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We study the reconnection of vortices in a quantum fluid with a roton minimum by
numerically solving the Gross-Pitaevskii (GP) equations. A nonlocal interaction potential
is introduced to mimic the experimental dispersion relation of superfluid 4He. We begin by
choosing a functional shape of the interaction potential that allows us to reproduce in an
approximative way the so-called roton minimum observed in experiments, without leading
to spurious local crystallization events. We then follow and track the phenomenon of
reconnection, starting from a set of two perpendicular vortices. A precise and quantitative
study of various quantities characterizing the evolution of this phenomenon is proposed:
This includes the evolution of statistics of several hydrodynamical quantities of interest
and the geometrical description of a observed helical wave packet that propagates along the
vortex cores. Those geometrical properties are systematically compared to the predictions
of the local induction approximation (LIA), showing similarities and differences. The intro-
duction of the roton minimum in the model does not change the macroscopic properties of
the reconnection event but the microscopic structure of the vortices differs. Structures are
generated at the roton scale and helical waves are evidenced along the vortices. However,
contrary to what is expected in classical viscous or inviscid incompressible flows, the
numerical simulations do not evidence the generation of structures at smaller or larger
scales than the typical atomic size.
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I. INTRODUCTION

Turbulence in quantum fluids is the study of the motions induced by a tangle of quantum
vortices, which are created under a large-scale stirring force, or in the presence of a counterflow
generated by a hot source (see, for instance, the reviews [1–5]). In practice, it can be investigated
in a variety of physical systems, e.g., in cold-atom Bose-Einstein condensates [6,7], superfluid
3He [8,9], or superfluid 4He [10,11]. In this paper, we focus on the case of superfluid 4He, which
is obtained when liquid 4He is cooled at temperatures below Tλ ≈ 2.17 K (at saturated vapor
pressure). At finite temperature, the fluid is made up of a mixture of two components, one being
classical and viscous, governed by the incompressible Navier-Stokes equation, and the other one
being inviscid, compressible, and potential with localized and quantized singularities (i.e., quantum
vortices) hosting the rotational motions. These two components interact in a subtle way through
the friction of these vortices onto the viscous component, a phenomenon that allows the decay of
fluctuations of the quantum component without thus the action of viscosity. Macroscopically, i.e., at
scales larger than the dissipative scale of the classical component, statistics of velocity fluctuations
in this mixture look very similar to the ones observed in classical three-dimensional turbulence,
as depicted in the phenomenology of Kolmogorov [12]. This includes the fine-scale structure
of turbulence, such as the power-law decrease of the velocity spectrum and higher order (i.e.,
intermittent) properties [10,13–15], scale-energy transfers (i.e., the skewness phenomenon) [16],
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and also the global behavior at large scales [17]. Even if some differences have been highlighted
between quantum and classical turbulence [18,19] at the level of an isolated quantum vortex, it is
thus tempting to consider that at a finite temperature below Tλ, the two components are locked at
each other, implying that quantum vortices self-organize, forming structures (i.e., bundles) such that
the overall locally averaged vorticity field of the superfluid component resembles the one observed
in classical turbulence [1–5]. At smaller scales, typically below the mean intervortex distance, a
decoupling of the two components is nonetheless expected [20], superfluid velocity fluctuations
being governed by other phenomena such as Kelvin waves propagation along vortex cores [21,22].

Such scales are difficult to access experimentally; thus, from a modeling point of view, it
is tempting to study the collective effects of a population of localized singularities hosting a
distributional repartition of vorticity, in particular in interaction with an exterior (classical) velocity
field. A popular method to study the interaction between these vortices is given by the vortex
filament (VF) model, where the velocity field induced by a vortex is described by the Biot-Savart
law. In the case where the vortex core size is negligible compared to its local curvature, it is
interesting to consider the local induction approximation (LIA) [23,24] of the VF model that takes
into account only the induced velocity field of a local portion of the vortex. Such an approach can
then be generalized to take into account nonlocal effects induced by the whole vortex [25,26], in
order to study the dynamics of an ensemble of vortices and the implication of nonlocal effects.
In this context, a phenomenon of tremendous importance is vortex reconnection, that allows for
dissipation and a possible change in the macroscopic distribution of these vortices and that has to
be modeled in an ad hoc manner at this stage.

An alternative approach devoted to the dynamics of vortices and their interaction that might
be of some interest for the improvements of the aforementioned discrete approaches, neglecting
the coupling with a normal component and assuming vanishing temperature T = 0, is given
by the description and evolution of the order parameter of the superfluid in terms of fields, as
proposed by a partial differential equation known as the Gross-Pitaevskii (GP) equation [27].
Contrary to the approach based on the LIA, the GP equation naturally includes vortex reconnection,
without thus asking for further modeling steps. This approach has been studied extensively in the
literature [28,29]. In this approach, that allows us to study some global behavior of an assembly of
vortices at scales of the order of the inter-vortex distance, their very internal structure is neglected
and the two-body interaction usually adopted is of localized (i.e., distributional) type. The purpose
of this article is the numerical study of a nonlocal version of the GP equations that allows us to
reproduce a realistic internal structure of these vortices and observe and quantify its implication on
vortex reconnection and on possible wave-packet propagation along their cores. This can be done
while introducing in the interaction potential a physical length scale a representing the typical size
of a 4He atom.

