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Motivated by the modeling of the temporal structure of the velocity field in a highly turbulent flow, we propose
and study a linear stochastic differential equation that involves the ingredients of an Ornstein-Uhlenbeck process,
supplemented by a fractional Gaussian noise, of parameter H , regularized over a (small) time scale ε > 0.
A peculiar correlation between these two plays a key role in the establishment of the statistical properties of
its solution. We show that this solution reaches a stationary regime, which marginals, including variance and
increment variance, remain bounded when ε → 0. In particular, in this limit, for any H ∈]0,1[, we show that
the increment variance behaves at small scales as the one of a fractional Brownian motion of same parameter
H . From the theoretical side, this approach appears especially well suited to deal with the (very) rough case
H < 1/2, including the boundary value H = 0, and to design simple and efficient numerical simulations.
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I. INTRODUCTION

The motivation of this present work comes from the
stochastic modeling of certain aspects of fluid turbulence
[1,2]. In three-dimensional space, a fluid, when stirred at
large scale L by a force, reacts while developing fluctuations:
the fluid velocity u(x,t) reaches a statistically stationary regime
characterized by a standard deviation, say σ . The more intense
is the forcing, the bigger is σ . If it happens that the product
σL is much bigger than the kinematic viscosity ν of the
fluid, such that the so-called Reynolds number Re = σL/ν

is � 1, the fluid motions become turbulent. In this regime,
velocity fluctuations, characterized by σ , are observed to be
independent on the very nature of the dissipative mechanisms
that are taking place, in particular of the precise value of ν.
To achieve such a efficient way to dissipate energy, the fluid
will develop small spatial scales such that asymptotically, as
Re → ∞, the velocity field will develop infinite gradients,
and becomes rough [1,3].

Rephrased in terms of regularity of functions, this phe-
nomenology, mainly due to Kolmogorov [1,3], and that we
depicted schematically in the former paragraph, has a precise
formulation if we assume underlying Gaussian statistics:
the velocity field u(x,t) is a finite-variance (zero-average
under the assumptions of homogeneity and isotropy) Gaussian
random field, which spatial increments over � along any direc-
tions behave as those of a fractional Brownian motion [4] of
parameter H = 1/3 (see Refs. [5–7] for recent developments
on this matter).

Until now, we focused on the statistical characterization of
the scale-invariance properties of the velocity field in space.
We would like now to focus on the stochastic modeling of the
temporal structure of turbulence. A similar phenomenology
can be developed for the Lagrangian velocity v(t) = u(r(t),t)
of a fluid particle, initially at the position say r0, along its
trajectory r(t) defined through the Eulerian velocity field u as
∂r(t)/∂t = u(r(t),t). In this case, experimental and numerical
observations (see Refs. [8–10] and references therein) suggest
strongly, as expected from a dimensional analysis, that
Lagrangian velocity v is also a finite-variance process with
the same standard deviation σ , typically correlated over the

large time scale T = L/σ , and which increments behave,
up to the variance, at small scale as those of the Brownian
motion. In a Gaussian approximation, which is a good starting
point in the context of stochastic modeling, but which is too
simplistic to reproduce all the observed statistics (in particular
the intermittency phenomenon [8–11]), a natural stochastic
model for the dynamics of v would be a Ornstein-Uhlenbeck
process that reads

dv(t) = − 1

T
v(t)dt + σ

√
2

T
dW (t), (1)

where W is a Wiener process. The statistical properties of
the solution v to this stochastic differential equation [Eq. (1)]
are well known and reproduce adequately at this level of
phenomenology the fluctuations of the turbulent Lagrangian
velocity. In this view, Lagrangian velocity is Hölder continuous
of parameter H = 1/2.

If now we are interested in the temporal description of the
fluctuations of the full Eulerian velocity field u(x,y,z,t), or let
us say at the description at a fixed position of one component
of the velocity field, for example, u(t) ≡ ux(x0,y0,z0,t), then
dimensional arguments [12] ask for a finite variance process,
which is Hölder continuous as those of a fractional Brownian
motion of parameter H = 1/3, thus less regular than the
Lagrangian counterpart v. This extrapolated nondifferential
behavior at infinite Reynolds number can be observed in
numerical simulations, as it has been done in Ref. [13], and
recently revisited in the context of renormalization group
theory [14]. In this case, a natural stochastic model for the
dynamics of u would be given by a generalization of the
Ornstein-Uhlenbeck process [Eq. (1)] of the form

du(t) = − 1

T
u(t)dt + “dWH (t)” , (2)

which would lead to a stationary regime, in which u is of
finite variance, and behaves at small scales as a fractional
Brownian motion of parameter H ∈]0,1[. The purpose of
this article is devoted to give a precise mathematical (and
numerical) meaning to the random measure “dWH ” that enters
the dynamics of u [Eq. (2)]. Let us mention that this level
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of roughness (H < 1/2) is also a hallmark of subdiffusive
dynamics, as it is studied in Ref. [15].

