari-

ables with the following variances

E
[(

M
(l)
i,j

)2] = 1 + c

2
σ 2

ε , i < j ; E
[(

M
(l)
i,i

)2] = (1 + c)σ 2
ε .

With this, we get the following expression for the expectation of any functional F(Xε(x1),

. . . ,Xε(xk)) of the k matrices Xε(x1), . . . ,X
ε(xk)
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E
[
F

(
Xε(x1), . . . ,X

ε(xk)
)]

= E[F(M(1), . . . ,M(k))e
− α

σ2
ε

∑k
r=1(trM(r))2+ 1

(1+c)σ4
ε

∑
r<l σ

2|xr −xl | trM(r)M(l)+ 2α

σ4
ε

∑
r<l σ

2|xr −xl | trM(r) trM(l)

]
Z

,

where:

Z = E
[
e

− α

σ2
ε

∑k
r=1(trM(r))2+ 1

(1+c)σ4
ε

∑
r<l σ 2|xr −xl | trM(r)M(l)+ 2α

σ4
ε

∑
r<l σ 2|xr −xl | trM(r) trM(l)]

.

By using classical theorems about isotropic matrices (see [1]), we know that, for each r ,
M(r) = O(r)D(λ(r))tO(r) where O(r) is uniformly distributed on the orthogonal group of
R

N and is independent of the diagonal matrix D(λ(r)) the diagonal entries of which are the
eigenvalues of M(r).

3.4.2 Joint Density of Eigenvalues of k Isotropic Gaussian Matrices and Computation of
the Renormalization

We start by computing Z. For λ = (λ1, . . . , λN) ∈ R
d , we denote the Vandermonde determi-

nant by Δ(λ) = ∏
1�i<j�N |λi − λj |. We get

Z = 1

Rε
N

∫
RkN

k∏
r=1

∣∣Δ(
λ(r)

)∣∣e− 1
2(1+c)σ2

ε

∑k
r=1

∑N
i=1(λ

(r)
i

)2− α

σ2
ε

∑k
r=1(

∑N
i=1 λ

(r)
i

)2

× e
2α

σ4
ε

∑
r<l σ 2|xr −xl |(

∑N
i=1 λ

(r)
i

)(
∑N

i=1 λ
(l)
i

)
J
(
D

(
λ(1)

)
, . . . ,D

(
λ(k)

))
dλ(1) · · ·dλ(k),

where Rε
N is a renormalization constant such that

1

Rε
N

∫
RkN

k∏
r=1

∣∣Δ(
λ(r)

)∣∣e− 1
2(1+c)σ2

ε

∑k
r=1

∑N
i=1(λ

(r)
i

)2

= 1,

and J is the following angular integral: (dO(r) stands for the Haar measure on ON(R))

J
(
D

(
λ(1)

)
, . . . ,D

(
λ(k)

))

=
∫

ON (R)k
e

1
(1+c)σ4

ε

∑
r<l σ 2|xr −xl | trO(r)D(λ(r))t O(r)O(l)D(λ(l))tO(l)

dO(1) · · ·dO(k).

We make the change of variables u
(r)
i = λ

(r)
i

σε

Z = σN(N+1)k/2
ε

Rε
N

∫
RkN

k∏
r=1

∣∣Δ(
u(r)

)∣∣e− 1
2(1+c)

∑k
r=1

∑N
i=1(u

(r)
i

)2−α
∑k

r=1(
∑N

i=1 u
(r)
i

)2

× e
2α

σ2
ε

∑
r<l σ 2|xr −xl |(

∑N
i=1 u

(r)
i

)(
∑N

i=1 u
(l)
i

)
J
(
D

(
u(1)

)
, . . . ,D

(
u(l)

))
du(1) · · ·du(l),

where we have set
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J
(
D

(
u(1)

)
, . . . ,D

(
u(k)

))

=
∫

ON (R)k
e

1
(1+c)σ2

ε

∑
r<l σ 2|xr −xl | trO(r)D(u(r))t O(r)O(l)D(u(l))t O(l)

dO(1) · · ·dO(k).

Therefore, since J (D(u(1)), . . . ,D(u(k))) converges pointwise towards 1 as ε → 0, we can
use the Lebesgue theorem to get the following equivalent as ε → 0

Z ∼
ε→0

σN(N+1)k/2
ε

Rε
N

∫
RkN

k∏
r=1

∣∣Δ(
u(r)

)∣∣e− 1
2(1+c)

∑k
r=1

∑N
i=1(u

(r)
i

)2

× e−α
∑k

r=1(
∑N

i=1 u
(r)
i

)2
du(1) · · ·du(k).