II. A NONLOCAL MODEL OF SUPERFLUIDS INCLUDING THE ROTON MINIMUM
AND ITS CALIBRATION

At zero temperature T = 0, to the lowest approximation, we can consider the superfluid under
study to be described by a scalar wave function ψ , i.e., an order parameter, which is space
and time dependent. Henceforth, we consider dimensionless coordinates r ∈ R3 and t ∈ R by
respectively the roton wavelength a = 3.26 Å [27,30] and a quantum typical time t0 = 2ma2/h̄ =
1.34 × 10−11 s, where m = 6.65 × 10−27 kg corresponds to the 4He atom mass. Considering that
the number of atoms is high in the condensate, we can assume that the dynamics of ψ is given by
the GP equation that reads in its most general and dimensionless version

i
∂ψ

∂t
= −�ψ + (V ∗ |ψ |2)ψ − μψ, (1)

where V (x) is a smooth two-body interaction potential, assumed to be spherically sym-
metrical (a function of the norm x = |x| only), ∗ stands for the convolution product, i.e.,
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(V ∗ |ψ |2)(x, t ) = ∫
V (x − y)|ψ |2( y, t ) d3y, and μ = ∫

V (x) d3x is the chemical potential en-
suring |ψ |2 = 1 as a homogeneous solution. As shown in Refs. [31–33], the finite extension of the
interaction potential is crucial in obtaining a dispersion relation that reproduces the roton minimum,
as observed in neutron scattering measurements performed in superfluid 4He [30,34]. This allows us
to calibrate the superfluid model that is proposed in Eq. (1) while computing the dispersion relation,
readily obtained as

ω2(k) = |k|4 + 2|k|2V̂ (k), (2)

where V̂ (k) = ∫
eik.xV (x)d3x is the Fourier transform of the interaction potential, which depends

only on k = |k| if V is taken isotropic. To get the dispersion relation [Eq. (2)], we use standard
techniques consisting in linearizing Eq. (1) while looking for solution of the form ψ = 1 + ϕ,
for small ϕ, Fourier transforming the linear dynamics of ϕ and its conjugate, then looking for
constraints on ω and |k| to avoid a single trivial solution (see Refs. [31–33]). Choosing a particular
form for V̂ (k) allows us then to compare the so-obtained dispersion relation against experimental
measurements.

In subsequent numerical simulations that we will present in the next sections, we choose the
following functional isotropic form for the interaction potential,

V̂ (k) =
(

c2
s

2
− v2

1 |k|2 + v4
2 |k|4

)
exp

(
−|k|2

2k2
0

)
, (3)

where cs corresponds to the sound velocity, i.e., the limit at small wave vector of ω2(k)/|k|, and
(v1, v2, k0) are three free parameters than could be obtained, for example, using a least-squares fit
procedure given a experimental dispersion relation. We will not do that and use instead, within our
choice of units, cs = 16, v1 = 2.2635, v2 = 0.4408, and k0 = 5.5970. We now motivate our choice
and compare results against experimental data.

We represent in Fig. 1(a) the dispersion relation of liquid 4He at saturated vapor pressure provided
in Ref. [30] using a solid black line, and that exhibits indeed a roton minimum around |k| = 2π .
We superimpose there using a red dash-dotted line the dispersion relation obtained with the model
proposed in Ref. [31], and the implications on the vortex density profile are discussed in Sec. V.
With a blue dashed line, we represent the dispersion relation that we get, using Eq. (2), with an
interaction potential (Fourier transformed) given in Eq. (3) that we use in subsequent numerical
simulations, with the formerly defined free parameters (v1, v2, k0) and the given sound velocity
cs . The corresponding potential profiles in real space are represented in Fig. 1(b). We observe
quantitative differences between the experimental and our theoretical dispersion relations. First,
when expressed in physical units, we have chosen a sound velocity of the order of 354m/s, which
is higher than the observed value 238m/s. This explains why experimental and theoretical curves
deviate at vanishing |k|. Furthermore, we see that the theoretical curve reproduces the correct value
of the roton wave vector |k| = 2π but not the value of the of the minimum of angular frequency ω

(nor consistently the value of the maxon, i.e., the local maximum of frequency occurring just before).
This choice is dictated by further numerical investigations in which we forbid any crystallization
phenomena, a natural tendency of this type of model [Eq. (1)] to evolve toward a periodical
modulations of density ρ = |ψ |2, as has been exploited to describe a possible supersolid-state of
matter [35,36]. This tendency to crystallization is described in Sec. IV. At this stage, let us state
that the present approach, based on a scalar wave function with a two-body nonlocal interaction as
considered in Eq. (1), is unable to describe the dynamics of 4He in a superfluid phase with a more
realistic dispersion relation.

Indeed, let us show that such a choice for the interaction potential [Eq. (3)] allows axisymmetric
stationary solutions, i.e., vortex lines with quantized circulation, as has been widely studied for the
local GP equation [27].
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FIG. 1. (a) Dispersion relations of 4He and its model as given by the nonlocal GP equation [Eq. (1)]:
experimental results from neutron scattering experiments (black line, see Ref. [30]), its fit as proposed in
Ref. [31] (red dash-dotted line), and our current model [Eq. (3)] with a raised roton minimum so as to avoid
crystallization as explained in the text (blue dashed line). (b) Corresponding interaction potentials V (r )/V0

entering in Eq. (1), with V0 = 21.96 eV for the model of Ref. [31] and V0 = 0.15 eV for our present model
[Eq. (3)], used to obtain the theoretical dispersion curves of panel (a). We display in the inset the radial density
profile of the stationary solution corresponding to the local GP equation [Eq. (10)] with a black dotted line,
and the corresponding profile in the nonlocal case [Eq. (1)] with a blue dashed line. [(c), (d)] Color plots of
the distribution of density, i.e., |ψ |2, of the stationary vortex solution obtained as the solution of the relaxation
problem given in Eq. (4). (c) With our raised roton gap [Eq. (3)] so as to avoid crystallization. (d) With the
potential proposed in Ref. [31], which leads to a crystallization event.

III. A DETOUR THROUGH THE NUMERICAL ESTIMATION
OF AXISYMMETRIC STATIONARY SOLUTIONS

A major success of scalar wave functional approaches, and its related dynamics given by the
GP equation [27], lies in the existence of a stationary solution (i.e., time independent) which is
axisymmetric (say, independent of the z coordinate and on the polar angle ϕ in the xy plane) and
exhibits a 2π defect for the phase. More precisely, a solution of the form ψ (r, ϕ, z) = √

ρ(r )eiϕ ,
where we have introduced the polar decomposition of the wave function in terms of amplitude
and phase and the cylindrical coordinates (r, ϕ, z) in which x = r cos(ϕ) and y = r sin(ϕ). To
numerically estimate the shape of the density distribution ρ(r ) as a function of the polar distance r ,
and more generally to test the existence of such a axisymmetric solution, we numerically solve the
two-dimensional relaxation problem [corresponding to the propagation of Eq. (1) in imaginary time
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with the z independence as a constraint]

