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We present the extension of a modeling technique for Lagrangian tracer particles [B.
Viggiano et al., J. Fluid Mech. 900, A27 (2020)] which accounts for the effects of
particle inertia. Thereby, the particle velocity for several Stokes numbers is modeled
directly by a multilayered Ornstein-Uhlenbeck process and a comparison of key statistical
quantities (second-order velocity structure function, acceleration correlation function, and
root-mean-square acceleration) to expressions derived from Batchelor’s model as well as
to direct numerical simulations (DNS) is performed. In both approaches, Stokes’ drag
is treated by an approximate “linear filter” which replaces the particle position entering
the fluid velocity field by the corresponding ideal tracer position. Effects of preferential
concentration of inertial particles are taken into account indirectly in terms of an effective
Stokes number that is determined from the zero crossing of the acceleration correlation
function from DNS. This approximation thus allows the modeling of inertial particle
statistics through stochastic methods and models for the Lagrangian velocity; the particle
velocity is effectively decoupled from the particle position. In contrast to the ordinary
filtering technique [Cencini et al., J. Turbul. 7, N36 (2006)], our method reproduces
the empirically observed sharp decrease of acceleration variance for increasing Stokes
numbers. Furthermore, we discuss how our modeling approach could contribute to a better
experimental characterization of inertial particle dynamics.

DOI: 10.1103/PhysRevFluids.7.014303

I. INTRODUCTION

Transport processes of particles in turbulent flows play an important role in turbulence theory
[1–3] and are intimately related to the problems of turbulent mixing and turbulent diffusion. Recent
advances in particle tracking [4,5] allow for the accurate quantification of single-particle statistics
and yield important insights into the behavior of marked fluid particles (so-called Lagrangian
tracers) as well as heavier particles, i.e., particles with finite inertia [6,7]. For such inertial particles,
for instance, numerical and experimental evidence suggests the segregation of particles into clusters
[8–11]. This phenomenon, generally known as preferential concentration, is sometimes explained
by particles evading dominant vortical structures and accumulating in flow regions of high strain
[12] although other mechanisms have been proposed [13,14]. A comprehensive understanding
of these mechanisms, however, is complicated by the random and multiscale structure of the
turbulent velocity field. On the other hand, such particle-laden flows are commonly encountered
in many industrial and environmental processes, which creates an abundance of research devoted to
characterizing their dynamical properties [15,16]. Despite numerous experimental, numerical, and
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theoretical works [4,11,14], simple generic models which are capable to quantitatively reproduce
basic dynamical Lagrangian properties (e.g., velocity and acceleration statistics) as well as the
combined role of particle inertia and preferential concentration are still lacking. In more detail,
it is found that Langevin-type models, which were quite successful in the modeling of ideal tracer
velocities [17–19], are not sufficient to capture the intricate spatiotemporal complexity that underlies
the phenomenon of preferential concentration [20]. This is mainly due to the fact that spatial
correlations, which are usually invoked in order to characterize preferential concentration, are not
taken into account appropriately.

Turbulent flow properties can be described either in a fixed frame of reference, the so-called
Eulerian description, or alternatively by the Lagrangian description, where evolution of the flow
is observed temporally through the trajectories of point particles. The Lagrangian description in
turbulence provides a complete view of particle transport and dispersion which can be traced back
to the seminal works by G. I. Taylor who set the diffusion problem in the context of fluid element
trajectories [21]. Thereby, the trajectory of an ideal tracer, the so-called Lagrangian path, can be
determined from the first-order ordinary differential equation (ODE)

Ẋ(y, t ) ≡ v(y, t ) = u(X(y, t ), t ), (1)

where v(y, t ) is the Lagrangian velocity, with the initial condition X(y, 0) = y. The statistical
description of ideal tracer particles in turbulent flows, which is governed by Eq. (1), is one of the
main concerns of turbulence theory. On the basis of the self-similar theory of Kolmogorov, moments
of the Lagrangian velocity increments δτ v(y, t ) = v(y, t + τ ) − v(y, t ) are supposed to scale as
〈(δτv)n〉 ∼ τ n/2. Hence, Kolmogorov’s theory suggests that a tracer particle exhibits a diffusive
process (ordinary Brownian motion) in velocity space [1,22] at inertial scales. The corresponding
Ornstein-Uhlenbeck (OU) process for the Lagrangian velocity has been extended by Sawford in
order to account for finite-Reynolds-number effects [18] (see also Refs. [17,23,24] for further
references and [25] for stochastic models in the context of inertial particle dynamics). Recently,
an infinitely differentiable causal random walk has been proposed [19]. It can be considered as
a layered OU processes, where each layer of order n ensures the existence of the derivative of
order n and causality. Nonetheless, experimental and numerical evidence suggests that moments
exhibit multifractal scaling 〈(δτv)n〉 ∼ τ ζn which manifests itself in form of a nonlinear dependence
of the scaling exponents ζn on order n [26–29]. The latter feature is a direct consequence of the
phenomenon of intermittency, reminiscent of the non-self-similarity of turbulence, which entails
strongly non-Gaussian behavior of the Lagrangian velocity increment probability density function
at small time separations τ . Precisely those multiscaling (non-Gaussian) features impose a major
challenge for the modeling of particle transport in turbulent flows [19,30].