3.4.3 k-Point Correlation Structure of the Multiplicative Chaos

For i � j , we want to get an equivalent as ε → 0 of the following quantity

Z̄ = E

[(
k∏

r=1

eM(r)

)
i,j

× e
− α

σ2
ε

∑k
r=1(trM(r))2+ 1

(1+c)σ4
ε

∑
r<l σ 2|xr −xl | trM(r)M(l)+ 2α

σ4
ε

∑
r<l σ 2|xr −xl | trM(r) trM(l)

]
.

We get

Z̄ = 1

Rε
N

∫
RkN

k∏
r=1

∣∣Δ(
λ(r)

)∣∣e− 1
2(1+c)σ2

ε

∑k
r=1

∑N
i=1(λ

(r)
i

)2− α

σ2
ε

∑k
r=1(

∑N
i=1 λ

(r)
i

)2

× e
2α

σ4
ε

∑
r<l σ 2|xr −xl |(

∑N
i=1 λ

(r)
i

)(
∑N

i=1 λ
(l)
i

)
I
(
D

(
λ(1)

)
, . . . ,D

(
λ(k)

))
dλ(1) · · ·dλ(k),

where I is the following angular integral

I
(
D

(
λ(1)

)
, . . . ,D

(
λ(k)

)) =
∫

ON (R)k

(
k∏

r=1

O(r)eD(λ(r))tO(r)

)
i,j

× e
1

(1+c)σ4
ε

∑
r<l σ 2|xr −xl | tr O(r)D(λ(r))t O(r)O(l)D(λ(l))t O(l)

dO(1) · · ·dO(k).

We make the following change of variables u
(r)
i = λ

(r)
i

σε

Z̄ =
N∑

j1,...,jk=1

σN(N+1)k/2
ε

Rε
N

∫
RkN

k∏
r=1

∣∣Δ(
u(r)

)∣∣e− 1
2(1+c)

∑k
r=1

∑N
i=1(u

(r)
i

)2

× e
−α

∑k
r=1(

∑N
i=1 u

(r)
i

)2+ 2α

σ2
ε

∑
r<l σ 2|xr −xl |(

∑N
i=1 u

(r)
i

)(
∑N

i=1 u
(l)
i

)
e

σε (u
(1)
j1

+···+u
(k)
jk

)

×
N∑

l1,...,lk−1=1
l0=i;lk=j

I
j1,...,jk
l0,l1,...,lk−1,lk

(
D

(
u(1)

)
, . . . ,D

(
u(k)

))
du(1) · · ·du(k),

where we have set
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I
j1,...,jk
l0,l1,...,lk−1,lk

(
D

(
u(1)

)
, . . . ,D

(
u(k)

))

=
∫

ON (R)k

(
k∏

r=1

O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
1

(1+c)σ2
ε

∑
r<l σ 2|xr −xl | trO(r)D(u(r))t O(r)O(l)D(u(l))tO(l)

dO(1) · · ·dO(k).

We make the following change of variables in the above integral for 1 � r � k: u
(r)
jr

=
v

(r)
jr

+ σε , u
(r)
k = v

(r)
k − cσε k �= jr . We obtain the following equivalent

Z̄ ∼
ε→0

N∑
j1,...,jk=1

σN(N+1)k/2
ε ekσ 2

ε /2(1 + c)(N−1)kσ (N−1)k
ε

Rε
N

∫
RkN

k∏
r=1

∣∣Δjr

(
v(r)

)∣∣

× e
− 1

2(1+c)

∑k
r=1

∑N
i=1(v

(r)
i

)2−α
∑k

r=1(
∑N

i=1 v
(r)
i

)2+2α(1+c(1−N))2 ∑
r<l σ 2|xr −xl |

×
N∑

l1,...,lk−1=1
l0=i;lk=j

Ī
j1,...,jk
l0,l1,...,lk−1,lk

dv(1) · · ·dv(k),

where we have set

Ī
j1,...,jk
l0,l1,...,lk−1,lk

=
∫

ON (R)k

(
k∏

r=1

O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
1

(1+c)

