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Motivated by results from recent particle tracking experiments in turbulence Xu et al. [Nature

Phys. 7, 709 (2011)], we study the Lagrangian time correlations of vorticity alignments with the

three eigenvectors of the deformation-rate tensor. We use data from direct numerical simulations

(DNS), and explore the predictions of a Lagrangian model for the velocity gradient tensor. We find

that the initial increase of correlation of vorticity direction with the most extensive eigen-direction

observed by Xu et al. is reproduced accurately using the Lagrangian model, as well as the evolution

of correlation with the other two eigendirections. Conversely, time correlations of vorticity direc-

tion with the eigen-frame of the pressure Hessian tensor show differences with the model. VC 2011
American Institute of Physics. [doi:10.1063/1.3657066]

In a recent communication,1 the inertial range vorticity

vector defined as the rotational motion of an ensemble of

four Lagrangian particles in a turbulent flow (“tetrad” Ref. 2)

has been shown, at short times, to display growing alignment

and correlation with the eigenvector associated to the most

positive eigenvalue of the associated initial deformation rate

tensor. It is well established3–5 that at any given time the

alignment between vorticity is most likely to be with the in-

termediate strain-rate eigenvector. However, how said corre-

lation changes as function of time-delay between vorticity

and strain-rate is an aspect of turbulence fine-scale structure

that had not received much attention before. The time evolu-

tion of alignment correlations provides an interesting observ-

able on which turbulence models can be tested. The

evolution of alignments between material lines and vorticity,

and viscous mechanisms of tilting of vorticity, have been

studied in experiments and simulations.6,7

In this Letter, we examine the Lagrangian time correla-

tion of vorticity and the various eigenvectors of the strain

rate tensor, as predicted by a Lagrangian stochastic model.5,8

Results are compared with the results of1 and additional data

from direct numerical simulation (DNS) of the Navier-

Stokes equations in moderate Reynolds number isotropic tur-

bulence. In the same spirit as the analysis proposed in Ref. 1,

we also study the short time alignment of vorticity with the

pressure Hessian eigen-vector directions. The pressure Hes-

sian tensor is a key quantity in the transport equation of the

velocity gradients A, where Aij¼ @ui/@xj and u is the velocity

vector, given by

dA

dt
¼ �A2 � Pþ �DA; (1)

where d/dt is the Lagrangian time derivative, Pij¼ @p/@xi@xj

is the pressure Hessian (divided by fluid density) and � is the

fluid’s kinematic viscosity. The results obtained from DNS

are compared with the predictions of the Lagrangian stochas-

tic model of Ref. 8.

As in Ref. 1, we focus now on the Lagrangian time cor-

relation of vorticity x ¼ $ ^ u with eigen-vectors of the rate

of strain tensor S ¼ Aþ A>
� �

=2. We define, as in Ref. 1,

the unit-norm vorticity vector direction ex(t)¼x(t)/|x(t)|
and the orthonormal eigenframe (e1(t), e2(t), e3(t)) of S asso-

ciated to its 3 ordered eigenvalues k1(t)> k2(t)> k3(t).
Incompressible fluids are considered, so that k1(t)þ k2(t)
þ k3(t)¼ 0 which implies that k1(t)� 0 and k3(t)� 0. Fol-

lowing Ref. 1, who focused on the most extensive eigen-

direction (ei(t) with i¼ 1), the following Lagrangian correla-

tion function is considered

CiðsÞ ¼ h½eiðtÞ � exðtþ sÞ�2i; (2)

for i 2 1; 2; 3f g and the temporal displacement s (and aver-

aging in time t) is performed along Lagrangian trajectories.

We consider predictions from the Lagrangian model

developed in Ref. 8 for the velocity gradient tensor in turbu-

lent flows and given explicitly by the following stochastic

differential equation

dA ¼ �A2 þ TrðA2Þ
TrðC�1

sk
Þ

C�1
sk
�

TrðC�1
sk
Þ

3T
A

 !
dtþ dW: (3)

The second and third terms in the right hand side of Eq. (3)

are closures for, respectively, (minus) the pressure Hessian

and viscous Laplacian that govern the time evolution of A,

as it can be seen by comparing with Eq. (1) (see Ref. 5 for a

review of this and other models). The term W is a tensorial

delta-correlated noise term that has been added in order to

represent possible forcing effects, e.g. from neighboring

eddies. The “recent Cauchy-Green tensor” Csk
, which arises

after invoking the “recent fluid deformation” approxima-

tion,8,9 can be expressed in terms of matrix exponentials:
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Csk
¼ eskAeskA> ; (4)

where sk is the Kolmogorov time-scale (see Ref. 9 for details).