Once a particle gains inertia, either from its size or its density in comparison to the surrounding
fluid with kinematic viscosity ν, the dynamics of the particle is governed by additional forces
[12,31]. For example, there are now effects due to the Stokes’ drag force based on the relative
velocities of the fluid and the particles and an added mass force which is caused by the displacement
of the fluid from the motion of the particle, to name a few. If we only retain Stokes’ drag and
disregard these other terms (which is typically assumed to be the case when particles are rather
heavy and small), the particle’s velocity is determined by the following set of equations [12,31,32]:

Ẋp(y, t ) =vp(y, t ), (2)

v̇p(y, t ) = 1

τp
[u(Xp(y, t ), t ) − vp(y, t )], (3)

where Xp(y, t ) is the particle position, vp(y, t ) is the particle velocity, and u(x, t ) is the fluid velocity
field. Initial conditions fully determine the future evolution of the particle position and we assume
them to be given by Xp(y, 0) = y and vp(y, 0) = u(y, 0), where the matching of tracer and inertial
particle velocity at t = 0 has been imposed arbitrarily. The particle response time, τp, is defined as
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τp = mp/3πμ f dp, where mp and dp denote the mass and the diameter of the particle, respectively,
and μ f is the viscosity of the fluid.

In this simplified model, the Stokes number, defined as St = τp/τK [where τK = (ν/〈ε〉)1/2 is
the Kolmogorov timescale and 〈ε〉 denotes the averaged local energy dissipation rate] is the relevant
parameter to characterize particle inertia. The Stokes number thus describes the ratio of the particle
response time τp to the Kolmogorov timescale τK at which viscous forces dominate the flow. In
particular, for St = 0 (i.e., for the case of an overdamped inertial particle) we recover Eq. (1) and
the particle behaves as an ideal Lagrangian tracer.

The main purpose of this paper is to generalize recent stochastic and multifractal modeling
approaches [19]—which were initially devised for the Lagrangian velocity (1)—in order to include
finite inertia effects. The simplest approach in this direction is to investigate the particle dynamics
under the assumption that each inertial particle samples homogeneously the carrier flow and hence
the explored Lagrangian flow velocity u(Xp(y, t ), t ) in Eq. (3) is representative of the complete
background turbulence regardless of any eventual preferential concentration mechanism. This
approximation determines the particle velocity vp(y, t ) by a linear filter of the Lagrangian velocity
v(y, t ) [see Eq. (3)] and has been invoked for the first time by Tchen [33] and Hinze [34]. In
particular, under the assumption of an exponential decay of the Lagrangian velocity correlation
function for the tracers of the carrier flow (what would correspond for instance to a simple OU
dynamics for the tracers), the Tchen-Hinze theory relates the variance of the particle velocity σ 2

vp

directly to that of the ideal tracer σ 2
v according to

σ 2
vp

= T 2
L

T 2
L − τ 2

p

σ 2
v , (4)

where TL denotes the Lagrangian integral timescale. An extension of this linear filter approximation
has been suggested by Deutsch and Simonin [35,36]. They argued that fluid quantities in Eq. (4)
do not take into account the fact that the Lagrangian dynamics of the tracers, probed at the
position of the inertial particles, may deviate from the global Lagrangian dynamics of the carrier
flow due to preferential concentration. Hence they propose to replace the Lagrangian integral
timescale TL and variance σ 2

v by quantities determined at the position of inertial particles (TL,p

and σ 2
v,p). This refinement improves the agreement of Eq. (4) with direct numerical simulations

[37], in particular for particles with small Stokes numbers, which seem to be more sensitive to
preferential sampling effects. From a practical point of view, such a refinement requires us, however,
to determine TL,p and σ 2

v,p on the basis of statistics of trajectories of individual inertial particles
and their coincident Lagrangian particles, which is a quite challenging task, hardly feasible in
experiments. Furthermore, the framework by Tchen-Hinze as well as the refined theory [35,36]
do not reproduce the observed behavior of statistical quantities at small time lags. This applies
in particular to the particle’s acceleration which remains nondifferentiable under the assumption
of a simple exponential correlation function for the Lagrangian velocity, in contrast to empirical
evidence which shows smooth behavior. These limitations have also been discussed recently in the
broader context of particle settling in turbulent flows [38].

Against this backdrop, the purpose of the present work thus is twofold: (i) we generalize
the Tchen-Hinze theory to a stochastic process which is infinitely differentiable (similarly to the
framework which has been devised for the Lagrangian velocity [19]) and, hence, contains important
information on small-scale fluctuations and (ii) we take into account the effects of preferential
concentration (e.g., the correct amplitudes of particle accelerations [39]) by the introduction of
an effective Stokes number, which is determined on the basis of the zero crossing of the empirically
determined acceleration correlation function.

The paper is organized as follows: Section II discusses the implications of the linear filter
approximation for the particle velocity correlation function. Moreover, we provide a comparison
between trajectories obtained under this approximation and the ones obtained from direct numerical
simulations (DNS) of turbulence. We present then models for particle correlation functions based on
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filtered versions of an infinitely differentiable causal random walk in Sec. III and by the Batchelor
model in Sec. IV. These predictions are directly compared to DNS in Sec. V and a summary of our
results is included in Sec. VI.

II. PARTICLE RESPONSE BASED ON THE LINEAR FILTER APPROXIMATION

Inertial particle motion at low Stokes numbers, as mentioned in the Introduction, is determined
by the system of first-order ODEs [Eqs. (2) and (3)] and requires the knowledge of the full
spatiotemporal (Eulerian) fluid velocity field in Eq. (3). In the following, an approximation will be
discussed, which replaces the Eulerian fluid velocity at the position of the inertial particle Xp(y, t )
by its value at the position of the tracer, i.e., by the Lagrangian velocity. In this approximation,
particle velocity is obtained by the linear filtering of tracer velocity.