∑
r<l σ 2|xr −xl |

∑N
m1,m2=1 β

jr ,jl
m1,m2

∑N
n1,n2=1 O

(r)
n1,m1 O

(r)
n2,m1 O

(l)
n1,m2 O

(l)
n2,m2 dO(1) · · ·dO(k)

with β
jr ,jl
m1,m2 = (−c + (1 + c)1m1=jr )(−c + (1 + c)1m2=jl ). This leads to

Ī
j1,...,jk
l0,l1,...,lk−1,lk

=
∫

ON (R)k

(
k∏

r=1

O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
1

(1+c)

∑
r<l σ 2|xr −xl |(c

2 tr(O(r)tO(r)O(l)tO(l))+(1+c)2(tO(r)O(l))2
jr ,jl

)

× e
−c

∑
r<l σ 2|xr −xl |((

t O(r)O(l)t O(l)O(r))jr ,jr +(t O(l)O(r)t O(r)O(l))jl ,jl
)
dO(1) · · ·dO(k)

= e
( c2N
(1+c)

−2c)
∑

r<l σ 2|xr −xl |
∫

ON (R)k

(
k∏

r=1

O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
(1+c)

∑
r<l σ 2|xr −xl |(

t O(r)O(l))2
jr ,jl dO(1) · · ·dO(k)

In conclusion, we get the following equivalent

Z̄ ∼
ε→0

σN(N+1)k/2
ε ekσ 2

ε /2(1 + c)(N−1)kσ (N−1)k
ε

Rε
N

∫
RkN

k∏
r=1

∣∣Δ1
(
v(r)

)∣∣e− 1
2(1+c)

∑k
r=1

∑N
i=1(v

(r)
i

)2

× e−α
∑k

r=1(
∑N

i=1 v
(r)
i

)2
dv(1) · · ·dv(k)e

−c
∑

r<l σ 2|xr −xl |Fi,j (x1, . . . , xk)
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where we have the following expression for Fi,j (x1, . . . , xk)

Fi,j (x1, . . . , xk)

=
N∑

j1,...,jk=1

N∑
l1,...,lk−1=1

l0=i;lk=j

∫
ON (R)k

(
k∏

r=1

O
(r)
lr−1,jr

O
(r)
lr ,jr

)

× e
(1+c)

∑
r<l σ 2|xr −xl |(

tO(r)O(l))2
jr ,jl dO(1) · · ·dO(k)

=
N∑

j1,...,jk=1

∫
ON (R)k

O
(1)
i,j1

(
tO(1)O(2)

)
j1,j2

· · · (tO(k−1)O(k)
)
jk−1,jk

O
(k)
j,jk

× e
(1+c)

∑
r<l σ 2|xr −xl |(

tO(r)O(l))2
jr ,jl dO(1) · · ·dO(k)

We get thus the following expression

Z̄/
(
Zck

ε

) ∼
ε→0

Ck,Ne
−c

∑
r<l σ 2|xr −xl |Fi,j (x1, . . . , xk), (14)

where Ck,N is a constant which depends only on k,N (we can compute this constant but it
is tedious and will not be necessary for the purpose of this paper).

3.4.4 Computation of the Moment of Order k and of the Structure Functions

From relation (14), we get the following expression

E
[
trM(A)k

] = lim
ε→0

E
(
trMε(A)k

) = Ck,N

∫
Ak

e
−c

∑
r<l σ 2|xr −xl |

N∑
i=1

Fi,i(x1, . . . , xk)dx1 · · ·dxk

(15)
The main difficulty is to study the functions Fi,j . If we take the trace, we get

N∑
i=1

Fi,i(x1, . . . , xk)

=
N∑

j1,...,jk=1

∫
ON (R)k

(
tO(1)O(2)

)
j1,j2

· · · (tO(k−1)O(k)
)
jk−1,jk

(
tO(k)O(1)

)
jk,j1

× e
(1+c)

∑
r<l σ 2|xr −xl |(

t O(r)O(l))2
jr ,jl dO(1) · · ·dO(k). (16)

In particular, for k = 2, we recover that

N∑
i=1

Fi,i(x1, x2) = N2
∫

ON (R)2

(
tO(1)O(2)

)2

1,1
e

(1+c)σ 2|x2−x1 |(t O(1)O(2))2
1,1dO(1)dO(2).