Hence, the modeled pressure Hessian tensor P ¼ � TrðA2Þ
TrðC�1

sk
ÞC
�1
sk

can be highly anisotropic, mirroring the deformation under-

gone by the fluid as represented by the inverse of Csk
. If one

is interested in the velocity gradient tensor of a “coarse-

grained” velocity field (such as occurs in large-eddy simula-

tions at length-scale D, or in the context of “tetrads” when

they span a typical scale D in the inertial range), the Lagran-

gian stochastic model may also be interpreted as a model for

the coarse-grained velocity gradient tensor if the Kolmogorov

time-scale sk is replaced by the corresponding eddy turn-over

time at the appropriate scale sD ¼ ��1=3D2=3, where � is the

mean dissipation. In Eq. (3), the viscous term includes the

time-scale T, corresponding to the Lagrangian integral time-

scale of the velocity.8

The model (Eq. (3)), consisting of 9 (8 independent) sto-

chastic differential equations, can be run with arbitrary initial

conditions and it generates stationary statistics for the veloc-

ity gradient tensor elements. In particular, signals correspond-

ing to the time histories of the antisymmetric part of Aij (the

vorticity vector and its direction ex(t)) and of the directions

of the strain-rate eigenvectors ei(t) are readily obtained from

the model runs. The correlation functions are then evaluated

by averaging signals over long (106 T) records of model

signals.

In the following, as comparison we will also make use of

data from a standard direct numerical simulation (DNS) of

the Navier-Stokes equations. DNS is based on a pseudo-

spectral (de-aliased according to the 3
2
- rule) method with

second-order accurate Adams-Bashforth time stepping; the

computational box is cubic (size 2p) with periodic boundary

conditions in the three directions and spatial resolution of

2563. Statistical stationarity is maintained by an isotropic

external force acting at low wavenumbers in order to ensure a

constant power injection. It provides, in the units of the simu-

lation, a constant energy injection rate of �¼ 0.001. The kine-

matic viscosity of the fluid is �¼ 0.0004. The Kolmogorov

scale is gK¼ 0.016 so that dx/gK� 1.5 (with dx¼ 2p/256).

The Taylor-based Reynolds number is of order Rk� 125.

The Lagrangian stochastic model is run with the param-

eter sk/T¼ 0.1, which is appropriate for modeling turbulence

with Rk� 150.9 We compare in Figs. 1(a) and 1(e) the corre-

lation functions Ci(s) as predicted from the model runs

(Eq. (3)) and measured from DNS. For both the DNS and the

model, time is normalized by the “integral” correlation time

sg of a single tensor component (e.g., A11), namely

sg ¼
1

hA2
11i

ðþ1
0

hA11ðtÞA11ðtþ sÞids:

It is found that in DNS, sg� 2sk with sk ¼
ffiffiffiffiffiffiffi
�=�

p
and for the

model, sg� 1.2sk with sk/T¼ 0.1. We see first that the gen-

eral trends observed in DNS, and as reported in Ref. 1 from

DNS and for inertial-range tetrads, are reproduced quite well

by the stochastic model (Eq. (3)). More specifically, for time

lags s. sg we see that e1 and ex are increasingly correlated,

meaning that we observe, at short times, a more and more

pronounced alignment of vorticity with the most extensive

eigen-direction of the strain-rate tensor. This was one of the

main observations reported in Ref. 1. The general trend of

initial alignment with the most extensive strain-rate direction

is expected from vortex stretching, discussed, e.g., in

Majda.10 Conversely, C3(s) decreases at short times, i.e.,

vorticity decorrelates with the most contractive direction. As

far as the intermediate eigen-direction is concerned, C2(s)

decreases monotonically towards the uncorrelated limiting

FIG. 1. (a) and (e) Correlation Ci(s) (Eq. (2)) of the vorticity direction ex(t) and the eigenframe of the deformation rate, ei(t) in DNS flows and from the model

(Eq. (3)): dashed line for maximal straining direction (i.e. i¼ 1), solid line for intermediate straining direction (i¼ 2), and dot-dashed line for most contractive

eigendirection (i¼ 3). (b,c,d) and (f,g,h) probability density functions (PDFs) of |ei(t).ex(tþ s)| at various time lag s represented by different symbols, i.e.

0 ¼ s	 < s( < s
 < sr and indicated in (a) and (b).
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value Ci(s)¼ 1/3. The model shows a slightly faster decay

compared to the DNS, in the units of sg.

As proposed in Ref. 1, we also display in Figs. 1(b)–1(d)

for DNS, and in Figs. 1(f)–1(h) for the model, the probability

density functions (PDFs) of the cosine of the angles between

the direction of vorticity at time tþ s and the three initial

eigen-directions of the deformation rate at time t. Remark-

ably, the trends and results observed in DNS are reproduced

quite well by the model. At vanishing time-lags s¼ 0

(symbols *), ex is nearly uncorrelated with e1, mostly

aligned with e2 and mostly orthogonal to e3. Then, for the

first non vanishing time lag sh, we observe that ex(tþ sh)

becomes more aligned with e1(t), less aligned with e2(t) and

more orthogonal to e3(t). For later time lags s
 < sr, align-

ments of vorticity with the eigenframe relax towards the

uncorrelated situation, in which the PDF is flat.

