
Multiscale Model of Gradient Evolution in Turbulent Flows

Luca Biferale,1 Laurent Chevillard,2 Charles Meneveau,2 and Federico Toschi3
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A multiscale model for the evolution of the velocity gradient tensor in turbulence is proposed. The
model couples ‘‘restricted Euler’’ (RE) dynamics describing gradient self-stretching with a cascade model
allowing energy exchange between scales. We show that inclusion of the cascade process is sufficient to
regularize the finite-time singularity of the RE dynamics. Also, the model retains geometrical features of
real turbulence such as preferential alignments of vorticity and joint statistics of gradient tensor invariants.
Furthermore, gradient fluctuations are non-Gaussian, skewed in the longitudinal case, and derivative
flatness coefficients are in good agreement with experimental data.
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The spatiotemporal fluctuations of small scales in three-
dimensional turbulent flows are among the most complex
phenomena known to classical physics, being both highly
non-Gaussian and strongly long-range correlated. For ex-
ample, velocity gradients as well as velocity increments
between two points typically show strong fluctuations
much larger than their standard deviation [1,2]. The same
is true for fluid accelerations or velocity increments at two
different times [2–4], with long-range correlations up to
the time scales of the largest eddies in the flow [5]. A
possible mechanism for the large fluctuations is the non-
linear self-stretching [6,7] that occurs during the
Lagrangian evolution of the velocity gradients, Aij �
@iuj. This local self-stretching must be coupled with the
energy exchange among larger or smaller eddies and with
velocity fluctuations at different spatial locations via the
pressure term. The nonlinear coupling among different
scales also relates to the concept of energy cascade, often
invoked to explain the growth of non-Gaussianity going
from large to small scales.

Significant advances in experimental techniques now
allow one to measure all components of A in different
spatial locations [8–10] in high Reynolds number flows.
These experimental measurements, together with data gen-
erated using direct numerical simulations, have uncovered
the existence of many interesting, and possibly universal,
geometric features of A. Namely, (i) the preferred align-
ment of the vorticity vector with the eigenvector of the
intermediate eigenvalue of the strain-rate tensor, S � �A�
AT�=2; (ii) the axisymmetric character of local deforma-
tion (two positive and one negative eigenvalue of S);
(iii) the typical teardrop shape of the joint probability
distribution, P�R;Q�, where R � �Tr�A3�=3 and Q �
�Tr�A2=2� are two invariants of A [7,8,11–13].

A systematic analysis of the dynamics of velocity gra-
dients was made by Vieillefosse [6]. He started from the

exact equations governing the Lagrangian evolution of A
in the incompressible Navier-Stokes (NS) equations: _Aij �
�AikAkj � @ijp� �@2Aij, where p is the pressure divided
by density and � the kinematic viscosity. Then, he retained
only the isotropic part of the pressure Hessian, @ijp�
�ij@2p, and used the incompressibility condition to express
the pressure Laplacian in terms of A. Finally, he neglected
the viscous contribution arriving to the closed ‘‘restricted
Euler’’ (RE) equations:

 

_A � �A2 � Tr�A2�I=3: (1)

It is remarkable that such a simple system is already
sufficient to explain many of the geometrical trends found
in the real gradient evolution, as shown by [6,7]. On the
other hand, the self-stretching mechanism is not con-
strained by any energy exchange or loss mechanism, lead-
ing to a finite-time singularity for almost all initial
conditions and preventing the use of the RE dynamics to
obtain stationary statistics. Prior models that seek to regu-
larize the RE dynamics include a stochastic model with
log-normal statistics of the dissipation [14], a linear and
nonlinear damping model for the viscous term [15], and a
model where the material deformation history described by
a tetrad of points plus some stochastic terms are used to
mimic the anisotropic pressure fluctuations [13]. Recently,
a model of the anisotropic pressure Hessian and of the
viscous term has been proposed by introducing a finite-
time memory effect in the closure of the material deforma-
tion tensor [16]. Results show that this model reproduces
stationarity, non-Gaussianity of transverse and longitudinal
gradients, the correct geometrical properties of A, and the
experimentally observed relative scaling exponents char-
acterizing how non-Gaussian statistics evolves with
Reynolds number, at least from small to moderate values
of it. However, attempts to simulate velocity gradient
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dynamics at arbitrarily large Reynolds numbers with this
model has been, so far, unsuccessful. It was concluded that
the difficulties were associated to the assumptions that the
velocity gradient tensor evolves mainly uncoupled from
larger or smaller eddies and neighboring locations.

In this Letter we propose a minimal model in which
deterministic couplings among scales of motion are in-
cluded. The model couples the self-stretching local dynam-
ics in the manner of Vieillefosse with a cascade mecha-
nism. The most remarkable result is that such a coupling
will be shown to be sufficient to regularize the Vieillefosse
finite-time singularity, without destroying the main posi-
tive features of (1), including the presence of skewed
longitudinal gradients and long tails in the probability
density functions of gradients, the vorticity alignment,
and the typical teardrop shape of the joint probability,
P�R;Q�. Also the intermittency level as measured by the
flatness coefficient is in good quantitative agreement with
experiments [1,17]. The model thus provides meaningful
results even for very large Reynolds number (here we
present results up to Re� � 1500).