Here we suppose that L = 1 and m = 0 to simplify the presentation. Since for all r < l,
we have (tO(r)O(l))2

jr ,jl
� 1, it is easy to see that
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e
−c

∑
r<l σ 2|xr −xl |

N∑
i=1

Fi,i(x1, . . . , xk) � Nke
∑

r<l σ 2|xr −xl |

� Nk
∏
r<l

1

|xr − xl |γ 2

In view of (15), this entails that

lim

→0

lnE[trM(B(0, 
))k]
ln 1




� −ζ(k). (17)

We have

E
[
trM

(
B(0, 
)

)k]

= Ck,N

∫
B(0,
)k

e
−c

∑
r<l σ 2|xr −xl |

N∑
i=1

Fi,i(x1, . . . , xk)dx1 · · ·dxk

= 
dk+cγ 2 k(k−1)
2

∫
B(0,1)k

e
−c

∑
r<l σ 2|ur −ul |

N∑
i=1

Fi,i(
u1, . . . , 
uk)du1 · · ·duk

=
N∑

j1,...,jk=1


dk+cγ 2 k(k−1)
2

∫
ON (R)k

(
tO(1)O(2)

)
j1,j2

· · · (tO(k−1)O(k)
)
jk−1,jk

× (
tO(k)O(1)

)
jk,j1

e
(1+c)γ 2 ln 1




∑
r<l (

t O(r)O(l))2
jr ,jl

×
(∫

B(0,1)k
e

∑
r<l σ 2|ur −ul |((1+c)(t O(r)O(l))2

jr ,jl
−c)

du1 · · ·duk

)
dO(1) · · ·dO(k)

In order to prove the other side of (4), we now study each term in the above sum.
We fix (j1, . . . , jk) and ε, δ small such that ε < δ. We have

∫
ON (R)k

(
tO(1)O(2)

)
j1,j2

· · · (tO(k−1)O(k)
)
jk−1,jk

(
tO(k)O(1)

)
jk,j1

× e
(1+c)γ 2 ln 1




∑
r<l (

tO(r)O(l))2
jr ,jl

×
(∫

B(0,1)k
e

∑
r<l σ 2|ur −ul |((1+c)(t O(r)O(l))2

jr ,jl
−c)

du1 · · ·duk

)
dO(1) · · ·dO(k)

= Aε + Aε,δ + Aδ

where

Aε =
∫

∑
r<l (

t O(r)O(l))2
jr ,jl

� k(k−1)
2 −ε

· · · , Aε,δ =
∫

k(k−1)
2 −δ�∑

r<l (
tO(r)O(l))2

jr ,jl
� k(k−1)

2 −ε

· · ·

and Aδ is the
∑

r<l(
tO(r)O(l))2

jr ,jl
� k(k−1)

2 − δ part of the integral. On the event∑
r<l(

tO(r)O(l))2
jr ,jl

� k(k−1)

2 − ε, each |(tO(r)O(l))jr ,jl | is greater or equal to
√

1 − ε.

In particular, we have that |(tO(r)O(r+1))jr ,jr+1 | �
√

1 − ε for all r � k − 1. Notice that
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(tO(k)O(1))jk,j1 = (tO(1)O(2))j1,j2 · · · (tO(k−1)O(k))jk−1,jk + O(ε). Therefore, we can con-
clude that (tO(1)O(2))j1,j2 · · · (tO(k−1)O(k))jk−1,jk and (tO(k)O(1))jk,j1 have the same sign.
Thus, we get

Aε � e(1+c)γ 2 ln 1


(
k(k−1)

2 −ε)
∣∣B(0,1)k

∣∣
×

∫
∑

r<l (
t O(r)O(l))2

jr ,jl
� k(k−1)

2 −ε

(
tO(1)O(2)

)
j1,j2

· · · (tO(k−1)O(k)
)
jk−1,jk

× (
tO(k)O(1)

)
jk,j1

dO(1) · · ·dO(k)

� e(1+c)γ 2 ln 1


(
k(k−1)

2 −ε)
(
(1 − ε)k + O(ε)

)∣∣B(0,1)k
∣∣P

×
(∑

r<l

(
tO(r)O(l)

)2

jr ,jl
� k(k − 1)

2
− ε

)

The only thing to check is that
∑

r<l(
tO(r)O(l))2

jr ,jl
� k(k−1)

2 − ε has a positive probability

but this can be seen easily by setting one chosen element of each O(r), say O
(r)