A. Linear filtering of Lagrangian velocity

In order to model inertial particle statistics on the basis of the Lagrangian velocity (1), an
approximation of the coupled system of first-order ODEs is invoked which can be termed “linear
filtering of the particle velocity” due to its analogy to methods from signal processing [39]. In
this approximation, the particle position Xp(y, t ) that enters the fluid velocity field in Eq. (3) is
approximated as the position of the ideal tracer X(y, t ) whose temporal evolution is governed by
equation (1). Therefore, Eqs. (2) and (3) are approximated by

Ẋp(y, t ) =vp(y, t ), (5)

v̇p(y, t ) = 1

τp
[u(X(y, t ), t ) − vp(y, t )]. (6)

Hence, in this linear filter approximation, the particle velocity is effectively decoupled from the
particle position. Therefore, the temporal evolution of the particle velocity is solely determined by
the Lagrangian velocity v(y, t ) along the tracer trajectory starting from the initial position of the
inertial particle Xp(y, 0) = y. To some extent, the linear filter neglects the spatiotemporal organi-
zation of the fluid velocity, and thus the segregation of inertial particles in regions of low vorticity,
as suggested by the phenomenon of preferential concentration. Nonetheless, as we will stress in the
following sections, certain empirically observed effects (e.g., the sharp drop in acceleration variance
for increasing St) can be modeled indirectly via this filtering technique. Furthermore, under this
approximation, the evolution equation for the particle velocity (6) can be solved according to

vp(y, t ) = v(y, 0)e−t/τp + 1

τp

∫ t

0
dt ′e−(t−t ′ )/τpv(y, t ′). (7)

The particle position is thus determined as

Xp(y, t ) = y + τpv(y, 0)(1 − e−t/τp ) + 1

τp

∫ t

0
dt ′

∫ t ′

0
dt ′′e−(t ′−t ′′ )/τpv(y, t ′′). (8)

The implications of this linear filter approximation for particle velocity and acceleration correlation
functions will be discussed in the following section.

B. Linear filtering of correlation functions

In this section, the linear filter approximation (6) is applied in order to establish relations between
inertial particle velocity correlation functions and the Lagrangian velocity correlation function. To
this end, without loss of generality, we denote vp as any of the components of the particle velocity
vector and correspondingly ap as any component of the particle acceleration vector. Furthermore,
we assume that the particle velocity has reached a statistically stationary state, such that we can
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neglect the dependence on its initial position. Equation (6) can then be integrated according to

vp(t ) = 1

τp

∫ t

−∞
dt ′e−(t−t ′ )/τpu(X (t ′), t ′) = 1

τp

∫ t

−∞
dt ′e−(t−t ′ )/τpv(t ′) = 1

τp

∫ +∞

−∞
dt ′gτp (t − t ′)v(t ′),

(9)

where gτp (t ) = e−t/τpH (t ), and where H (t ) denotes the Heaviside step function. The linear filter
approximation for inertial particle velocities based on the trajectory of individual tracer particles
can also be applied to the correlation functions of velocity and acceleration. To do so, Cv (τ ) =
〈v(t )v(t + τ )〉 defines the correlation function of the velocity of tracers where v(t ) is any component
of the tracer velocity. Similarly, the correlation function of the inertial particle velocity vp(t ) is
defined as Cvp (τ ) = 〈vp(t )vp(t + τ )〉 and we obtain, in the statistically stationary range,

Cvp (τ ) = 1

τ 2
p

(
Gτp 	 Cv

)
(τ ) = 1

τ 2
p

∫ +∞

−∞
dtGτp (τ + t )Cv (t )

= 1

τ 2
p

∫ +∞

0
dt[Gτp (τ + t ) + Gτp (τ − t )]Cv (t ) = 1

2τp

∫ +∞

0
dt[e−|τ+t |/τp + e−|τ−t |/τp]Cv (t ),

(10)

where the kernel Gτp (t ) = (gτp 	 gτp )(t ) = τp

2 e−|t |/τp was introduced using the parity of correlation
functions. Furthermore, the convolution product is defined as

(g1 	 g2)(τ ) =
∫ ∞

−∞
dtg1(t )g2(t − τ ). (11)

The Fourier representation of Eq. (10) has been proposed for the first time by Tchen [33]. The
determination for the inertial particle acceleration correlation function Cap (τ ) based on the filtering
of the tracer acceleration Ca(τ ) is done in a similar fashion, resulting in

Cap (τ ) = 1

2τp

∫ +∞

0
dt[e−|τ+t |/τp + e−|τ−t |/τp]Ca(t ). (12)

The linear filter approximation thus allows for direct assessment of velocity and acceleration corre-
lation functions via the corresponding tracer correlation functions Cv (t ) and Ca(t ). The implications
of this approximation will be addressed in the following section where ideal tracer, filtered inertial
particles, and true inertial particles will be compared in DNS of turbulence.