∂ψ

∂t
=

(
∂2

∂x2
+ ∂2

∂y2

)
ψ − (Ṽ ∗ |ψ |2)ψ + μψ, (4)

with initial condition ψ (x, y, 0) = eiϕ(x,y), ϕ(x, y) = arctan(y/x) (the inverse tangent being suit-
ably defined), and Ṽ (x, y) = ∫

V (x, y, z) dz. We solve this initial value problem using periodic
boundary conditions in order to efficiently compute linear operations in the Fourier space and
nonlinear ones in the physical space. Doing so, in order to prevent phase discontinuities, we use four
copies of this initial condition with appropriate phase distribution and evenly spaced, as explained
and performed in Ref. [28]. In units of the length scale a, we use as a mesh size dx = 1/16, and
depending on the number of collocation points N in each direction, we consider domains of physical
size Ndx. Using thus N = 512 (vortices are sufficiently far apart to neglect their interaction), we
simulate a domain of physical size 32 a ≈ 100 Å. Time propagation is performed using a fourth-
order Runge-Kutta explicit method with dt = (dx)2/64, corresponding to 8.2 × 10−16 s in physical
units. This particular value for the time step was obtained by starting from the numerical stability
prediction for the heat equation dt � dx2/2 [37] and then decreasing dt until all simulations were
numerically stable. To prevent spurious generation of unphysical small scales, we use as a dealiasing
method the 2/3 rule each time we perform a multiplication in the physical space. In our case, since
the nonlinearity is of order 3, we apply this rule two times at each time step, which is enough to
prevent the generation of unphysical small scales.

Starting from our initial condition, we observe the convergence of Eq. (4) toward a time-
independent solution that we can consider as a stationary solution of the nonlocal GP equation
[Eq. (1)] itself, and we represent it in Fig. 1(c). We see that indeed the solution is symmetrical
around the axis of the vortex, where the density tends to zero, as it is expected at the core of
quantum vortices. We furthermore see the existence of additional density oscillations around the
vortex core, which are themselves expected once a roton minimum is included in the picture.
This is a well-known phenomenon [31,33,38–41], for which density oscillations are prescribed by
the characteristic shape and size of the roton minimum. We represent in the inset of Fig. 1(b) a
comparison of the density profile away from the vortex core obtained in axisymmetric stationary
solutions of the local [given in Eq. (10), curve is in black] and nonlocal GP equations (our present
numerical estimation) where we see more clearly that the presence of the roton minimum leads
to periodical modulation of density, governed by the roton characteristics, and can be seen as
precursors of the crystallization phenomenon [35,36].

IV. FURTHER COMMENTS ON THE MODEL OF THE INTERACTION POTENTIAL

We represent (red dash-dotted line) in Fig. 1(a) the model of the nonlocal interaction potential V

chosen in Ref. [31], which also includes an additional quintic term in the overall dynamics. It does
reproduce with great accuracy the experimental dispersion relation of Ref. [30]. Nonetheless, when
looking for a possible axisymmetric stationary solution, in the spirit of the relaxation problem posed
in Eq. (4), we end up eventually with a time-independent solution displayed in Fig. 1(d). We see that
in this case, the invariance around the axis of the vortex is broken by the appearance of additional
periodic modulation of density that form a hexagonal structure. This crystallization phenomenon
was already observed in early numerical simulations of the nonlocal GP equation [42], where it is
associated to a phenomenon of mass concentration and negative values of the interaction potential.
We could have used also another set of parameters (cs, v1, v2, k0) in order to be much closer to
the experimental dispersion curve, without including an additional quintic term. Similar to the
model proposed in Ref. [31], the corresponding stationary vortex solution would also exhibit such
a crystallization phenomenon (data not shown). We performed similar simulations using domains
of larger sizes (up to 20482 collocation points using the same dx, not displayed here for the sake
of clarity) and observe a similar crystallization phenomenon with the same period. As we will
comment while evoking the notion of supersolidity as discussed in Refs. [35,36], the period of such
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a precursor of crystallization is governed by the finite extension of the interaction potential and
is thus not influenced by the macroscopic scale of the domain. Let us furthermore mention that
these stationary solutions are obtained while solving a 2D relaxation problem, which includes as an
additional constraint the translational invariance along the vortex axis [Eq. (4) is readily obtained
from Eq. (1) assuming independence on the spatial variable z]. Thus, these density oscillations
should be furthermore seen as being independent of the z direction, which is physically barely
acceptable. For these reasons, we decide to look for a set of parameters (cs, v1, v2, k0) that would
allow a noncrystallized stationary vortex solution.

In light of more recent studies [35,36] concerning the natural evolution toward the state of
supersolidity when a roton minimum is included in the picture, we are left with concluding that
a GP type of evolution, with a simple nonlocal two-body interaction (with a possible additional
quintic term), is unable to describe in a proper manner superfluid 4He if we follow with great
accuracy the experimental dispersion curve of Ref. [30]. Let us note that, to our knowledge, there is
no experimental evidence of the very microscopic structure of vortices in superfluid helium at the
roton scale. As a consequence, we cannot affirm that such a crystalline structure is impossible in
4He. However, at a macroscopic scale, noncrystallized vortices are well supported by experimental
evidence in superfluid helium [43] and in atomic Bose-Einstein condensates (BEC) [44]. In other
words, we ask the model of superfluid we consider, given in Eq. (1), to exhibit a noncrystallized
vortex (i.e., axisymmetric) as a possible stationary solution. To do so, we are led to use an interaction
potential V which is unable to reproduce with great accuracy the experimental dispersion curve.
Note nonetheless that calibrating our model, which involves a nonlinearity in the evolution [Eq. (1)],
using the dispersion relation, a prediction obtained through a linearization procedure, is difficult
to control. It would be of great interest to develop a new type of dynamics that would include
both a correct description of the experimental dispersion relation and the existence of stationary
axisymmetric solutions, representing in a proper way quantum vortices. We leave this aspect for
future investigations and perform subsequent three-dimensional numerical simulations with the
aforementioned model for the interaction potential [Eq. (2)] that prevents the formation of these
hexagonal periodic modulations of density.