1,jr
, very close

to one. The condition k < 2d

γ 2 ensures that

ck :=
∫

B(0,1)k
e

∑
r<l σ 2|ur −ul |du1 · · ·duk < ∞

Note that we have

|Aε,δ| � cke
(1+c)γ 2 ln 1



(
k(k−1)

2 −ε)
P

(
k(k − 1)

2
− δ �

∑
r<l

(
tO(r)O(l)

)2

jr ,jl
� k(k − 1)

2
− ε

)

Therefore, one can choose δ larger than ε such that |Aε,δ| � Aε

2 .
Finally, for these choices of ε, δ, we have

|Aδ| � cke
(1+c)γ 2 ln 1



(
k(k−1)

2 −δ)

We thus get the following

lim

→0

ln(Aε + Aε,δ + Aδ)

ln 1



� (1 + c)γ 2

(
k(k − 1)

2
− ε

)

Since this is valid for all ε, we get that

lim

→0

lnE[trM(B(0, 
))k]
ln 1




� −ζ(k) (18)

The desired result (4) is then a consequence of (17) and of (18).
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Appendix

A.1 Discussion About the Construction of Kernels

In this subsection, we discuss in further detail the construction of the kernel K as summa-
rized in Remark 2. In dimension 1 and 2, it is plain to see that

ln+
L

|x| =
∫ +∞

0

(
t − |x|)+νL(dt) (19)

where the measure νL is given by (δu stands for the Dirac mass at u):

νL(dt) = 1[0,L](t)
dt

t2
+ 1

L
δL(dt).

Hence, for every μ > 0, we have

ln+
L

|x| = 1

μ
ln+

Lμ

|x|μ =
∫ +∞

0

(
t − |x|μ)

+νLμ(dt).

We are therefore led to consider μ > 0 such that the function x 
→ (1 − |x|μ)+ is positive
definite, the so-called Kuttner-Golubov problem (see [16]).

For d = 1, it is straightforward to check that (1 − |x|)+ is positive definite. We can thus
consider a Gaussian process Xε with covariance kernel given by

Kε(x) = γ 2
∫ L

ε

(
t − |x|)+νL(dt).

Notice that

∀x �= 0, γ 2 ln+
L

|x| = lim
ε→0

Kε(x) (20)

and

∀ε < |x| � L, Kε(x) = γ 2
∫ L

|x|

(
t − |x|)+νL(dt) = γ 2 ln+

L

|x| . (21)

In dimension 2, we can use the same strategy since Pasenchenko [23] proved that the
mapping x 
→ (1 − |x|1/2)+ is positive definite over R

2. We can thus consider a Gaussian
process Xε with covariance kernel given by

Kε(x) = 2γ 2
∫ L1/2

ε1/2

(
t − |x|1/2

)
+νL1/2(dt),

sharing the same properties (20) and (21).
In dimension 3, it is not known whether the mapping x 
→ ln+ L

|x| admits an integral
representation of the type explained above. Nevertheless it is positive definite so that we can
use the convolution techniques developed in [27]. In dimension 4, it is not positive definite
[27] so that another construction is required. We explain the methods in [25]. We set the
dimension d to be larger than d � 3. Let us denote by S the sphere of R

d and σ the surface
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measure on the sphere such that σ(S) = 1. Remind that this measure is invariant under
rotations. We define the function

∀x ∈ R
d , F (x) = γ 2

∫
S

ln+
L

|〈x, s〉|σ(ds). (22)

It is plain to see that F is an isotropic function. Let us compute it over a neighborhood of 0:
for |x| � L, we can write x = |x|ex with ex ∈ S. Then we have

F(x) = γ 2
∫

S

ln
L

|x||〈ex, s〉|σ(ds) = λ2 ln
L

|x| +
∫

S

ln
1

|〈ex, s〉|σ(ds).

Notice that the integral
∫

S
ln 1

|〈ex ,s〉|σ(ds) is finite (use Lemma 3 below for instance) and does
not depend on x by invariance under rotations of the measure σ . By using the decomposition
(19), we can thus consider a Gaussian process Xε with covariance kernel given by

Kε(x) = γ 2
∫

S

∫ L

ε

(
t − ∣∣〈x, s〉∣∣)+νL(dt)σ (ds),

sharing the properties

∀x �= 0, lim
ε→0

Kε(x) = F(x) (23)

and

∀ε < |x| � L, Kε(x) = F(x) = λ2 ln
L

|x| + C (24)

for some constant C.