We see thus that the alignments of vorticity with the

eigen-frame of the deformation rate tensor are well predicted

by the stochastic Lagrangian model (Eq. (3)). A key reason is

that the model contains the exact “velocity gradient self-

stretching term” �A2 in its right hand side. This term includes

the familiar vortex stretching mechanism that determines the

antisymmetric part of the tensor and hence the evolution of

vorticity. Therefore, it may be expected that other Lagrangian

stochastic models such as the model with prescribed log-

normal dissipation,11 the “tetrad model”2 or the “Lagrangian

linear diffusion model”12 that include the velocity gradient

self-stretching term, should also display the trend of growing

alignment of vorticity direction with the most extensive strain

eigen-direction.

Another important and related question is the time corre-

lation of vorticity with the pressure Hessian eigen-frame.

The pressure Hessian P is a key quantity that enters into the

Lagrangian dynamics of the velocity gradient tensor A

(Eq. (1)).5 As underlined in the literature,9,13–16 understand-

ing the time evolution of the alignments of vorticity with the

eigenframe of the deviatoric part of the pressure Hessian

Pd¼P – tr(P)I/3, in both the Euler and Navier-Stokes equa-

tions, is important. It has been reported that in stationary tur-

bulent flows,9 vorticity gets preferentially aligned with the

eigenvector associated to the intermediate eigenvalue of Pd.

This property was found well reproduced by the stochastic

model.

We display in Fig. 2 the Lagrangian time behavior of

alignments of vorticity with the eigen-frame of Pd, in a simi-

lar way as in Fig. 1 but now with the deformation-rate tensor

S replaced by Pd. We define the correlation function

DiðsÞ ¼ h biðtÞ:exðtþ sÞ½ �2i; (5)

where bi(t) for i 2 1; 2; 3f g are the eigenvectors of Pd and

the time is, again, understood to be along Lagrangian trajec-

tories. In DNS (Fig. 2(a)), we see that at short time (i.e.

s. sg), D1 (resp. D3) decreases (resp. increases), in the op-

posite way as it was observed for the deformation-rate tensor

(the Ci’s). As far as the intermediate pressure Hessian eigen-

direction is concerned, D2 increases slightly. For larger time

lags, i.e. s& sg, all the functions Di(s) relax towards the

uncorrelated value Di(s)¼ 1/3. In the stochastic model (i.e.,

in Fig. 2(e)), it seems that even at short times, the functions

Di(s) tend immediately from their initial values towards the

uncorrelated value of 1/3: there is no intermediate non-trivial

short time behavior.

In Figs. 2(b)–2(d) (resp. Figs. 2(f)–2(h)), we display the

PDFs of the angle of vorticity with the bi for various time

lags. At vanishing time lag s	 ¼ 0, the PDFs are similar to

FIG. 2. (a) and (e) Intercorrelation Ci(s) (Eq. (2)) of the vorticity direction ex(t) and the eigenframe bi(t) of the deviatoric part of the pressure Hessian Pd in

DNS flows and from the model (Eq. (3)): Dashed line for maximal eigenvalue b1, solid line for intermediate eigenvalue b2), and dot-dashed line for most nega-

tive eigenvalue b3. Panels (b,c,d) and (f,g,h) are PDFs of |bi(t).ex(tþ s)| at various time lag s represented by different symbols, i.e., 0 ¼ so < s( < s
 < sr
and indicated in (a) and (b).
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the ones already displayed in Ref. 9. In particular, in both

DNS and in the model, the preferential alignment of vorticity

and b2 is confirmed. See Ref. 9 for further interpretations

and discussions about this behavior. As seen in Figs. 2(b)

and 2(d) and Figs. 2(f) and 2(h), at short times, vorticity

becomes orthogonal to b1 and becomes aligned to b3. This is

not reproduced by the model in which we observe a simple

relaxation towards the uncorrelated case (all the PDFs

become flat). Recall that the model is based on assuming that

the upstream Lagrangian pressure Hessian is isotropic, and

that the tensor A does not change during the (recent) time sK.

These assumptions are likely to be violated in real turbulence

thus causing the observed differences. Note, however, that

the evolution of vorticity alignment does not directly depend

upon the (symmetric) pressure Hessian tensor, but only indi-

rectly through its dependence on strain-rate. Thus, elucidat-

ing the real causes of the observed model limitations is

challenging and beyond the scope of this Letter.

To conclude, we have shown in this Letter that at short

times, vorticity becomes aligned with the most extensive

eigendirection of the strain-rate. This agrees with the trends

observed for tetrads obtained at larger scales in the experi-

mental and DNS investigation in Ref. 1. This behavior is

quite consistent with linear stretching of the vorticity field.

The observed behaviors can be successfully predicted by the

Lagrangian stochastic model based on a closure of the Pres-

sure Hessian using the Recent Fluid Deformation approxima-

tion.8 We have furthermore extended the study to the

alignments of vorticity with the eigen-frame of the pressure

Hessian, and we have underlined what is and what is not pre-

dicted by the model.
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