A natural way to generalize the dynamics of the Ornstein-
Uhlenbeck process [Eq. (1)] to the fractional case, i.e.,
a fractional Ornstein-Uhlenbeck process [Eq. (2)], which
would lead to a stationary finite variance process with a
appropriate rough behavior at small scales, is to consider a
fractional Brownian motion (fBm) WH (t) of parameter H .
The fBm is a well-defined probabilistic object [4] and allows
us to define accordingly the integrated dynamics as u(t) −
u(0) = − 1

T

∫ t

0 u(s)ds + WH (t) − WH (0), as it is studied in
Refs. [16–18]. This procedure is clearly well defined and can
be extended to a more general framework allowing to elaborate
a stochastic calculus with respect to fractional Brownian
motion [19–21]. Such a dynamics for u indeed leads to the
statistical properties that have been listed. But it eludes the
question regarding the meaning of the infinitesimal increment
“dWH (t)” .

Nonetheless, as already proposed in Ref. [4], it is tempting
to use the so-called fractional Gaussian noise, which we will
specify later, to give a meaning to this infinitesimal increment.
Indeed, for H > 1/2, this fractional Gaussian noise has a
well-behaved covariance, which is bounded for nonvanishing
argument. The purpose of this article is to include in this picture
the (very) rough case H < 1/2, as demanded by the physics
of turbulence (H = 1/3), which requires a different method
of construction due to the pathological nature of the fractional
Gaussian noise (its covariance is no more bounded) at these
levels of roughness. This will be achieved using a regularized
form of this noise over a small time scale, say ε, supplemented
by a Gaussian white noise weighted by a factor that diverges
with ε [see the following Eq. (4)]. As we will see, an additional
correlation between these two plays a key role. Once injected
in the dynamics [Eq. (2)], we will then study the limiting
behavior of the marginals of the Gaussian process u when
ε → 0. In this sense, the regularization procedure brings to
light the underlying mechanisms at play and allows us to give
a precise mathematical meaning (up to ε > 0) to the random
measure dWH (t) that enters in the dynamics of u [Eq. (2)]. This
overall picture clarifies that the expected dynamics leading
to stationary and rough processes has to be non-Markovian.
In particular, we recover standard interpretations pertaining
to fractional Brownian motions, namely that the infinitesimal
increment is positively correlated (or persistent) for H > 1/2
and negatively correlated (or antipersistent) for H < 1/2.
Incidentally, it also gives a way to build up a realistic numerical
approximation of the trajectories of u at a given regularization
scale ε. Finally, this approach allows us to deal with the
boundary value H = 0 in a nonambiguous manner, a case that
is tricky to consider using the standard approach consisting in
working directly with a fractional Brownian motion, as it is
proposed in Refs. [16–21].

Going back to the physics of turbulence, let us mention
that the fractional Ornstein-Uhlenbeck process as a model of
the temporal structure of the velocity field has been already
proposed and studied in the literature [22,23] in the usual
sense developed in the mathematical references [16–21]. The
novelty of the present work, besides the theoretical and
numerical aspects mentioned earlier, is the introduction of
a new characteristic time scale ε that eventually depends

on viscosity, or equivalently on the Reynolds number Re.
Following dimensional arguments developed in Ref. [12], we
expect ε to coincide with the Kolmogorov time scale ∝TR−1/2

e

in a Lagrangian context [Eq. (1)] and with the sweeping time
scale ∝TR−3/4

e in the Eulerian reference frame [Eq. (2)]. From
a physical point of view, in both cases, it is expected that
temporal velocity profiles are smooth below ε. In this article,
we will mainly focus on the limit ε → 0, but a further modeling
step consisting in filtering the Gaussian white noise entering
in the construction over the time scale ε could be performed to
impose this smooth behavior imposed by viscosity. We keep
this aspect for future investigations.

We give in Sec. II a proper meaning of this stochastic
differential equation [Eq. (2)] and define the random measure
dWH that enters in the dynamics, more precisely a regularized
version of dWε,H over a small time scale ε, and set our
notations. The statistical properties in the stationary regime
and their limit when ε → 0 of the unique solution of such
a differential equation are exposed in Sec. III. Section IV is
devoted to the proofs of the propositions made in Sec. III in a
general framework. We gather all the numerical experiments
in Sec. V and conclude our work in Sec. VI.

II. SETUP AND NOTATIONS

We are interested here in studying the statistical properties
of the solution Xε,H (t) of the following linear stochastic
differential equation:

dXε,H (t) = −αXε,H (t)dt + dWε,H (t), (3)

where the random measure dWε,H is defined by

dWε,H (t) = ωε,H (t)dt + εH− 1
2 dW (t), (4)

with H ∈]0,1[, α > 0 the inverse of a characteristic time scale,
W an instance of the Wiener process, and

ωε,H (t) =
(

H − 1

2

) ∫ t

−∞

1

(t − s + ε)
3
2 −H

dW (s), (5)

a regularized version of the fractional Gaussian noise [4] over
the time scale ε > 0. Remark that the noise ωε,H [Eq. (5)] is a
zero-average and finite-variance Gaussian stationary process
for any ε > 0. Remark also that the very same instance of the
Wiener process W enters in both the dynamics [Eq. (3)] and in
the definition of ωε,H [Eq. (5)], making these two correlated.