A.2 Auxiliary Results

We give a proof of the following standard result.

Lemma 3 If (Zi)1�i�N are i.i.d. standard Gaussian random variables then the vector

V = 1√∑N

i=1 Z2
i

(Z1, . . . ,ZN)

is distributed as the Haar measure on the sphere of R
N . In particular, the density of the first

entry of a random vector uniformly distributed on the sphere is given by:

Γ (N
2 )

Γ ( 1
2 )Γ (N−1

2 )
y− 1

2 (1 − y)
N−3

2 1[0,1](y) dy.

Proof By using the invariance under rotations of the law of the Gaussian vector (Zi)1�i�N ,
the law of V is invariant under rotations and is supported by the sphere. By uniqueness of
the Haar measure, V is distributed as the Haar measure. We have to compute the density of

ζ1 = Z2
1∑N

i=1 Z2
i

. Notice that

ζ1 = Y

Y + Z
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where Y , Z are independent random variables with their respective laws being chi-squared
distributions of parameters 1 and N − 1. Therefore

E
[
f (ζ1)

] =
∫

R+

∫
R+

f

(
x

x + y

)
1

2
1
2 Γ ( 1

2 )
x− 1

2 e− x
2

1

2
N−1

2 Γ (N−1
2 )

y
N−1

2 e− y
2 dx dy

= 1

2
N
2 Γ ( 1

2 )Γ (N−1
2 )

∫ 1

0
f (u)

1
√

u(1 − u)
3
2

∫
R+

e
− y

2(1−u) y
N−2

2 dy du

= Γ (N
2 )

Γ ( 1
2 )Γ (N−1

2 )

∫ 1

0
f (u)u− 1

2 (1 − u)
N−3

2 du. �

Next we characterize all the symmetric Gaussian random matrices.

Lemma 4 Let X be a symmetric and isotropic centered Gaussian random matrix of size
N × N . Then the diagonal terms (X11, . . . ,XNN) have a covariance matrix of the form
σ 2(1+c)IN −cσ 2P for some σ 2 � 0 and c ∈ ]−1, 1

N−1 ], where P is the N ×N matrix whose

all entries are 1. The off-diagonal terms are i.i.d. with variance σ 2 1+c
2 and are independent

of the diagonal terms.

Proof If X admits a density with respect to the Lebesgue measure dM over the set of sym-
metric matrices (see [1, Chap. 4]), then the density of M is given by

e−f (M) dM,

where f is a homogeneous polynomial of degree 2. By isotropy, f must be a symmetric
function of the eigenvalues of M . Therefore it takes on the form

f (M) = α tr
(
M2

) + β tr(M)2

for some α,β ∈ R. In this case, the result follows easily.
If M does not admit a density with respect to the Lebesgue measure over the set of

symmetric matrices, we can add an independent “small GOE”, i.e. we consider M + εM ′

where M ′ is a matrix of the GOE ensemble with a normalized variance independent of M .
The matrix M + εM ′ admits a density so that we can apply the above result. Then we pass
to the limit as ε → 0. �

A.3 Some Integral Formulae

Let α, c > 0. We want to compute the integral

∫
RN

e
−α(

∑N
i=1 λi )

2− 1
2(1+c)

∑N
i=1 λ2

i

∏
i<j

|λj − λi |dλ.

We write the integrand in the form (7):

e
−α(

∑N
i=1 λi )

2− 1
2σ2

d
(1+c̄)

∑N
i=1 λ2

i
∏
i<j

|λj − λi |
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where σ 2
d (1 + c̄) = (1 + c) and α = c̄

2σ 2
d
(1+c̄)

1
(1+c̄(1−N))

. In that case, we have c̄ =
2α(1+c)

1+2α(1+c)(N−1)
and 1 + c̄(1 − N) = 1

1+2α(1+c)(N−1)
. We deduce

∫
RN

e
−α(

∑N
i=1 λi )

2− 1
2(1+c)

∑N
i=1 λ2

i

∏
i<j

|λj − λi |dλ

= N !(2π)N/2

(
N∏

k=1

Γ (k/2)

Γ (1/2)

)
(1 + c)N(N+1)/4

√
1 + 2α(1 + c)N

(25)

We also want to compute the integral

∫
RN

e
−α(

∑N
i=1 λi )

2− 1
2(1+c)

∑N
i=1 λ2

i

∏
2�i<j

|λj − λi |dλ.