C. Direct numerical simulations of Lagrangian trajectories, inertial particles, and comparison to linear
filter approach

Twenty-one datasets containing particle trajectories for varying Stokes numbers have been
generated through JHTDB [40,41]. The spatiotemporal evolution of the fluid velocity has been
obtained by solving the Navier-Stokes equations in a periodic box with a resolution of 10243. The
equation of motion of inertial particles [Eqs. (2) and (3)] are solved by a second-order Runge-Kutta
scheme and each DNS subset of data contains 323 trajectories. The relevant turbulence quantities
are summarized in Table I.

The temporal evolution of particle position Xp(t ), a velocity component vp(t ), and the corre-
sponding acceleration ap(t ) for St = 0.2 are presented in Fig. 1 in yellow for a time span of ≈110τK .
For comparison, Fig. 1(b), shows the trajectory of an ideal tracer X(y, t ) (green) starting from the
same initial condition Xp(0) = y. Whereas the tracer particle’s velocity (green) exhibits several
strong oscillations, the inertial particle’s velocity (yellow) seems not so much affected. Indeed, from
Fig. 1(b) one can deduce that—already at such low Stokes numbers—the trajectory of the inertial
particle follows a substantially different path. In the context of preferential concentration [32,39],
one could interpret this in terms of the inertial particle evading strong vortical flow structures.

014303-5



JAN FRIEDRICH et al.

TABLE I. Characteristic parameters of the direct numerical simulations of inertial particles: Taylor-
Reynolds number Reλ, kinematic viscosity ν, averaged kinetic energy dissipation rate 〈ε〉, time step of
simulation, dissipation time τK = ( ν

〈ε〉 )1/2, particle response time τp with St = [0, 0.1, . . . , 1.9, 2], Lagrangian
integral time TL , total time of simulation Ttot , number of particles in each simulation Np, and resolution N of
the periodic simulation domain.

Reλ ν 〈ε〉 dt τK τp TL Ttot Np N3

418 1.85 × 10−4 0.103 0.002 0.0424 St × τK 1.3003 7.692TL 323 10243

This might also be supported by the evolution of the particle’s acceleration whose amplitude (and
statistically speaking its variance) is significantly decreased in comparison to the tracer particle.

The linear filter approximation from Eqs. (5) and (6) with τp = 0.2τK (St = 0.2, orange curve)
remains very close to its determining tracer trajectory (green). In particular, the temporal evolution
of the acceleration suggests that the linear filter (orange) overestimates the acceleration variance
in comparison to the ordinary inertial particle. Cencini et al. [39] applied the same technique to
compare root-mean-squared accelerations and observed large discrepancies between filtered and
true arms at low St. Nonetheless, for larger Stokes numbers, true and filtered arms values seemed
to approach one another. Hence, this study suggests that nontrivial effects due to preferential
concentration, when inertia is introduced to the particles, creates the gap between true and filtered
results for St < 1. On that account, Fig. 2(a) depicts the acceleration autocorrelation function which
has been obtained by averaging over all Np = 323 particle trajectories. Here the dash-dotted curves
correspond to the linear filter approximation (12) for τp = StτK with St = [0.1, 0.2, 0.5, 1, 2] from
left to right. Thereby, the fluid velocity correlation function Ca(τ ) was integrated over the entire
time range of the simulation T (see also Table I). In agreement with the findings by Cencini et al.
[39], the modeling breaks down initially, drastically underestimating the correlation of the particle
for St � 1, but recovers to generate meaningful statistics for St = 2. In particular, the regime of low
Stokes numbers, e.g., for St = 0.1, suggests that the filter approximation (first dash-dotted curve
from left) is nearly identical to the ideal tracer St = 0 (not shown in plot) and decorrelates much
faster than the true DNS for St = 0.1 (orange curve).

(a) (b)

FIG. 1. (a) Velocity vx (t ) (upper panel) and acceleration ax (t ) (lower panel) of tracers (green), filtered
tracers (orange and turquoise), and true inertial particles (yellow) for St = 0.2. (b) Trajectories of tracer, filtered
tracers, and inertial particles. All axis are non-dimensionalized by the corresponding Kolmogorov dissipation
scales.
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(a) (b)

FIG. 2. (a) Acceleration autocorrelation from DNS for inertial particles with Stokes numbers St =
0.1, 0.2, 0.5, 1., 2. The dash-dotted lines correspond to the linear filter approximation [Eqs. (5) and (6)] with
τp = StτK and underestimate the correlations at small St in comparison to their DNS counterparts. The linear
filter approximation approaches the DNS acceleration correlation function for larger St = 2. (b) Same as in
(a) but for a filter with an effective Stokes number St∗ = τ ∗

p /τK which has been determined from the zero
crossing of the acceleration correlation from DNS (dash-dotted curves and DNS curves now possess the same
zero crossing). The agreement between DNS and filtered curves is more accurate than in (a) for small St.

These profound changes between inertial particle and tracer (or filtered tracers) acceleration
properties at low Stokes also manifest themselves in the root mean square of acceleration itself.
Figure 3 depicts the root-mean-square values of acceleration arms as a function of St for inertial
particles (blue) and filtered tracer particles (orange) according to Eq. (9). The arms values of inertial
particles decrease much faster than their filtered counterparts. These strong discrepancies were
interpreted by Cencini et al. [39] in terms of inertial particles which preferentially sample regions
of low turbulence intensity (or depleted vorticity regions), whereas the filtered tracer particles are
still impacted by strong acceleration events of tracer trajectories trapped in vortical structures. In
other words, by restricting itself to individual tracer trajectories X(y, t ), the filtering approach bears
no information on the spatial organization of the surrounding fluid velocity field, which apparently
is crucial for a better understanding of the dynamics of inertial particles.