The unique solution Xε,H (t) of Eq. (3) with initial condition,
for instance, Xε,H (t0) = 0 can be conveniently written as

Xε,H (t) = X
(1)
ε,H (t) + X

(2)
ε,H (t), (6)

with

X
(1)
ε,H (t) =

∫ t

t0

e−α(t−s)ωε,H (s)ds, (7)

which coincides with the fractional Ornstein-Uhlenbeck
(FOU) process [16–18] in the asymptotic limit ε → 0 for
H > 1/2, and

X
(2)
ε,H (t) = εH− 1

2

∫ t

t0

e−α(t−s)dW (s), (8)
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a standard Ornstein-Uhlenbeck (OU) process. The very origin
of taking the sum of these two correlated Gaussian processes
will become clear later when we will present a heuristics,
proposed in Ref. [24], that we adapt to our context. Let us
now look at the statistical properties of the Gaussian process
Xε,H (t) in the stationary regime, if any, and asymptotically
when the regularizing scale ε tends to zero.

III. CONVERGENCE OF THE COVARIANCE IN THE
STATIONARY REGIME AS THE REGULARIZATION

SCALE ε GOES TO ZERO

A. Statement of the results

For α > 0 and a given H ∈]0,1[, the Gaussian process
Xε,H (t) Eq. (6) reaches a stationary regime. Furthermore, it is
zero-average and the variance remains bounded when ε → 0.
We note

EX2
H = lim

ε→0
lim
t→∞E[(Xε,H (t))2]

= α−2H
[
	

(
H + 1

2

)]2

2 sin(πH )
< ∞, (9)

where enters the 	 function 	(z) = ∫ ∞
0 xz−1e−xdx defined

∀z > 0. Let us call then δτXH the corresponding increment
over τ , note its variance as

E(δτXH )2 = lim
ε→0

lim
t→∞E[(Xε,H (t + τ ) − Xε,H (t))2].

For H ∈]0,1[, we have the following behavior of the increment
variance at small scales

E(δτXH )2 ∼
τ→0

1

sin(πH )

[
	

(
H + 1

2

)]2

	(2H + 1)
|τ |2H . (10)

B. Remarks

Given the statements of Sec. III A, we can see that the
proposed dynamics [Eq. (3)], for a given ε > 0 and 0 < H <

1, converges when t → ∞ toward a stationary process XH ,
which variance remains bounded. Its precise value can be
calculated (see the section devoted to proofs) and is strictly
positive. Furthermore, the increments of this process XH

behave as those of the fractional Brownian motion [Eq. (10)].

1. The case H = 1/2

The case H = 1/2 corresponds to a standard Ornstein-
Uhlenbeck process Xε,1/2 = X1/2 since ωε,1/2 = 0 [Eq. (5)]
at any time, of variance 1/(2α) and increments behaving as in
Eq. (10) (for H = 1/2).

2. The case H ∈]1/2,1[

The case H ∈]1/2,1[ has already been studied in Ref. [16]
and can be understood easily. For H > 1/2, the increment
of the Wiener process entering in the dynamics (i.e., the third
term in the right-hand side of Eq. (3)) will have no contribution
when ε → 0, since it is multiplied by a factor εH−1/2. In this
case, both variance and increment variance of Xε,H are given
by those of X

(1)
ε,H [Eq. (7)] that can be shown to remain bounded

when ε → 0 with a proper scaling [Eq. (10)] at small scales.
The proof relies on the fact that the noise ωε,H [Eq. (5)] entering

in the dynamics, even if its variance diverges when ε → 0
(as expected from a fractional Gaussian noise), has a bounded
covariance structure in this limit, such that the variance of X

(1)
ε,H

remains also bounded. We develop these ideas in Sec. IV B 2.

3. The case H ∈]0,1/2[

The case H ∈]0,1/2[ is more surprising since both vari-
ances of X

(1)
ε,H [Eq. (7)] and X

(2)
ε,H [Eq. (8)] diverge when

ε → 0 whereas the variance of Xε,H = X
(1)
ε,H + X

(2)
ε,H will

remain bounded in this limit. Cancelations in the variance
will take place because of the negative correlation existing
in between the processes X

(1)
ε,H and X

(2)
ε,H . This negative

correlation originates from the fact that the Gaussian noise
ωε,H [Eq. (5)] is made up of the very same instance of the
Wiener process W that enters in the dynamics of Xε,H [Eq. (3)].

To justify the form of the infinitesimal increment dWε,H

[Eq. (4)] and make a connection with fBm [4], let us here
rephrase some arguments developed in Ref. [24]. To do so,
consider a regularized version Wε,H (t), over ε > 0, of a fBm
of parameter H , that is

Wε,H (t) − Wε,H (0) =
∫ 0

−∞
[(t − s + ε)H−1/2

−(−s + ε)H−1/2]dW (s)

+
∫ t

0
(t − s + ε)H−1/2dW (s).