V. SPATIAL DISTRIBUTION OF THE VORTEX SOLUTION

Let us now investigate the very radial distribution of various kinematic quantities entering in
the hydrodynamical interpretation of the nonlocal GP equation [Eq. (1)], as given by the Madelung
transformation [27]. In this approach, we associate the gradients of the phases of ψ to a velocity
field v and of |ψ |2 to a local density field ρ. Key kinematic quantities are thus density ρ = |ψ |2 and
probability current j = −i(ψ∗∇ψ − ψ∇ψ∗) = ρv that are governed by conservation equations
that read [27,29,31]

∂ρ

∂t
+ ∇ · j = 0, (5)

that can be interpreted as a continuity equation. Considering a component ji of the vector j , we
have

∂ji

∂t
+ ∂j�ij = 0, (6)

where �ij is the momentum tensor,

�ij = ∂iψ∂jψ
∗ − ψ∂2

ijψ
∗ + c.c. + 1

2ρ(V ∗ ρ)δij , (7)

where c.c. stands for the complex conjugate and δij is the Kronecker symbol. Similarly, we could
derive the time evolution of the velocity field v, which corresponds to a compressible, irrotational,
and barotropic fluid with an additional quantum pressure term, of density corresponding to |ψ |2
(see, for instance, Refs. [31,42]). It is well known that the velocity field diverges in the vicinity of a
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FIG. 2. (a) Radial distributions of the velocity field v and probability current j of the axisymmetric
stationary solutions of the local [Eq. (10)] and nonlocal [Eq. (1)] GP equations. (b) Radial distributions of
the associated pseudovorticity fields [Eq. (8)] and their comparison with a schematic fit provided in Eq. (9).

defect of the phase, so we will in the next section work with the current vector j , that is eventually,
as we are going to see, a bounded vector.

We display in Fig. 2(a) the radial profile of velocity v and probability current j of the
axisymmetric stationary solution represented in Fig. 1(d). Let us recall that, using cylindrical
coordinates centered on the vortex, the velocity field v = 1/r eθ and the current j = ρ(r )/r eθ are
known. We remark that |v| = 1/r , as mentioned, diverges in the vicinity of the vortex line, whereas
j is a bounded vector since ρ(r ) tends to 0 as r2 [27] in the vicinity of the origin (so that j vanishes
itself at the origin). This is indeed obtained and displayed in Fig. 2(a). We furthermore superimpose
the radial distribution of j that is obtained from the local, i.e., standard, version of the GP equation,
that we define precisely later [Eq. (10)]. Once again, we see that the current follows a nonmonotonic
radial behavior. Compared to what is obtained in the nonlocal GP equation [Eq. (1)], we can see that
the maximum of current is obtained at a similar distance from the axis of symmetry in both models,
but its value is higher in the nonlocal version of the dynamics.

Of great interest also from a dynamical point of view is the radial distribution of the pseudovor-
ticity

w = ∇ ∧ j , (8)

which quantifies the rotational motions of this compressible fluid. In the following, we note w = |w|
the amplitude of pseudovorticity. For a single vortex line along the z axis, w is aligned with ez, and
its amplitude only depends on the radial distance r to the axis, and we have w(r ) = (1/r )dρ(r )/dr .
Recall that vorticity itself, i.e. the curl of the velocity field v, is of distributional nature and vanishes
everywhere except at the very center of the vortex core, where it diverges. Instead, as we can see in
Fig. 2(b), w as defined in Eq. (8) is a bounded quantity.

In the local case (red symbols), we can even see that the radial distribution of pseudovorticity,
as far as the axisymmetric solution is concerned, follows a monotonic decrease away from its axis
of symmetry. As we see in Sec. VI, in particular to interpret some quantities entering in a statistical
description of the flow, it is interesting to design a model for this radial behavior. For this purpose,
we propose the following decreasing function,

w(r ) = w0[
1 + (

r
r0

)2]α , (9)
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where w0 is the value of pseudovorticity on the axis of symmetry, and (r0, α) are two free parameters
describing the shape of pseudovorticity radial distribution. Starting with the radial distribution of w

obtained from the local GP equation [and presented later in Eq. (10)], the fit [Eq. (9)] reproduces in
a fairly good way the observed decrease using r0 = 0.22 (in units of a) and α = 3.125. In a nonlocal
context setting, as given by Eq. (1), such a fit reproduces accurately the decrease with r0 = 0.62 and
same α, but obviously fails at reproducing the nonmonotonic behaviors associated to the additional
oscillations associated to the roton minimum. As we will see in Sec. VI, even if some aspects are not
reproduced by such a schematic fit [Eq. (9)], it will be very useful to interpret subsequent statistical
quantities that we will observe in the next sections.

Let us also remark that the exponent α ≈ 3.125 is not that close to the value 2, a typical value
that is expected while considering the boundary value problem related to the spatial distribution of
vortex density. Indeed, far from the vortex origin, and neglecting second-order variations, density
should reach the uniform solution as the square of the inverse of the distance from the vortex [27].
Using then w(r ) = (1/r )dρ(r )/dr , we easy get that pseudovorticity amplitude should tend to zero
as 1/r4, corresponding thus to α = 2. In our case, we are looking at the behavior of pseudovorticity
over a range that cannot be considered as being far from the origin of the vortex, namely over say
one atomic distance (see the obtained values for the parameter r0). Moreover, our simulation domain
is finite, and copies that are necessary to prevent phase discontinuities in this periodical setup might
interact in a subtle way such that the value α ≈ 3.125 reproduces in a better way the decrease of the
pseudovorticity that we are observing. This may explain why we are not observing a 1/r4 decrease
of pseudo-vorticity.