FIG. 3. Root-mean-square values of acceleration arms as a function of the Stokes number for inertial
particles in DNS (green) and filtered tracer particles (orange) according to Eq. (6). The arms values from DNS
exhibit a rapid decrease for small but finite St, whereas the linear filter approximation decays much slower.
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In the following, we suggest a modification of the linear filter which is in better agreement
with DNS but at the same time is still solely based on the Lagrangian velocity v(y, t ) of an
individual tracer. To this end, we introduce an effective particle response time τ ∗

p in the linear filter
approximation (6) which does not necessarily obey the usual relation τp = StτK but henceforward
is considered as a free model parameter. In the spirit of recent stochastic models for Lagrangian
tracers [19], which identified the zero crossing of the acceleration correlation as a crucial ingredient
for model calibration, we proceed in a similar way: First, we determine the zero crossing τ0(St)
of the acceleration autocorrelation functions from DNS in Fig. 2. Subsequently, with the help of a
suitable roots-finding algorithm, we determine the effective particle response time τ ∗

p (St) in Eq. (12)
in such a way that Cap[τ0(St)] = 0.

Figure 2(b) depicts the acceleration autocorrelation functions (dash-dotted curves) after this
calibration. Hence, by virtue of an effective particle response time τ ∗

p based on matching zero
crossing of the acceleration correlation functions, a better agreement with DNS has been achieved,
particularly for low Stokes numbers. The corresponding filtered trajectories with St∗ = τ ∗

p /τK are
also included in Fig. 1 and correspond to the turquoise curves. Due to the increased damping
(τ ∗

p > τp) in the filter, τ ∗
p -filtered accelerations (turquoise) are closer to their DNS counterparts

(yellow). In conclusion, the introduction of an effective particle response time τ ∗
p based on the zero

crossing of the acceleration correlation function reinstates the effects of preferential sampling of
inertial particles to some extend. This notion will be further assessed in the following section by
example of stochastic models for inertial particle statistics.

III. PROCESS FOR INERTIAL PARTICLES SUBJECT TO GAUSSIAN INFINITELY
DIFFERENTIABLE FLUID VELOCITY

This section is devoted to a generalization of a recently developed model for the Lagrangian
velocity [19] which will be extended to take into account finite particle inertia. The simplest
model for the Lagrangian velocity v(t ) consists of an Ornstein-Uhlenbeck process which obeys
the following Langevin equation:

dv(t ) = − 1

T
v(t )dt +

√
2σ 2

T
dW (t ), (13)

where dW (t ) denote the increments of a Wiener process W (t ) with zero mean and variance dt
and σ 2 denotes the variance of the process 〈v2〉. Furthermore, T is a large turbulence timescale.
In this framework, velocity is nondifferentiable and thus acceleration only has a meaning in a
distributional sense, which is at odds with experimental and numerical observations. This model
has been extended by Sawford [18] in order to allow for the differentiability of the velocity;
however, the acceleration of the process remains nondifferentiable itself. Therefore, a multilayered
Ornstein-Uhlenbeck process has been proposed where the velocity itself is infinitely differentiable
when the number of layers tends to infinity [19]. In making use of the linear filter approximation
discussed in the previous section, the latter model can readily be extended in order to allow for
the effects of finite particle inertia. Following the approach of Ref. [19], we consider the system of
coupled stochastic differential equations,

v̇p = 1

τ ∗
p

(v − vp), (14)

v̇ = − 1

T
v + fτη

, (15)

where τ ∗
p denotes the particle response time of the model and τη is a small-scale turbulence timescale

of the order of the Kolmogorov dissipative timescale τK defined in the caption of Table I. The forcing
term fτη

is a zero-average Gaussian random force, which is fully determined by its covariance in the
statistically stationary regime. Following the procedure outlined in Ref. [19], the covariance in both
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physical and spectral space reads

C fτη (τ ) ≡ 〈 fτη
(t ) fτη

(t + τ )〉 = σ 2e−τ 2
η /T 2

√
πT τη erfc (τη/T )

e
− τ2

4τ2
η = 2σ 2e−τ 2

η /T 2

T erfc (τη/T )

∫
dω e2iπωτ e−4π2τ 2

η ω2
,

(16)

where we have introduced erfc(x) = 1 − erf (x) as the complementary of the error function erf (x).
The principal steps in Ref. [19] that led to the model for the Lagrangian velocity v in Eq. (15) can
be interpreted in terms of the layering of an ordinary Ornstein-Uhlenbeck process. Here each layer
increases the degree of differentiability of the Lagrangian velocity and thus improves modeling
proficiency at small timescales. Moreover, it is possible to perform the limit to an infinite number
of layers (and thus an infinitely differentiable Lagrangian velocity v), which results in Eq. (16).