(11)

Remark that the regularization procedure entering in Eq. (11)
is not unique. For instance, we could also define a regularized
version of the fBm as its convolution with a mollifier (properly
rescaled over ε) as it is done in Ref. [4]. In all cases, these
regularized versions [including Eq. (11)] can easily be shown
to converge toward the canonical fBm when ε → 0. The
regularization procedure that we propose [Eq. (11)] allows
to compute in a simple way the infinitesimal increment of
the process Wε,H that will eventually coincide with the noise
dWε,H that we defined in Eq. (4). Indeed, regrouping terms in
a convenient way, we get from Eq. (11)

dWε,H (t) ≡ Wε,H (t + dt) − Wε,H (t)

=
∫ t

−∞
[(t + dt − s + ε)H−1/2

− (t − s + ε)H−1/2]dW (s)

+
∫ t+dt

t

(t + dt − s + ε)H−1/2dW (s). (12)

Performing then a Taylor development (as dt → 0) inside
the first integral entering in the right-hand side of Eq. (12),
we recover the contribution of order dt , proportional to ωε,H

[Eq. (5)] entering in our initial proposition for the noise dWε,H

[Eq. (4)]. The second integral entering in the right-hand side
of Eq. (12) justifies the second term εH−1/2dW (t) entering in
Eq. (4). This is indeed true in average and for the variance.
More mathematical developments would be needed to fully
justify this locally (pathwise). Nonetheless, we can see that
the proposition that we made for the noise dWε,H [Eq. (4)]
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can be justified in a convincing, but not fully rigorous, manner
while considering the infinitesimal increment of a regularized
version of the fBm [Eq. (11)].

Let us also mention recent works [25] that use a similar,
although different, type of regularization procedure to define
and use a fractional Gaussian noise for the very rough case
H < 1/2 (see also Ref. [26] for similar developments). Their
process (see Eq. (1.9) of Ref. [25]) shares similar features
as the fractional Brownian motion of Ref. [4] when their
regularization parameter tends to zero. More work is needed to
characterize precisely the differences between the construction
of Ref. [25] and ours, and this is beyond the scope of the present
article.

4. The case H = 0

The case H = 0 is of special interest and is fully treated in
Ref. [27] in view of applications in theory of fluid turbulence.
It can be shown, and this is not purpose of the article (see
Ref. [27] for developments on this matter), that indeed the
process Xε,0(t) reaches a stationary regime, but the variance
diverges when ε → 0 as

lim
t→∞E

[
X2

ε,0(t)
] ∼

ε→0
ln

1

ε
,

and, furthermore, for τ > 0,

lim
ε→0

lim
t→∞E[Xε,0(t)Xε,0(t + τ )] ∼

τ→0
ln

1

τ
.

As we can see, Xε,0 converges toward a Gaussian process,
which is logarithmically correlated in time, and thus of
infinite variance. This type of random distributions have been
studied for some time (see the review Ref. [28] and citations
therein), find many applications in the theory of multiplicative
chaos [29], which is used as a model of the intermittency
phenomenon in turbulence (see Refs. [1,7]), explaining why it
was considered in Refs. [24,27]. Once again, the construction
of Ref. [25] is similar to the one of the present work, although
different, and more work is needed to compare them precisely.

IV. A MORE GENERAL FRAMEWORK AND PROOFS

A. Stochastic integration against fractional Gaussian noise

To show the statistical properties of the Gaussian process
Xε,H in the limit ε → 0 as announced in Sec. III A [Eqs. (9)
and (10)], let us rephrase former considerations in a more gen-
eral way. We are here interested in calculating the covariance
of the Gaussian processes obtained as a linear operation on the
Gaussian random measure dWε,H (t) [Eq. (4)] that we recall
here for convenience,

dWε,H (t) = ωε,H (t)dt + εH−1/2dW (t), (13)

where W (t) is a instance of the Wiener process over t ∈ R,
and ωε,H (t) is the respective causal fractional Gaussian that
we consider in Eq. (5). Henceforth, we will only consider
convolutions as linear operations, and so only consider
stationary processes (of possibly infinite variance), for the sake
of simplicity. Following developments could be adapted to non
stationary processes, we keep them for future investigations.
As far as we are concerned, in particular while being interested
by the statistics of the fractional Ornstein-Uhlenbeck process

Xε,H (t) [Eq. (6)], we can choose as a initial condition
Xε,H (t0 = −∞) = 0, such as Xε,H (t) is directly stationary.
With these given precisions, for any suitable test functions f

and g, which we will specify later, let us define the covariance
function

Cf,g

ε,H (t2 − t1) = E

[∫
R

f (t1 − s1)dWε,H (s1)

×
∫
R

g(t2 − s2)dWε,H (s2)

]

=
∫
R2

f (t1 − s1)g(t2 − s2)

×E[dWε,H (s1)dWε,H (s2)]. (14)

Let us then rephrase in this more general framework the results
of Sec. III A.

We have, for any H ∈]0,1[ and a appropriate set of test
function f and g, the following explicit expression of the
correlation function Cf,g

ε,H (τ ) when the regularization scale ε

tends to 0:

Cf,g

H (τ ) = lim
ε→0

Cf,g

ε,H (τ ) = −1

2

1

sin(πH )

[
	

(
H + 1

2

)]2

	(2H )

×
∫ +∞

0
[(f 
 g)′(τ + h) − (f 
 g)′(τ − h)]

×h2H−1dh, (15)

where the symbol 
 stands for the correlation product, i.e.,

(f 
 g)(h) =
∫
R

f (s)g(h + s)ds, (16)

and where ′ stands for the derivative. As we will see more
precisely in the following, the correlation function Cf,g

H

[Eq. (15)] makes sense for any H ∈]0,1[, since the function
h2H−1 is locally integrable everywhere. As far as the test
functions f and g are concerned, we are asking them to be
such that the derivatives of their correlation product decreases
fast enough at large arguments such that the integral entering
in Eq. (15) exists. More precise constraints on test functions
in terms of functional spaces are developed in particular in
Refs. [19–21,30]. We will see in Sec. IV C how to apply
Eq. (15) to the case of the fractional Ornstein-Uhlenbeck
Xε,H (t) to prove the results of Sec. III A. Let us discuss now
and demonstrate the behavior of the correlation function Cf,g

H

[Eq. (15)] given a value of the parameter H , in the spirit of the
remarks made in Sec. III B.