VI. NUMERICAL INVESTIGATION OF RECONNECTION OF A SET OF INITIALLY
PERPENDICULAR VORTICES

Let us now investigate the dynamics of vortex reconnection in the presence of a roton minimum
and thus with a nonlocal interaction potential [Eq. (1)], as studied in a local GP equation in Ref. [28].
To do so, we prepare an axisymmetric stationary solution as described in the previous paragraph
and represented in Fig. 1(d), properly extended to three dimensions, and take as an initial condition
the product of two such wave functions, one being in the center of the domain and the other one
being shifted from the center by one atomic distance a and rotated such that we get initially two
perpendicular vortices, in a way similar to that in Ref. [28]. One of the purpose of the present article
is to study and quantify the differences in the evolution of this set of two perpendicular vortices with
and without the roton minimum. Thus, in addition to three-dimensional numerical simulations of
the nonlocal GP equation [Eq. (1)], as we have already discussed in particular in Fig. 2, we perform
such a simulation with the standard (local) form of the GP equation. In our system of units, we thus
consider also the following dynamics,

i
∂ψ

∂t
= −�ψ + g(|ψ |2 − 1)ψ, (10)

where we have implicitly chosen μ = g as a chemical potential to ensure that the stationary solution
is defined by ψ = 1. In both models given in Eqs. (1) and (10), the speed of sound cs = √

2μ and
the typical vortex core extension (i.e., the healing length) ξ = 1/

√
μ depend directly on the value

of the chemical potential μ. In the nonlocal case, Eqs. (1), we have chosen μ = V̂ (0) = c2
s /2 = 16

[Eq. (3)], a value that was shown to prevent crystallization events. This leads us to choose for the
coupling constant entered in Eq. (10) the value g = 128 in order to work with same cs and ξ . to
what is done while considering the relaxation problem of Eq. (4), we solve Eqs. (1) and (10) in a
periodic domain using a pseudospectral method, with same dx, dt and dealiasing rule, over N3 =
5123 collocation points. Results of both simulations are displayed in Fig. 3, using the visualization
software VAPOR [45]. Once again, only one eighth of the computational domain is displayed, but
we keep in mind that copies remain to warrant a continuous distribution of the phase of the wave
function.
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FIG. 3. 3D visualization of the superfluid density during reconnection, in the local (top) and nonlocal
(bottom) models. A density threshold is applied for clarity, so that the bulk fluid density ρ ∼ 1 is transparent.
Four snapshots are represented along time, from left to right respectively: the initial condition t = 0,
the reconnection time t = trec, twice the reconnection time t = 2trec, and the end time of the simulation
t = tend ≈ 6t0.

We have displayed the evolution of this set of two initially perpendicular vortices at four different
times: (i) the initial time t = 0, (ii) at the time of reconnection t = trec, (iii) after the reconnection
at t = 2trec and (iv) some time after the reconnection at t = 10trec. The time of reconnection are
similar in both dynamics, namely, trec is 1.16 in the local formulation and 1.08 in the nonlocal
one, respectively 1.55 × 10−11 s and 1.44 × 10−11 s in physical units. Since we have chosen the
parameters of the dynamics such that the speed of sound is the same in both the local and nonlocal
formulations, it is not surprising to observe similar reconnection times trec. However, it is very
surprising at this stage that overall the phenomenon of reconnection, from a spatial point of view,
looks very similar in the local and nonlocal formulation. Indeed, the spatial distributions of density
|ψ |2 at the final stage tend that we consider in both cases share striking similarities. We can conclude
that the internal (i.e., microscopic) structure of the vortices, strongly influenced by the presence of
the roton minimum, has nonetheless little influence on the overall global evolution at larger scales
than a. One could argue that in the very core of the vortex the nonlinearity of the GP model has little
influence on the reconnection dynamics. However, in the presence of a roton minimum, the internal
core is always surrounded by strong density fluctuations, and we are solving a nonlinear problem
that could have been highly sensitive to those density structures. From a local point of view, paying
attention to the precise values of the densities across time and space, we can see that the nonlocal
GP allows locally high values (of the order of ρ ∼ 1.5), which do not seem to have implications on
the global dynamics.

To quantify more precisely the generation of strong fluctuations of the superfluid density ρ =
|ψ |2, we compute the probability density function (PDF) of the field of densities obtained in the
simulation domain for both the local and nonlocal cases, at the four times considered in Fig. 3, and
we display our results in Figs. 4(a) and 4(b). We observe that along the phenomenon of reconnection,
densities higher that the uniform one are forbidden in the local case [Eq. (10)]. On the contrary, in
the nonlocal approach, in which local densities higher than one are initially present due to the roton
minimum, the dynamics may develop local mass concentration exceeding three times the value of
the uniform density.

In order to interpret subsequent PDFs that we are going to estimate, let us first focus on the simple
axisymmetric stationary solution (i.e., the vortex line) that we presented in Fig. 1(d). Consider then
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FIG. 4. Plots of the probability density functions (PDF) of various hydrodynamical quantities, in the local
(left) and nonlocal (right) models. [(a), (b)] PDF of the superfluid densities |ψ |2. High-density events ρ > 1
are well represented in the nonlocal case (b), whereas they are absent in the local model (a). [(c), (d)] PDF of
the probability current norm j = | j | (see text for a precise definition). A j−3 behavior is observed on the right
tails of both models and comes from the midrange decay of j . A j 1.76 scaling is observable on both left tails.
[(e), (f)] PDF of the pseudovorticity norm w = |w| [Eq. (8)]. The observed power-law behaviors Pw ∼ w−1.4

are superimposed in both the local and nonlocal cases.

any physical quantity of interest F , and its respective PDF PF , i.e., the histogram of the values
g(x, y, z) taken by the quantity F in the domain V (of volume |V|). The PDF can be written as the
following empirical average,

PF (f ) = 1

|V|
∫
V

δ(f − g(x, y, z))dxdydz, (11)

where δ denotes the Dirac function. For a single vortex, in a cylindrical volume V of radius R and
of finite height, the PDF of v can be computed exactly, inserting g(r, θ, z) = 1/r in the empirical
interpretation of the PDF [Eq. (11)] and performing a proper change of variable, we get P|v|(|v|) =
2R−2|v|−3 for |v| � R−1 (and 0 for |v| < R−1), showing that the tail is governed by the divergence
of velocity in the vicinity of the vortex, as was noticed in Refs. [18,46]. Note that similar power-law
behaviors ∼|v|−3 have been observed in simulations of the local GP equation [Eq. (10)] as detailed
in Ref. [19]. This power-law behavior of the tail of the PDF of the norm of velocity is also observed
for the case of two perpendicular vortices, as we consider to initiate our numerical simulations. We
have checked in our simulation that this is also the case for the initial condition we are using, for
both the local and nonlocal case, all long the reconnection process (data not shown).