As we can see from the structure of its covariance (16), the Gaussian forcing term fτη
is correlated

over the dissipative timescale τη, the correlation function being itself a Gaussian function. Moreover,
this covariance structure shows that the random process fτη

(t ) is infinitely differentiable, which
is a direct consequence of the smoothness of its Gaussian shape. As developed in Ref. [19], the
remaining parameter σ 2 entering Eq. (16) corresponds to the variance of the Lagrangian velocity v,
that is, the variance of the solution of Eq. (15) in the statistically steady range

σ 2 = 〈v2〉. (17)

At this stage, causality of the forcing term fτη
is not obvious and cannot be deduced from the

covariance C fτη (τ ) [Eq. (16)]. It is indeed shown in Ref. [19] that this forcing term can be obtained
as an infinite sequence of causal equations, i.e., an infinite number of embedded Ornstein-Uhlenbeck
processes, making the asymptotic process fτη

itself causal. Finally, the covariance function of the
particle velocity vp, defined as successive linear operations [Eqs. (14) and (15)] on the forcing term
fτη

, can be obtained as

Cvp (τ ) ≡ 〈vp(t )vp(t + τ )〉 = 2σ 2e−τ 2
η /T 2

T erfc (τη/T )

∫
dω e2iπωτ 1

1 + 4π2(τ ∗
p )2ω2

T 2

1 + 4π2T 2ω2
e−4π2τ 2

η ω2
,

(18)
which can be calculated explicitly in physical space according to

Cvp (τ ) = σ 2T

2(T 2 − (τ ∗
p )2) erfc(τη/T )

{
Te−|τ |/T

[
erfc

(
τη

T
− |τ |

2τη

)
+ e2|τ |/T erfc

( |τ |
2τη

+ τη

T

)]

− τ ∗
p e−|τ |/τ ∗

p e
τ2
η

(τ∗
p )2

− τ2
η

T 2

[
erfc

(
τη

τ ∗
p

− |τ |
2τη

)
+ e2|τ |/τ ∗

p erfc

( |τ |
2τη

+ τη

τ ∗
p

)]}
. (19)

Herein, the dependence of the variance of the particle velocity on τ ∗
p can be determined. Setting

τ = 0 in equation (19) yields

σ 2
vp

= σ 2T 2

T 2 − (τ ∗
p )2

⎡
⎣1 − τ ∗

p

T
e

τ2
η

(τ∗
p )2

− τ2
η

T 2
erfc

(
τη

τ ∗
p

)
erfc

( τη

T

)
⎤
⎦. (20)

Hence, in the limit τ ∗
p → 0, the variance of the Lagrangian model, limτ ∗

p →0 σ 2
vp

= σ 2, is recovered
[19]. Furthermore, the prediction of the “single-layered” Tchen-Hinze theory (4) can be recovered
by discarding the square brackets in Eq. (20).

The acceleration correlation function can be calculated from Eq. (19) according to

Cap (τ ) = −d2Cvp (τ )

dτ 2
, (21)
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which yields

Cap (τ ) = σ 2T

2(T 2 − (τ ∗
p )2) erfc(τη/T )

×
{

1

T
e−|τ |/T

[
2T√
πτη

e−( τη

T − |τ |
2τη

)2

− erfc

(
τη

T
− |τ |

2τη

)
− e2|τ |/T erfc

( |τ |
2τη

+ τη

T

)]

− 1

τ ∗
p

e−|τ |/τ ∗
p e

τ2
η

(τ∗
p )2

− τ2
η

T 2

×
[

2τ ∗
p√

πτη

e
−

(
τη

τ∗
p
− |τ |

2τη

)2

− erfc

(
τη

τ ∗
p

− |τ |
2τη

)
− e2|τ |/τ ∗

p erfc

( |τ |
2τη

+ τη

τ ∗
p

)]}
. (22)

The variance of the acceleration can be determined according to

σ 2
ap

= σ 2

T 2 − (τ ∗
p )2

⎡
⎢⎣ T

τ ∗
p

e
τ2
η

(τ∗
p )2

e
τ2
η

T 2

erfc
(

τη

τ ∗
p

)
erfc

( τη

T

) − 1

⎤
⎥⎦. (23)

In the limit of τ ∗
p → 0, the reduced tracer model discussed in Ref. [19] is recovered and we get

lim
τ ∗

p →0
σ 2

ap
= σ 2

T 2

⎡
⎣ T√

πτη

e− τ2
η

T 2

erfc
( τη

T

) − 1

⎤
⎦. (24)

So far, the proposed model possesses Gaussian properties, i.e., the particle velocity statistics is
fully determined by the correlation function (19). The inclusion of non-Gaussian properties into
the stochastic process can be achieved in the same manner discussed in Ref. [19] and will be the
subject of future work. In the present model, the fluid properties enter through the turnover time
T and the small timescale τη, which can be parameterized in order to match certain characteristics
of Lagrangian tracers. In Ref. [19], for instance, T and τη were determined in order to match the
integral Lagrangian timescale,

TL =
∫ ∞

0
dτ

Cv (τ )

Cv (0)
, (25)

and the zero crossing of the empirically determined acceleration correlation function Ca(τ ). In
addition to this parametrization, here we also have to determine the particle response time τ ∗

p . In the
spirit of the effective particle response time of the linear filter approximation discussed in Sec. II,
τ ∗

p will be determined in order to match the zero crossing of the acceleration correlation function
for different Stokes numbers. However, before we explicitly carry out the model calibration, we
want to discuss the linear filter approximation in the context of the Batchelor model for Lagrangian
tracers in turbulence. The latter modeling technique operates directly at the level of the second-order
structure function S2(τ ) = 2σ 2 − 2Cv (τ ) and differentiability of the Lagrangian velocity is ensured
by introducing the correct dissipation range behavior at small τ . By contrast to the present stochastic
model, which was based on a Langevin equation (14) at its basic level, the Batchelor model will not
be discussed in form of a stochastic process but rather in the context of the so-called multifractal
formalism [28].