B. Dependence of the covariance on H

1. Integration over the Wiener process

The case H = 1/2 corresponds to the integration over the
Wiener process, known as the Itô integral [31]. In this case,
the random measure dWε,1/2 = dW [Eq. (13)] is the increment
of the Wiener process, and is independent on ε, and we get
the following simple expression for the covariance function
[Eq. (14)],

Cf,g

ε,1/2(τ ) = (f 
 g)(τ ). (17)
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Remark that in this case, the expression of the correlation
function Eq. (17) corresponds to the more general expression
given in Eq. (15) when H = 1/2.

2. Integration over the fractional Gaussian noise when H > 1/2

The case H > 1/2 is also well understood in this framework
[19,30]. For this range of H , we can give a meaning
of the limiting value of the correlation function Cf,g

ε,H (τ )
[Eq. (14)] when ε → 0. In other words, besides giving a
way to perform numerical simulations of the random measure
dWε,H (t) [Eq. (13)], as we will see in Sec. V, there is no
need theoretically to introduce a regularization at the scale ε

in the construction, and we can safely take the limit ε → 0
pointwise (see, for instance, Refs. [19,30] for mathematical
developments in the framework of random distributions).
Taking a pointwise limit, we have formally

lim
ε→0

E[dWε,H (s1)dWε,H (s2)]

= lim
ε→0

E[ωε,H (s1)ωε,H (s2)]ds1ds2

=
(

H − 1

2

)2 ∫ ∞

u=0

1

u3/2−H

1

(u + |s1 − s2|)3/2−H
duds1ds2

=
(

H − 1

2

)
1

sin(πH )

[
	

(
H + 1

2

)]2

	(2H )
|s1 − s2|2H−2ds1ds2.

(18)

Inserting then Eq. (18) into the expression of the correlation
function [Eq. (14)], making the change of variable h = s1 − s2

and integrating over s2, we get

Cf,g

ε,H> 1
2
(τ ) =

(
H − 1

2

)
1

sin(πH )

[
	

(
H + 1

2

)]2

	(2H )

×
∫
R

(f 
 g)(τ + h)|h|2H−2dh, (19)

which eventually coincides with the given general expression
for this correlation function [Eq. (15)] after splitting the
integral in two and performing a integration by parts over the
dummy variable h. Remark that the intermediate expression
of the correlation function [Eq. (19)] makes perfect sense
since the singularity |h|2H−2 is locally integrable in the
neighborhood of the origin for 1/2 < H < 1.

3. Integration over the fractional Gaussian noise when H < 1/2

This higher level of roughness requires some more work
since the correlation function of the fractional Gaussian noise
ωε,H entering in Eq. (18) has no meaning in the limit ε → 0.
The mechanism of regularization over ε will here play a key
role and will allow several key cancellations of diverging
quantities, such that the correlation function Cf,g

ε,H (τ ) [Eq. (14)]
remains a bounded function of ε. Remark first that, formally,
we can write

E[dWε,H (s1)dWε,H (s2)] = {E[ωε,H (s1)ωε,H (s2)] + ε2H−1δ(s1 − s2)}ds1ds2

+ εH− 1
2 {E[ωε,H (s1)dW (s2)]ds1 + E[ωε,H (s2)dW (s1)]ds2}, (20)

where the contribution of the Wiener process corresponding to E[dW (s1)dW (s2)] = δ(s1 − s2)ds1ds2 can be conveniently noted
with a Dirac function δ. Let us work out first the contribution coming from the fractional Gaussian noise ωε,H . It reads

E[ωε,H (s1)ωε,H (s2)] =
(

H − 1

2

)2 ∫ ∞

u=0

1

(u + ε)3/2−H

1

(u + |s1 − s2| + ε)3/2−H
du, (21)

which is indeed a function of s1 − s2, and is not bounded in ε. To extract diverging quantities, perform a integration by parts and
obtain

E[ωε,H (s1)ωε,H (s2)] = −
(

H − 1

2

)
εH−1/2

(|s1 − s2| + ε)3/2−H
−

∫ ∞

u=0

H − 1
2

(u + ε)1/2−H

H − 3
2

(u + |s1 − s2| + ε)5/2−H
du. (22)

Noticing that we have formally,

E[ωε,H (s1)dW (s2)]ds1 + E[ωε,H (s2)dW (s1)]ds2 =
(

H − 1

2

)
εH−1/2

(|s1 − s2| + ε)3/2−H
ds1ds2, (23)

we can see that, once inserted in Eq. (20), the first diverging term entering in the right-hand side of Eq. (22) will cancel
out with the contribution of Eq. (23). It will only remain in Eq. (20) the second term of the right-hand side of Eq. (22)
and the ε2H−1δ(s1 − s2)ds1ds2 term. Once inserted in the expression of the correlation function [Eq. (14)], we end up
with

Cf,g

ε,H (τ ) = ε2H−1(f 
 g)(τ ) −
(

H − 1

2

) ∫
(R+)2

(
H − 3

2

)
[(f 
 g)(τ + h) + (f 
 g)(τ − h)]

(u + ε)1/2−H (u + h + ε)5/2−H
dudh.