To this regard, as we have already seen, the probability current field j remains bounded in the
presence of a vortex line, and thus appears to be a good candidate in order to quantify whether high
values of density, as they are observed in particular in the nonlocal case [Fig. 4(b)], are associated
to high values of the current j . We display in Figs. 4(c) and 4(d) the histograms of the values taken
by the norm of the current vector j in the computational domain. We see in both local and nonlocal
cases that the PDF of | j | exhibits similar tendencies, such as (i) a linear trend for | j | � 1 and (ii)
a | j |−3 power-law behavior in a domain of finite extension, reminiscent of the expected power law
of the velocity field PDF, as explained formerly. The power-law behavior at small | j | should be a
consequence of the interaction of vortices and their images, and the finiteness of the extension of the
computational domain (and the respective periodical boundary condition). Even if higher values of
the current field | j | are indeed observed in the nonlocal case [Fig. 4(d)], they do not exceed values
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already observed in the initial condition at t = 0. We are led to the conclusion that the existence of
a roton minimum has little influence on the overall shape of the PDFs of | j |.

Developing on these ideas, we perform a similar estimation of the histogram of the pseudo-
vorticity w [Eq. (8)], in order to quantify possible creation of small scales, as happens in the presence
of a direct cascade mechanism, which is at the heart of the phenomenology of Kolmogorov regarding
three-dimensional classical (i.e., governed by the viscous Navier-Stokes equation) turbulence [12].
Indeed, recall that in classical turbulence, velocity PDF is close to a Gaussian function, whereas
PDF of gradients, and in particular vorticity, is found to be highly non-Gaussian. For a vortex line
along the z axis, we know well that pseudovorticity is expected to be a bounded vector, taking
significant values only for r of the order and smaller than a. Using thus the schematic distribution
provided in Eq. (9), it is easy to get, from Eq. (11), that we expect P|w|(|w|) ∝ |w|−1−α−1

. This
assumption on the radial profile of pseudovorticity allows us to reproduce the present observed
histograms of the values taken by |w| in our simulation domain at any time of the reconnection
process, as it is displayed in Figs. 4(e) and 4(f). According to this model, using α ≈ 3.125 for
both the local and nonlocal cases, we expect a power-law decrease of the PDF with an exponent
≈1.3, as is presently observed. As we mentioned formerly, for a single stationary vortex, the large
r asymptotic for the pseudovorticity gives |w| ∝ r−4, which suggests α = 2. It gives a different
power-law exponent for the PDF of |w|, namely |w|−1.5 instead of our observed |w|−1.3 behavior.
Once again, this difference could be explained by the fact that the PDF that is measured here is for
two vortices during reconnection in a finite periodic domain, contrary to the large r asymptotic that
is derived for a single, straight vortex in infinite space.

We would like now to comment briefly on the amount of sound emitted following the recon-
nection event. Such a study has been carried out in the literature using the local formulation of
the GP equation [Eq. (10)] [29,47], that we repeat here for the nonlocal version. Decomposing the
conserved total energy as the sum of various components, we identify the part associated to kinetic
energy as being the average (over space and time, the time integration starting at trec until the end
of the simulation) of the norm square of the vector

√
ρv, a vector field being itself decomposed

into a divergence-free part (i.e., incompressible) and a compressible part, a decomposition easily
performed in the Fourier space. Doing so, we obtain, on average, the incompressible Ei

kin and
compressible Ec

kin kinetic energies. In present numerical simulations, we obtain for the ratio
Ec

kin/E
i
kin of these energies values of 0.045 in the local case and 0.073 for the nonlocal version.

Although more sound is emitted in the nonlocal case, overall it shows that most of the kinetic
energy is held by the incompressible motions.

This being said, even if there are some differences implied by the existence of the roton minimum,
we are led to the conclusion that there is no creation of small scales, i.e., no creation of high value
of pseudovorticity, even in the presence of a model taking into account a realistic picture of the core
of vortices. We will come back to this point in the conclusion.

VII. TRACKING VORTICES

Let us now explore some other aspects of the vortex reconnection process, as those related to
the evolution of vortices as individual objects. Such studies rely on the tracking of vortex cores, i.e.,
regions of space where density vanishes. This can be done using algorithms that seek zeros in planes,
in order to extract lines in three-dimensional space with the help of the pseudovorticity, as proposed
in recent literature [48]. In this section, we revisit what has been done in this context for the local GP
equation [49–51] and in experiments [52], and compare with what is obtained in the nonlocal case.
In a few words, this numerical tracking algorithm provides the position vector X (s, t ) at each time
t and parameterized by the length s measured along the filament made of the points that do not hold
a density. From there, we can define the Frenet-Serret frame of reference, given by the orthonormal
set of vectors (T , N, B), where T = ∂ X/∂s is the tangential vector, N = (∂T/∂s)/|∂T/∂s| the
normal vector, and B = T ∧ N the binormal vector. In a equivalent way, we could have introduced
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FIG. 5. (a) Total length of the set of two vortices (see text), in the local (red) and nonlocal (blue) models.
(b) Distance δ between the two vortices, in the local (red) and nonlocal (blue). Inset: squared distance δ2

between the two vortices for both models and their respective linear fit (dashed and dot-dashed lines). The
slopes of the linear fits before and after reconnection are given in the text.

in the definition of this frame the curvature κ (s, t ) = |∂T/∂s| and torsion τ (s, t ) = −N · ∂ B/∂s,
where · stands for the scalar product (see Ref. [53], for instance).

In subsequent developments, we will analyze the vortex reconnection phenomenon in the Frenet-
Serret frame and compare results with the well-known schematic model given by the local induction
approximation (LIA). LIA has been studied for a long time in various aspects of fluid dynamics and
can be derived in a systematic way from the Navier-Stokes equation [54] assuming that the vortex
core size is small compared to some characteristic curvature. From a dynamical point of view, this
approximation implies that the time variation of the position X (s, t ) for some time-independent
parametrization s has only a contribution along the binormal vector, namely Ẋ = ∂ X (s, t )/∂t =
Gκ (s, t )B(s, t ), where G is a constant that diverges logarithmically with the vortex core size and
κ (s, t ) is the local curvature. The LIA predicts in a consistent way that indeed the length of such a
vortex is conserved and that solitary waves (i.e., solitons) can propagate at a constant speed [53]. Let
us then compare these predictions against the dynamics of the reconnection process that we observe
in our numerical estimations of the local and nonlocal GP equations.