IV. INERTIAL PARTICLE STATISTICS FROM BATCHELOR’S MODEL
FOR LAGRANGIAN TRACERS

In the seminal work of Batchelor [42] an interpolation between dissipation and inertial range was
proposed in the Eulerian frame of reference. The interpolation was capable to reproduce the inertial
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range behavior of the second-order structure function 〈(δru)〉 ∼ r2/3 and, at small r, the dissipation
range prediction 〈(δru)〉 ∼ r2 by a simple polynomial interpolation [43]. Similarly, an interpolation
for the Lagrangian second-order structure function 〈(δτv)2〉, which covers both inertial 〈(δτv)2〉 ∼
τ and dissipation range τ 2, can be deduced [26,28,29,44]. In its simplest form, the second-order
Lagrangian structure function reads

S2(τ ) = 〈
(δτv)2

〉 = 2σ 2
τ
T[

1 + (
τ
τη

)−δ] 1
δ

, (26)

where δ determines the transition between dissipation and inertial range. Within the multifractal
formalism, which proposes a more complete modeling of the differential action of viscosity not
only up to second-order statistics as it is done here but also for higher-order structure functions,
Lagrangian statistics seem to be well reproduced by choosing δ = 4. Nevertheless, in what follows,
where we completely neglect the implications of intermittent corrections on the width and shape of
the so-called intermediate dissipative range, we will restrict ourselves to the case δ = 2, as initially
chosen by Batchelor to reproduce the behavior of the second-order structure function of Eulerian
velocity, which leads to an acceptable agreement with DNS data, as will be shown in the following
section. Furthermore, because the proposed parametrization for S2 does not saturate for τ � T
(Eq. (26) is understood as a model for scales τ 
 T only), we need to introduce a proper cutoff at
large scales. Following the proposition of Ref. [19], we include in this simple picture an additional
exponential decrease over the characteristic large timescale T and consider the alternative form,

S2(τ ) = 2σ 2 1 − e− τ
T[

1 + (
τ
τη

)−δ] 1
δ

, (27)

which entails a finite Lagrangian integral timescale. For our case, i.e., δ = 2, this timescale can be
calculated explicitly,

TL =
∫ ∞

0
dτ

Cv (τ )

Cv (0)
= τη

[
1 − π

2
Y1

(τη

T

)
− π

2
H−1

(τη

T

)]
, (28)

where Yn(z) denotes the Bessel function of the second kind and Hn(z) the Struve function, as it
is provided by a symbolic calculation software. In this framework, the acceleration correlation
function for the tracer particle can be calculated from the second-order structure function (26) by
Ca(τ ) = 1

2
d2S2(τ )

dτ 2 .
Finite particle inertia can again be included in using the linear filter approximation discussed

in Sec. II. To this end, Eq. (10) has to be evaluated from the Lagrangian velocity correlation
Cv (τ ) = σ 2 − S2(τ )

2 . We could not obtain a closed expression for the integral and thus have restricted
ourselves to a numerical evaluation, which will be further elaborated on in the next section.

V. COMPARISON TO DNS

In this section, we will apply the presented modeling techniques to the DNS discussed in
Sec. II C. In order to connect these approaches to the simulated data, parameters of the DNS must be
defined to properly calibrate the models, namely the integral length scale, T , the dissipative scale,
τη, and the effective particle response time, τ ∗

p . Detailed explanations of the calibration technique
can be found in Ref. [19]. In summary, two conditions have to be imposed for the Lagrangian
stochastic model (τ ∗

p = 0), namely the matching of the Lagrangian timescale of the stochastic
model (25) to TL of the DNS as well as the matching of the zero crossing of the acceleration
correlation function (22) to the zero crossing from the DNS data. This calibration suggests the values
(τη/τK , T/TL ) = (0.5759, 0.9791). For the Batchelor model, the same calibration has to be carried
out, where now the Lagrangian integral timescale is given by Eq. (28). Furthermore, by matching
the zero crossing, we obtain the values (τη/τK , T/TL ) = (1.7956, 0.9941). It can be noted that τη
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(a) (b)

FIG. 4. Comparison of the second-order structure function to DNS from (a) the stochastic model (dash-
dotted lines) and (b) the Batchelor model for five different St parameters in between 0 and 1. The structure
functions have been shifted vertically by multiplication of 10−n for n = 0–4 from top to bottom. At the level of
velocity, both models perform nearly identical and (a) and (b) exhibit only slight differences. These differences
are more pronounced at the level of acceleration as shown in Fig. 5.

from the Batchelor model is larger than τK , whereas the stochastic model exhibits a τη smaller than
τK after calibration.

With the inclusion of St, an additional free parameter of the models is available for calibration,
the effective particle response time τ ∗

p . As discussed, the acceleration correlation function for the
stochastic Gaussian process is given by Eq. (22), from which τ ∗

p can be extracted based on the zero
crossing of the DNS data for each Stokes number. In a similar fashion, the new model parameter τ ∗

p
is obtained from the linear filtering of the acceleration correlation function of the Batchelor model
derived from Eq. (27).

Figures 4(a) and 4(b) depict the comparison of second-order structure function S2(τ ) = 〈(δτvp)2〉
stochastic and Batchelor model, respectively (dash-dotted curves), to DNS for St = 0–1 (solid
curves). For the tracers, St = 0, the original stochastic model [19] and Batchelor model are im-
plemented.