Performing then a integration by parts over h in the remaining integral, we can see that the first term of the right-hand side of the
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former equation (of order ε2H−1) will be compensated, and we obtain

Cf,g

ε,H (τ ) =
(

H − 1

2

) ∫
(R+)2

[(f 
 g)′(τ + h) − (f 
 g)′(τ − h)]

(u + ε)1/2−H (u + h + ε)3/2−H
dudh

= ε→0

(
H − 1

2

)∫
R+

1

u1/2−H (u + 1)3/2−H
du

∫
R+

[(f 
 g)′(τ + h) − (f 
 g)′(τ − h)]h2H−1dh, (24)

which coincides with the expression given in Eq. (15) once is
performed the integral over u.

C. Fractional Ornstein-Uhlenbeck processes

As a application of the formula given in Eq. (15) to our
center of interest, namely the fractional Ornstein-Uhlenbeck
processes Xε,H (t) [Eq. (6)], with initial condition Xε,H (t0 =
−∞) = 0, consider the test functions

f (t) = g(t) = e−αt1t�0, (25)

such that indeed

Xε,H (t) =
∫
R

f (t − s)dWε,H (s).

Making use of

(f 
 f )(h) = 1

2α
e−α|h| and (f 
 f )′(h) = − h

2|h|e
−α|h|,

once inserted in Eq. (15), we obtain

EX2
H = Cf,f

H (0)

= 1

2

1

sin(πH )

[
	

(
H + 1

2

)]2

	(2H )

∫ +∞

0
e−αhh2H−1dh,

which shows once simplified the proposition made in Eq. (9).
Similarly, we obtain for the increment variance, assume for

instance τ > 0,

E(δτXH )2 = 2
[
Cf,f

H (0) − Cf,f

H (τ )
]

= 1

sin(πH )

[
	

(
H + 1

2

)]2

	(2H )

×
∫ +∞

0

[
e−αh − 1

2
e−α(τ+h) + τ − h

2|τ − h|e
−α|τ−h|

]
×h2H−1dh.

Regrouping terms in a convenient way, we obtain

E(δτXH )2 = 1

sin(πH )

[
	

(
H + 1

2

)]2

	(2H )

×
[

[1 − cosh(ατ )]
∫ +∞

0
e−αhh2H−1dh

+
∫ τ

0
cosh [α(τ − h)]h2H−1dh

]
.

As τ → 0, the first term decreases toward 0 as τ 2, and thus
will be negligible in front of the second term that will behave
as τ 2H . To see this, rescale in the second term the dummy
variable h by τ , then take safely the limit τ → 0 inside the

integral such that to get

E(δτXH )2 ∼
τ→0

1

sin(πH )

[
	

(
H + 1

2

)]2

	(2H )
τ 2H

∫ 1

0
h2H−1dh,

which coincides with the power-law announced in Eq. (10)
once simplified.

To finish this section, let us focus on the boundary case
H = 0. This case, fully developed in Ref. [27], deserves more
care since we are dealing with infinite variance processes as
mentioned in Sec. III B 4 in the limit ε → 0. This logarithmic
divergence with ε of the variance Cf,f

ε,0 (0) can be seen in
Eq. (24). Nonetheless, as we already explained, even if the
variance of such processes diverge with ε (logarithmically), the
correlation function Cf,f

0 (τ ) remains bounded for τ > 0. Using
the general expression given in Eq. (15), applied to the kernel
f of the fractional Ornstein-Uhlenbeck process [Eq. (25)], we

obtain formally, noticing that the prefactor 1
2

1
sin(πH )

[	(H+ 1
2 )]

2

	(2H )
tends to 1 when H → 0,

E[X0(0)X0(τ )] = Cf,f

0 (τ )

=
∫ +∞

0

[
1

2
eα(τ+h) − τ − h

2|τ − h|e
α|τ−h|

]
h−1dh

= −e−ατ

∫ τ

0

sinh(αh)

h
dh + cosh(ατ )

×
∫ ∞

τ

1

h
e−αhdh. (26)

Since the first term entering in the right-hand side of Eq. (26)
remains bounded when τ gets smaller and smaller, this demon-
strates the logarithmic diverging behavior of the correlation
function as τ → 0, as claimed in Sec. III B 4. This can be
readily seen while performing a further integration by parts
over the dummy variable h entering in the second term of the
right-hand side side of the equation.