To introduce a cascade dynamics we start from a decom-
position of the gradient tensor into bandpassed contribu-
tions A �

P
nAn, each An describes the velocity gradient

at a typical wave number kn [18]. The set of possible wave
numbers is chosen equispaced on a logarithmic scale, kn �
2nk0. The bandpassed version of the NS equations is of the
form

 

_A n � �
X

p;q

�ApAq�n �Bn � �@2An; (2)

where a further projection on the traceless part of the right-
hand side must be assumed and the term Bn represents
pressure effects, interscale interactions, and additional
spatial transport introduced by the bandpass filtering acting
on the advective term on the left-hand side of the original
equation. Neglecting the viscous term and Bn, and keeping
only the fully diagonal term (p � q � n) in the double
sum, leads to the most severe approximation. Namely, that
the gradients An, bandpassed on different shells, follow the
RE dynamics separately shell-by-shell: _An � �A2

n �
Tr�A2

n�I=3. Of course this set of uncoupled equations
suffers from the same drawbacks of the original
Vieillefosse model. The coupling between different scales
must be introduced by keeping some additional terms be-
sides the purely diagonal one; i.e., we include a new term F
and we choose its form by imposing an energy preserving
structure, following the assumption that the pressure-
Hessian does not perform work on the bandpassed gradient
[13]. Moreover, it is natural to suppose that the most
relevant dynamical interactions happen within nearby
scales and therefore we limit the range of interactions to
the next-nearest neighbors. One possible choice for the
coupling term on the nth shell is

 

Fn � An�2AT
n�1 � b22AT

n�1An�1

� �1� b�24An�2An�1; (3)

where b is a free parameter (always fixed to b � 0:5
hereafter). Let us notice that the structure of Fn is chosen
such that the total energy E �

P
nk
�2
n Tr�AnAT

n � is pre-
served by the effects of the three nonlinear terms. This
specific form is proposed as a model for the neglect of all
the truncated terms in the double sum and the Bn transport
term. The functional form proposed for Fn is motivated by
the typical structure of the nonlinear terms used in Shell
models of turbulence [19]. The viscous Laplacian term in
NS equations is modeled using a linear damping term on
each band proportional to �k2

n, where � is the viscosity.
Combining all these elements one obtains the following
dynamical system:

 

_A n � ���A2
n � 1=3 Tr�A2

n�I� � �1� ���~Fn � �k2
nAn�;

(4)

where ~Fn 	 Fn � 1=3 Tr�Fn�I is the traceless part of Fn
and where � is a parameter which weights the relative
importance of the RE dynamics with respect to the energy
exchange and energy dissipation terms. As a first step, in
this work we restrict attention to the case � � 0:5. In the
previous equations the infrared and ultraviolet truncation is
imposed by keeping in the nonlinear term An � 0 for n �
f�1;�2; N � 1; N � 2g. Note that the present model for
velocity gradient does not make predictions about the
spatial distribution An�x� or of its spatial gradients
(rAn, i.e., higher-order derivatives of the velocity).
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FIG. 1. Log-log plot of the bandpassed energy dissipation En
vs kn, for Re� � 1500 (
); Re� � 640 (�); Re� � 130 (�).
The dissipative scale kd is defined as the wave number where the
energy dissipation peaks (arrows in the plot). The straight line
corresponds to the Kolmogorov spectrum. The data which satu-
rates in the viscous range (�) are for the coarse-grained varia-
bles (defined later): hTr�SCG

n SCGT

n �i. In the inset we show the
Reynolds dependency of En at kn � kd. The straight line corre-
sponds to the expected slope / Re2

�.
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Thus, differential constraints such as r�An � 0 cannot
be directly enforced in the model.

The main question is if a stationary statistical state can
be achieved once a forcing is applied at large scales, i.e., if
the simple energy-exchange term Fn is sufficient to regu-
larize the dynamics of the RE structure at all scales. This
will allow us also to study the important questions related
to the dependency of the geometrical structure of turbu-
lence on the Reynolds numbers and its correlation with
inertial range quantities. The simplest way to achieve a
stationary state is to add a statistically homogeneous and
isotropic white-in-time Gaussian tensor G at the largest
band n � 0, with covariance hGijGmli � 2�im�jl �
1=2�ij�ml � 1=2�il�jm [16].

The gradient statistics will be studied by looking at the
shell kn � kd, defined as where the spectrum of the An has
its peak, i.e., where a balance between the quadratic terms
and the viscous terms of (4) is obtained. The system of
equations is integrated numerically using a 4th order
Runge-Kutta scheme. Three Reynolds numbers are simu-
lated by using � � f10�4; 2:7� 10�6; 4:4� 10�7g and
with a total number of shells N � f14; 18; 22g, correspond-
ing to Re� � f130; 640; 1500g, respectively. Results are
shown in Fig. 1, which shows the time-averaged energy
dissipation (without multiplication by �), measured on the
bandpass gradient variables, En � hTr�AnAT

n �i as a func-
tion of kn: notice that it has the expected Kolmogorov
scaling hTr�AnAT

n �i � hTr�SnSTn �i � k
4=3
n .