We display in Fig. 5(a) the length of the system made up of the two vortices, as they are
displayed in Fig. 3. We furthermore include in the estimation of their lengths their copies in
the whole simulation domain and remark that the aforementioned tracking algorithm provides
in a straightforward manner their lengths. We see that in both local and nonlocal cases, before
reconnection, vortices undergo stretching that makes their lengths increase by a small amount (of
order 5%) before decreasing. After reconnection, a monotonic increase for the local case and a
more complex evolution for the nonlocal case follow. As we claimed, LIA predicts that the length
is a constant of motion. Indeed, defining the length of a vortex as �(t ) = ∫ |∂ X (s, t )/∂s|ds, we get
from a general point of view (for any parametrization s) that d�(t )/dt = ∫

∂ Ẋ/∂s · Tds, showing
that a nonvanishing component of the induced velocity Ẋ along the normal vector N may contribute
to a variation of the length �, which is not the case in the LIA (only a component along the binormal
is considered). Such arguments on vortex length have been rigorously studied in Ref. [55]. As we
can see in Fig. 5(a), the length of vortices depends on time, a feature that is not allowed in the LIA,
although only 5% of the length undergo changes.

To carry on the description of the dynamical features of reconnection, we compute the distance
separating vortices before and after reconnection, which is defined at each time as the minimum
distance between two points on the two vortex lines. Such a numerical study has been performed
systematically for the local GP equation for various initial conditions [50], and it was found that this
distance behaves as |t − trec|1/2, both before and after reconnection. The square-root behavior can be

114602-12



STRUCTURE, DYNAMICS, AND RECONNECTION OF …

understood using a linear approach, justified close to the vortex core (where density vanishes) [56],
or from a dimensional point of view (see, for instance, Ref. [57]). The proportionality constant to
this square-root law was found to depend on initial conditions, whether, as an example, vortices
are taken perpendicular of antiparallel. We represent in Fig. 5(b) the time evolution of this distance
δ before and after reconnection in our present numerical simulations (see also a representation
of δ2 in the inset). For both the local and nonlocal cases, we reproduce the square-root behavior
close to the reconnection time trec, but with slightly different proportionality constants. This
numerical estimation shows that the roton minimum has here some influence; in particular, we
see that approach and separation distances have different time evolutions. The numerical values we
observe for the proportionality constant in the local case (respectively, nonlocal) are significantly
different from the values observed in Ref. [50]. We find 0.23 (before reconnection) and 0.38 (after
reconnection) as far the local case is considered. Concerning the nonlocal case, we find 0.33 (before
trec) and 0.81 (after trec). We recall that in Ref. [50], for the local case, the corresponding values
0.55 and 0.63 were found. In this study, the two orthogonal vortices are initially separated by an
atomic distance a, whereas this initial distance was chosen to be six healing lengths (which is of
the same order of a), and thus a factor of order 6 was chosen for initial separations. This could
explain once again the strong dependence of this multiplicative constant on initial conditions and
the differences between the present numerical study and the one proposed in Ref. [50]. However, it
is worth noticing that even if we observe slightly different values of the proportionality constants in
the local model, in both our case and the observation of Ref. [50] the value of the constant after the
reconnection is always greater than the value of the constant before reconnection.

VIII. CHARACTERIZATION OF A PROPAGATING WAVE PACKET

Visualization of the overall reconnection phenomenon, as it is displayed in Fig. 3, suggests the
creation of a localized phenomenon along the vortices. To exhibit this phenomenon quantitatively,
we display in Fig. 6 maps of local curvature, i.e., the numerical estimation, thanks to the vortex
tracking algorithm, of spatiotemporal maps of κ (s, t ) as a function of the arc length s and time
t . We indeed observe in both the local and nonlocal cases the propagation of a wave packet of
curvature, as predicted by the LIA and conveniently formalized in Ref. [53]. As far as the local
case is concerned, we study moreover two particular values for the interaction parameter g entering
in the dynamics [Eq. (10)]. As we have seen in Sec. VI, g governs in the same time the speed of
sound (i.e., cs = √

2g) and the healing length (i.e., ξ = 1/
√

g) once g = μ, as in Eq. (10). Thus, the
speed of sound is inversely proportional to the healing length. In our situation, the value g = 128
[the respective curvature map and related quantities are displayed in Figs. 6(a) to 6(d)] ensures the
same speed of sound as in the nonlocal version [Eq. (1)], but with a vortex core diameter smaller
than what is obtained in the model with rotons [see in particular Fig. 2(b)]. We also study the value
g = 21.345 [displayed in Figs. 6(e) to 6(h)] for which vortex core size is similar to the nonlocal case
(data not shown) but with a smaller speed of sound. Respective results concerning the nonlocal case
are displayed in Figs. 6(i) to 6(l). As we will see in the following, the propagation of a wave packet
is clear in the g = 21.345 and in the nonlocal cases, whereas it is less clear in the g = 128 case. This
might be due to the smallness of vortex cores that makes them stiff and somehow imposes a much
higher speed of propagation of the wave packet, which turns out to be difficult to track. Indeed, the
wave packet and in particular the local maximum of curvature (i.e., bright colors) seem to propagate
approximately at a constant speed, i.e., c = ds/dt , for both the local and nonlocal cases, although
in the nonlocal case, secondary maxima appear during the propagation.