We have
∫

RN

e
−α(

∑N
i=1 λi )

2− 1
2(1+c)

∑N
i=1 λ2

i

∏
2�i<j

|λj − λi |dλ1 · · ·dλN

=
∫

RN−1

(∫
R

e
−2αλ1(

∑N
i=2 λi )−(α+ 1

2(1+c)
)λ2

1dλ1

)
e

−α(
∑N

i=2 λi )
2− 1

2(1+c)

∑N
i=2 λ2

i

×
∏

2�i<j

|λj − λi |dλ2 · · ·dλN

= √
2π

√
1 + c

2α(1 + c) + 1

∫
RN−1

e
2α2 1+c

2α(1+c)+1 (
∑N

i=2 λi )
2−α(

∑N
i=2 λi )

2− 1
2(1+c)

∑N
i=2 λ2

i

×
∏

2�i<j

|λj − λi |dλ2 · · ·dλN

= √
2π

√
1 + c

2α(1 + c) + 1

∫
RN−1

e
− α

2α(1+c)+1 (
∑N

i=2 λi )
2− 1

2(1+c)

∑N
i=2 λ2

i

×
∏

2�i<j

|λj − λi |dλ2 · · ·dλN

= √
2π

√
1 + c

2α(1 + c) + 1

∫
RN−1

e
− c̄

2σ2
d

(1+c̄)

1
(1+c̄(2−N))

(
∑N

i=2 λi )
2− 1

2σ2
d

(1+c̄)

∑N
i=2 λ2

i

×
∏

2�i<j

|λj − λi |dλ2 · · ·dλN

for σ 2
d (1 + c̄) = 1 + c and c̄ = 2α(1+c)

2α(1+c)(N−1)+1 (or equivalently, 1 + c̄(2 −N) = 1+2α(1+c)

1+2α(1+c)(N−1)

and 1 + c̄ = 1+2α(1+c)N

1+2α(1+c)(N−1)
). This leads to the following

∫
RN−1

e
− c̄

2σ2
d

(1+c̄)

1
(1+c̄(2−N))

(
∑N

i=2 λi )
2− 1

2σ2
d

(1+c̄)

∑N
i=2 λ2

i
∏

2�i<j

|λj − λi |dλ2 · · ·dλN = Z̄N−1
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where

Z̄N−1 = (N − 1)!(2π)(N−1)/2

(
N−1∏
k=1

Γ (k/2)

Γ (1/2)

)
σ

N(N−1)/2
d (1 + c̄)(N−2)(N+1)/4

√
1 + c̄(2 − N).

In conclusion, we get:
∫

RN

e
−α(

∑N
i=1 λi )

2− 1
2(1+c)

∑N
i=1 λ2

i

∏
2�i<j

|λj − λi |dλ1 · · ·dλN

= √
1 + c(N − 1)!(2π)N/2

(
N−1∏
k=1

Γ (k/2)

Γ (1/2)

)
(1 + c)N(N−1)/4

√
1 + 2α(1 + c)N

(26)

A.4 Heuristic Derivation of the Conjecture

Let 
 < 1. We can roughly write as 
 → 0 (where ≈ means equivalent to a random constant
of order 1)

M
(
B(0, 
)

) ≈ 
d e
γ

√
ln 1



Ω− γ 2

2 ln 1



γ N−1(ln 1


)(N−1)/2

,

where Ω is a random matrix whose density is given by (6) with σ 2
d = 1, and thus we get (we

forget terms of order 1)

E
[
trM

(
B(0, 
)

)q] ≈ 
(d+ γ 2

2 )q

(ln 1


)q(N−1)/2

E
[
tr eγ q

√
ln 1



Ω

]

≈ 
(d+ γ 2

2 )q

(ln 1


)q(N−1)/2

∫
RN

e
γ q

√
ln 1



u1e

−α(
∑N

i=1 ui )
2− 1

2(1+c)

∑N
i=1 u2

i

×
∏
i<j

|uj − ui |du1 · · ·duN,

where α = c
2(1+c)

1
(1+c(1−N))

Thus, if q > 0

E
[
trM

(
B(0, 
)

)q] ≈ 
(d+ γ 2

2 )q

(ln 1


)(q−1)(N−1)/2
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