V. NUMERICAL SIMULATIONS

A. A periodized approximation of the fractional Gaussian noise

We here propose a numerical method that allows us to
estimate the trajectories of the solution Xε,H (t) for H ∈]0,1[
and ε > 0. To do so, we need to come up with a approximation
of the fractional Gaussian noise ωε,H (t) [Eq. (5)] entering in
the dynamics [Eq. (3)]. The first idea would be to truncate,
say over a large time scale T ′, the Wiener integral entering in
[Eq. (5)], and define accordingly the corresponding estimator
ω̂ε,H,n′ (t) as

ω̂ε,H,n′ (tn) =
(

H − 1

2

) n∑
i=n−n′

1

((n − i)�t + ε)
3
2 −H

�W (ti),

(27)
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where �t is the resolution time scale of this numerical
problem, n′ = T ′/�t the integer corresponding to the large
time scale T ′ of the truncation, and �W (ti) = √

�tN (0,1)
is a discrete collection of the increment at time ti = i�t of
the underlying wiener process and is made up of independent
zero-average Gaussian random variable of variance �t . As we
will see in the following, the regularizing time scale ε is chosen
as a multiple of the resolution time scale, typically ε = 10�t .
The large-scale truncation T ′ should be chosen, depending
on the values of �t , ε, and H , large “enough”. Recall that
the fractional noise ωε,H (t) [Eq. (5)] is a well-defined random
process for a finite ε > 0, so its estimator ω̂ε,H,n′ [Eq. (27)]
should become independent on n′ as n′ → ∞. The reason
that explains this independence on T ′ is connected to the fact
that the kernel (t + ε)H−3/2 decreases fast enough, such that
its square (entering in the variance of ωε,H ) is integrable at
t → ∞. Remark also that the estimator ω̂ε,H,n′ [Eq. (27)]
requires of the order n′ operations at each time step, which
is numerically demanding. This numerical strategy has been
nonetheless followed in Ref. [27] to simulate and explore a
more complex process involving a tensorial and non-Gaussian
generalization of the noise ωε,H (t).

Thus, instead of using Eq. (27) to minimize the error
made while truncating the integral entering in Eq. (5) and
perform numerical simulations in a efficient way, we will
rely on the discrete Fourier transform and approximate
ωε,H (t) [Eq. (5)] by a periodical estimator ω̃ε,H . For full
benefit of the fast Fourier transform algorithm, we consider
N = 2k with k ∈ N∗. More precisely, call N the number of
collocation points of your numerical approximation ω̃ε,H

and set T0 the physical time duration of the trajectory, such
that �t = T0/N . Define tn = n�t for n ∈ [0,N − 1] and
t (N)
n its periodized version, i.e., t (N)

n = tn for n � N/2 and
t (N)
n = tn − T0 for N/2 + 1 � n � N − 1. Define then the

regularized over ε, periodized and causal kernel ϕ(tn) =
(H − 1/2)(t (N)

n + ε)H−3/21
t

(N)
n �0. Note by F the discrete

Fourier transform. We thus get a periodized approximation
ω̃ε,H of the fractional Gaussian noise ωε,H (t) [Eq. (5)], taking

ω̃ε,H (tn) = F−1(F[ϕ(tn)]F[�W (tn)]), (28)

where again, �W (tn) are N independent realizations of
a zero-average normal random variable of variance �t .
Trajectories of Xε,H (t) are finally obtained while integrating,
using a Euler discretization scheme, their dynamics [Eq. (3)]
as, starting for example with Xε,H (0) = 0,

Xε,H (tn+1) = Xε,H (tn) + [−αXε,H (tn) + ω̃ε,H (tn)]

×�t + εH−1/2�W (tn). (29)

We recall here that the very same instance of the white noise
�W enters both at the level of the stochastic differential
equation [Eq. (29)] and in the definition of the noise ω̃ε,H

[Eq. (28)]. The additional implied correlation between Xε,H

and �W is crucial and plays a key role in the statistical
properties of Xε,H in the stationary regime.

B. Numerical results

We consider the simulation of trajectories Xε,H (t) of the
stochastic differential equation Eq. (3) under the approxima-

0.3 0.5 0.7 0.9

H

0.3

0.5

0.7

0.9

α
2H

V
ar

(X
,H

)

FIG. 1. Variance of the simulated trajectories of the process Xε,H

obtained while integrating the dynamics proposed in Eq. (3) [see
Eq. (29) for a discrete version]. We have used the set of parameters
T0 = 1, N = 228, �t = T0/N , α = 50/T0, ε = 10�t and for various
values of the parameter H . The error bars are estimated as (two
times) the standard deviation of the obtained variance over the
150 realizations of the trajectories (see Sec. V B for details). We
have superimposed with a solid line the corresponding theoretical
prediction [Eq. (9)] obtained in the stationary regime and in the limit
of vanishing ε.

tions developed in the former section. We choose T0 = 1
and time is nondimensionalized accordingly. To minimize
any statistical effects of the transitory regime, we choose
α = 50/T0, since we expect Xε,H (t) to be correlated over
typically the time scale 1/α. Present simulations are performed
using N = 228 collocation points, such that �t = T0/N ≈
6.10−8T0. We use for the regularization scale the value
ε = 10�t and generate and analyze the statistical proper-
ties of 150 independent trajectories of Xε,H (t), for various
values of H .