To quantify more accurately the wave-packet velocity and shape in the vicinity of the curvature
maximum, we display in Figs. 6(b), 6(f) and 6(j) a tentative rescaling of the observed curvature at
various instants as

γ (t )κ

(
s − c(t )t

σ (t )
, t

)
, (12)
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FIG. 6. [(a), (e), (i)] Space-time maps of the local curvature of a vortex line κ (s, t ), in the local case
for g = 128 (a))and g = 21.345 (e) and for the nonlocal model (i). The position of the principal curvature
maximum is tracked along time. [(b), (f), (j)] Corresponding curvature profiles of the tracked maximum at
five regularly spaced times during its propagation. Each profile is scaled back onto the initial condition at
reconnection. Snapshot times are t1 = trec, t2 = trec + 0.09, t3 = trec + 0.17, t4 = trec + 0.26, and t5 = trec +
0.34. We observe the growth of secondary curvature maxima in the nonlocal case (j). [(c), (g), (k)] Time
evolution of the σ, γ, c scaling parameters, which represent the width, height, and velocity of the curvature
wave packet respectively [see Eq. (12)]. [(d), (h), (l)] Projections of the velocity vector of the local maximum
of curvature onto the Frenet-Serret orthonormal basis T , N, B.

where c(t ) is the velocity of the maximum of curvature, σ (t ) is a typical length quantifying the
increase in the width of the wave packet, and γ (t ) allows us to include a possible time variation in
the amplitude. We indeed observe that this rescaling procedure makes the curvature profile similar to
what is observed initially. Under the LIA, it is shown in Ref. [53] that such a wave packet is expected
to behave as a solitary wave that propagates at a constant velocity (given by the initial torsion) and
does not change either its shape or its amplitude, i.e., σ (t ) = γ (t ) = 1, the actual time-independent
shape being given by a hyperbolic secant function. In the sequel, we will mostly focus on the g =
21.345 local case and the nonlocal case, since for the g = 128 local case, the propagation of the
wave packet appears to be different and compares poorly with predictions of LIA. In our present
numerical simulation, we see that in a good approximation, except at early times (t < 0.1), the
velocity of the wave packet, c(t ), is nearly constant, of order c ≈ 1 in the local case [Fig. 6(g)], and
of order c ≈ 2 [Fig. 6(k)] in the nonlocal one, as suggested in the LIA approach. In comparison, the
celerity of sound in the superfluid is cs = 16 in these units: The observed wave packet propagates
in much more slowly than acoustic waves, although in the local stiff case [Fig. 6(c)] the velocity
of the wave packet may reach such values. On the contrary, the wave packet undergoes dispersion,
i.e., its width increases as tracked by the increase of the rescaling coefficient σ (t ) and its amplitude
decreases, with accordingly a decrease in the coefficient γ (t ). A more precise analysis shows indeed
that γ (t ) ∼ 1/t , a decrease that is not predicted by LIA.

Focusing on the local g = 21.345 and nonlocal cases, in order to interpret these observed
behaviors, we display in Figs. 6(h) and 6(l) the projections of the vortex velocity vector ∂ X/∂t

in the Frenet-Serret frame of reference (T , N, B) as a function of time. We indeed observe that the
projection along the binormal vector is constant during the wave-packet propagation, as is assumed
in the LIA. Let us clarify here that if indeed the projection of ∂ X/∂t on B appears to be time
independent, we can infer from the tracking of the wave packet itself [Figs. 6(h) and 6(l)] that
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the actual value of this projection cannot be given by only the curvature since curvature itself is
dependent on time. Interestingly, at early stage following reconnection and once again for t < 0.1,
we see a nonvanishing contribution along the normal vector N . As shown in Ref. [55], this part of
the dynamics is involved in a self-stretching phenomenon that would modify the length of vortices,
as it is indeed observed in Fig. 5(a). As time evolves, this projection gets smaller. Finally, we see
that in the local case, the projection along the tangential vector T is always negligible in front of the
projections along the other direction of the frame, whereas it cannot be neglected in the nonlocal
case. This might be explained by studying the interaction with additional local maxima that appear
during the wave-packet propagation for the nonlocal case. Returning to the stiff g = 128 local case
[Fig. 6(d)], once again we see that the projection on the binormal vector remains also constant
and the projection on the normal vector remains negligible. On the contrary, the projection on the
tangential vector may take large negative values, a phenomenon that remains to be understood. Let
us mention again that since the wave packet travels very quickly, it is difficult to track and the strong
variations observed on the projection along the tangent vector may be due to the existence of several
packets which interact in a complicated way.

IX. CONCLUSION AND FINAL REMARKS

We have studied numerically the reconnection phenomenon of two initially orthogonal quantum
vortices in a model of superfluids which includes the roton minimum in the dispersion relation.
As proposed in the literature [31,32,42], such a model describes the dynamics of a scalar wave
function that is governed by the Gross-Pitaevskii equation [27], which considers a nonlocal two-
body interaction of characteristic extension of the 4He atomic size a. We start by calibrating the
model to be as close as possible to the experimental dispersion relation of 4He provided in Ref. [30],
with the additional will to prevent the generation of precursors of crystallization, as evidenced in
Ref. [42], although they are of great importance in the context of supersolidity [35,36]. Once we
obtain such a model, we estimate its stationary vortex solution, that is a time-independent solution
with an axis symmetry, around which the phase turns of an angle equals to 2π . Then, in a way
similar to that in Ref. [28], we prepare a initial condition made up of two of these vortices in a
orthogonal situation. We indeed observe a reconnection and track and study the time evolution of
the density, current, and pseudovorticity fields. We provide both a statistical analysis of the fields
and a local estimation of the geometry of these vortices, including a precise characterization of a
observed wave packet that shares some features predicted by the LIA.

This numerical investigation shows that taking into account a more realistic structure of vortices,
as depicted in Ref. [33], has little influence on the global picture of reconnection given by the local
version of the GP equation and presented in Ref. [28], although the creation and propagation of a
wave packet of curvature along the vortex cores appear more complex when the nonlocal interaction
is plugged in the dynamics.

The statistical analysis of the kinematic quantities involved in the dynamics, in particular current
j and pseudovorticity w = ∇ ∧ j , shows that there is no creation of scales smaller that the injected
atomic length size a. This makes a big difference with what is obtained with the incompressible
Euler or Navier-Stokes equations, where a cascading phenomenon transfers energy toward the small
scales, as recently put in evidence while considering two colliding vortex rings in a experimental
(classical) flow [58]. We can thus infer that the hydrodynamics implied by the local and nonlocal
versions of the GP equations, because of its implied high level of compressibility in the vicinity of
the vortices and the unclear action of the additional quantum pressure term, is indeed very different
from the one of incompressible viscous Newtonian fluids.

It would be of tremendous importance to develop an interaction term in the GP evolution of
the wave function able to include a more realistic prediction of the dispersion relation, without
exhibiting crystallization phenomena that are not expected in the superfluid phase of 4He. We keep
this perspective for future investigations.
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