On dimensional grounds we expect that, at the wave
number where the matching is achieved, hTr�SdS

T
d �i scales

with Reynolds number as Re2
�. This is indeed verified in the

inset of Fig. 1. Geometrical properties of small-scale tur-
bulent fluctuations can be monitored by studying the joint
statistics of the two invariants Q;R at different Reynolds
number and/or at different scales. Here, by measuring the
simultaneous distribution of Qn � �Tr�A2

n�=2 and of
Rn � �Tr�A3

n�=3 for different Reynolds numbers, we
can do both. In Fig. 2 we show the isolines of the joint
probability distribution P�Rn;Qn� measured on the dissi-

pative scale n � d. We notice the presence of high prob-
able fluctuations along the right Vieillefosse tail, also seen
in real turbulence, which is shown in the right-hand panel
of Fig. 2. The data are from direct numerical simulation
(DNS), done at a similar Reynolds number. As can be seen,
there is very good agreement of the model with the Navier-
Stokes data, except for a small depletion of events in the
third quadrant (R< 0, Q> 0). In this quadrant, real data
are strongly affected by vortex stretching, an effect which
is evidently underrepresented by the model evolution. The
P�R;Q� distribution has very little sensitivity to Reynolds
number (at least in the range investigated here). The
P�R;Q� distribution becomes more symmetric for band-
pass variables at larger scales (not shown), and this effect is
also observed in Navier-Stokes turbulence [12,13]. Finally,
in Fig. 3 we present quantification of the alignment be-
tween the vorticity at the dissipative scale, �wi�d �
�ijl�Ajl�d, and the three eigenvectors of the strain-rate
tensor Sd also at that scale. It is well known from DNS
and experiments that vorticity tends to preferentially align
with the intermediate eigenvector [8,9,20]: Fig. 3 shows
that our model is able to also capture this feature. Finally,
we document the results in terms of intermittency. First, we
show in the inset of Fig. 4 the probability distribution
function (PDF) of both longitudinal and transverse gra-
dients. Correctly, the model possesses longitudinal skewed
distribution while the transverse gradient PDF is fully
symmetric. The gradient fluctuations are highly non-
Gaussian as a result of the growth of intermittency going
from the large scale down to the dissipative scale. This
growth at decreasing length scales is often characterized by
measuring the flatness coefficient of velocity gradients,
F 4 � hA4

di=hA
2
di

2, and plotting it as a function of
Reynolds number Re�, where with Ad we mean any of
the longitudinal components of A.

As a technical difficulty we point out that the exponen-
tial falloff of the gradient spectrum in the shell-matrix
model (4) prevents us from a direct measurement of F 4

on the dissipative shell (the flatness tends to grow expo-
nentially in the dissipative range, making the estimate very
delicate). For that reason we decide to measure the flatness
using a coarse-grained variable. Specifically, the coarse-
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grained velocity gradient at scale km is defined as ACG
m �Pn�m

n�0 An. For largem, we obtain a variable which includes
fluctuations on all scales, and which becomes independent
on m (saturates) beyond the viscous range. The two vari-
ables An and ACG

n have obviously the same scaling in the
inertial range. The bandpassed variable decays exponen-
tially in the dissipative range while the coarse-grained one
saturates; see Fig. 1. This saturation allows us to have
robust measurements of intermittency in the dissipative
range. In the main body of Fig. 4 we show the behavior
of flatness of the coarse-grained velocity gradient as a
function of Reynolds number, superposed with experimen-
tal data. Within the range of Reynolds numbers considered,
the agreement is very satisfactory.

In conclusion, we have introduced a ‘‘shell’’ version of
the RE dynamics which is free from the finite-time singu-
larity of the original Vieillefosse formulation. The regu-
larization is achieved at all scales thanks to the introduction
of an energy-exchange mechanism between shells. The
model shows very realistic behavior at changing
Reynolds numbers, including (i) the skewed nature of
longitudinal gradients, (ii) the alignment of vorticity with
the intermediate eigenvector of the strain-rate tensor,
(iii) the accumulation of events along the right tail of the
Vieillefosse line, and (iv) the correct level of intermittency
as measured by the flatness and its increasing trend at
increasing Re�. A set of questions remains open. From a
dynamical point of view, the model seems to underpredict
the probability of observing strong vortex stretching
events—this could point to open challenges associated
with modeling small-scale coherent vortices [4]. A prom-

ising development could be to couple the present multi-
scale approach with the Lagrangian deformation method
proposed in [16]. The multiscale model presented here
could possibly be generalized and applied to study addi-
tional effects in turbulence. Examples could include scalar
gradient vector, helical properties (models for the joint
evolution of velocity and vorticity), buoyancy effects (in-
cluding a scalar-dependent forcing term), magnetohydro-
dynamic effects (model for the gradient of Elsasser
variables), and multiphase flow (e.g., relating shear statis-
tics to the breakup of droplets or bubbles as function of
scale).
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