We represent in Fig. 1 the estimation of the variance of the
simulated trajectories of the process Xε,H (t) [Eq. (29)] as a
function of the parameter H . We indeed observe a stationary
regime, and compute the variance from 150 independent
trajectories, from which we estimate the error bars. We
furthermore compare with our analytical asymptotic prediction
[Eq. (9)]. Let us first mention that this comparison is more
and more demanding as H increases, since we are rescaling
the estimated variance by a factor α−2H that may become
very small as H approaches unity. This being said, we indeed
observe that our prediction [Eq. (9)] is compatible with the
variance estimated on our trajectories for 0.3 � H � 0.8. For
H � 0.3, our prediction does not reproduce the observed
variance which is characterized by a strong variability. This
could be explain by several facts: (i) as a general remark,
the statistical convergence of such a large-scale quantity as
the variance requires many realizations and we may miss
some of them, (ii) H � 0.3 corresponds to the very rough
case, this may require to take the small scale regularization
ε to be taken larger than what we chose (recall that here
ε = 10�t), at the cost of missing the scaling properties in the
asymptotics, (iii) the smoother cases 0.8 � H have a strong
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FIG. 2. Variance E(δτXε,H )2 = E[(Xε,H (t + τ ) − Xε,H (t))2] of
the increments as a function of the scale τ in a logarithmic fashion.
We have used the same set of parameters as in Fig. 1 [and described
in Eq. (9)]. All curves are arbitrarily shifted vertically for the sake of
clarity. We represent nine different values of the parameter H , from
top to bottom H = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. We
superimpose (dashed line) with the same vertical shift our theoretical
prediction pointed in Eq. (10).

statistical variability as shown by extended error bars, this
might be due to a lack of statistical convergence, or a slow
convergence toward the asymptotic ε → 0 regime. Overall,
given the aforementioned limitations, our predictions seem to
reproduce in a acceptable manner the variance of the simulated
trajectories over a extended range of values of H . Let us add
that numerical tests have been performed over half of the
samples (i.e., 75 trajectories) without a quantitative change
of the amplitudes of the error bars (data not shown), showing
that discrepancies between estimated variances and theoretical
prediction can be barely minimized while working on a larger
set of realizations.

We represent in Fig. 2 the scaling behavior of the so-
called structure function of second order, namely the variance
E(δτXε,H )2 of the increments of the process Xε,H (t) as a
function of the scale τ , for various values of the parameter
H , from the roughest case H = 0.1 to the smoothest case
H = 0.9. We indeed observe a power-law behavior τ 2H for
any of the values of the parameter H . We superimpose on
this representation the predicted behavior in the asymptotic
limit ε → 0 [Eq. (10)] and observe that indeed this prediction
reproduces both the scale-dependence and the prefactors. We
can see also that the comparison between predictions and
estimated variances deteriorates for the smallest and largest
values of the parameter H , as it is also observed in Fig. 1.
Since we are studying here the small scales of the process,
that benefit from a large statistical sampling, we infer that we
might not have reached the asymptotic regime of vanishing
regularization scale ε → 0.

To quantify precisely the differences between the observed
power-laws of the increment variance and our asymptotical
prediction [Eq. (10)] as depicted in Fig. 2, we represent
in Fig. 3 the compensated variance E(δτXε,H )2 by our

-6 -4 -2 0 

log10(ατ)

0

1

2

3

V
ar

[δ
τ
X

,H
]si

n(
π
H

)Γ
(2

H
+

1)
τ

2H
Γ

2 (
H

+
1/

2)

FIG. 3. Representation of the increment variance E(δτXε,H )2

compensated by the analytical prediction pointed in Eq. (10), as a
function of the scales τ . The parameters of the simulation are the
same as in Figs. 1 and 2, and we represent, from top to bottom,
the results for H = 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2. We furthermore
superimpose with dashed-lines two characteristics time scales of the
problem: the regularizing scale ε (left) and the large time scale α−1

(right).

analytical prediction [Eq. (10)], for seven different values of
the parameter H . For the sake of clarity, we superimpose
also with vertical dashed lines the two characteristic time
scales ε and 1/α in between which we expect a power
law behavior of exponent 2H . We indeed observe that over
almost three decades in scale, increment variance obeys
an extended power-law behavior correctly captured by our
analytical prediction [Eq. (10)] when H > 1/2. We can also
observe that our prediction deteriorates as H gets smaller and
smaller compared to 1/2. Similarly, we can see two reasons
for this: (i) we did not reach yet the asymptotic regime ε → 0
and we are observing a slow convergence towards it, and (ii)
some consequences are expected in the very rough case if we
chose the regularizing scale ε not big enough compared to the
resolution scale �t . We keep for future investigations a more
developed numerical study of this process. Nonetheless, we
can see that the fractional Ornstein-Uhlenbeck process can be
easily simulated and our theoretical predictions [Eqs. (9) and
(10)] compare reasonably well with our numerical results.

VI. CONCLUSIONS

We have proposed a generalization [Eq. (3)] of the Ornstein-
Uhlenbeck process [Eq. (1)], which is of finite-variance in the
stationary regime, and which regularity is governed by the
parameter H ∈]0,1[ when the regularizing scale tends to zero,
in the same fashion as the fractional Brownian motion [4].
This article includes a theoretical study aimed at getting exact
expressions for the variance and increment variance of the
process, and their asymptotical behavior when ε → 0 and at
vanishing scale. We propose then a numerical study showing
that the fractional Gaussian noise entering in the dynamics can
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be approximated in a accurate way and observe, to some extent,
for any H ∈]0,1[ the convergence toward the asymptotical
regime developed in the theoretical section.

Further efforts in this spirit will be devoted to the modeling
of fluid turbulence, which asks for further developments to
give a realistic picture of the intermittency phenomenon and
energy transfers in scale. We keep these perspectives for future
investigations.
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