For St > 0, linear filtering of the velocity correlation function for tracer particles agrees well with
S2(τ ) from DNS for both models. The stochastic approach, Fig. 4(a) shows agreement between the
model and DNS at small scales and deviates slightly as the time lag τ increases. Notably, slight
deviations appear in the inertial range and might be attributed to the Gaussianity of the stochastic
model, which thus neglects intermittency corrections. The application of our filtering technique to
the statistics of the Batchelor model, Figure 4(b), shows similar tendencies. At small scales the
model coincides with the DNS profiles for the given St presented. At τ/τK > 1, again a deviation
occurs where the model begins to overestimate the structure function of its corresponding DNS
curve, the near-dissipative range seems to extend further than the one present in the simulated
data. These deviations slightly increase with St. The application of the models to the acceleration
correlation function is presented in Fig. 5. Here the discrepancy between modeled correlations and
those obtained from the simulated data can be observed at all scales. The stochastic modeling of
the inertial particle correlations is presented in Fig. 5(a) for the considered St range. The model
overestimates correlations in the dissipative range. For increasing Stokes number, linear filtering
of the model improves the ability to accurately describe small-scale correlations, for example,
for St = 0.2. As St increases further, quickly the filtered model and the DNS show increased
discrepancies between the profiles, as the decorrelation of the acceleration occurs more rapidly
than the model predicts. Filtering of the Batchelor model, Fig. 5(b), shows similar tendencies of
the results of the stochastic approach but with even greater variation. The correlation of tracer
velocity at St = 0 is slightly overpredicted at small scales and slightly underpredicted at large
scales. Comparable dissimilarity is observed between the DNS and model at St = 0.1. As the Stokes
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(a) (b)

FIG. 5. Comparison of acceleration autocorrelation function from (a) the stochastic model (dash-dotted
lines) and (b) the Batchelor model (dash-dotted lines) to DNS for five different St parameters in between 0
and 1.

number increases, the linear filter of the model breaks down and the predictions decorrelate slower
when compared to the simulated data responses.

Due to the fact that the model calibration for finite St is based on the zero crossing of the
acceleration correlation, it is worth studying the St dependence of this quantity as well. Therefore,
Fig. 6(a) depicts the zero crossing τ0 from DNS as a function of the Stokes number St. For the case
of Lagrangian tracers St = 0, the zero crossing is at around 2.2τK and increases sharply for St > 0.
For St ≈ 1, a new quantitative behavior sets in, and the zero crossing exhibits a slower increase.
Furthermore, the zero crossing becomes rather noisy; therefore, it is not entirely clear whether the
zero crossing would saturate at even higher St. The inset of Fig. 6(a) shows a double-logarithmic
representation of τ0. For St < 1, the zero crossing appears to be a power law, whereas deviations
from this power law appear at St ≈ 1. For comparison, the black line shows a power law ∼St0.35.
However, at this point, no clear phenomenological description could be provided that would allow
for the explanation of such a power law of the zeros of acceleration for inertial particle motion.

Figure 6(b) depicts the calibrated effective Stokes number St∗ = τ ∗
p

τK
as a function of the DNS

Stokes number St for both the stochastic (yellow) and the Batchelor model (dark blue). Interestingly,
the curves strongly resemble Fig. 6(a), which suggests a nearly linear relation between the zero
crossing τ0 and the effective (calibrated) particle response time τ ∗

p . The arms values as a function
of the Stokes number for all modeling techniques are included in Fig. 7 for direct comparison of

(a) (b)

FIG. 6. (a) Zero crossing τ0 of the acceleration correlation functions from DNS (as partially shown in
Fig. 2) as a function of St. The inset shows a double-logarithmic representation with the black line indicating
τ0 ∼ St0.35. (b) Recalibrated particle response time τ ∗

p expressed as St∗ = τ ∗
p /τK based on the zero crossing τ0

(see main text for more details on the calibration process) as a function of St.
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(a) (b)

FIG. 7. (a) Comparison of root-mean-square values of acceleration for DNS and the different models.
(b) Semilogarithmic representation of (a).

the statistic. The filtered acceleration, found directly from Eq. (12) (orange), and the stochastic
model, based on τp (turquoise), quickly deviate from the DNS arms curve while the two models
with the updated τ ∗

p for the stochastic process (yellow) and Batchelor representation (dark blue)
show improved agreement at all St and good agreement between 0.2 � St � 1.1. Cencini et al.
[39] present a similar comparison and suggest that the deviation between the profiles at small Stokes
numbers is due to preferential concentration which is not captured by the linear filter approximation.
The inclusion of the effective particle response time τ ∗

p in our model counteracts this discrepancy,
providing accurate representations of acceleration statistics for the presented Stokes numbers.

VI. CONCLUSION

We have presented a modeling technique for single inertial particle statistics based on a filtering
approach for the Lagrangian fluid velocity. The introduction of an effective particle response time
τ ∗

p in the linear filter is motivated by the strong discrepancies in the dynamics of tracerlike and true
inertial particles at low Stokes numbers. In particular, the effective particle response time accounts
for the effects of preferential sampling of depleted vorticity regions by inertial particles, which
manifests itself, for instance, in a strong decrease of the variance of the particle acceleration as
suggested by Fig. 7. Both the stochastic and the Batchelor model are capable of reproducing this
characteristic feature of inertial particles. It has to be stressed that this feature cannot be reproduced
by a pure linear filtering approximation which overestimates acceleration variances.

In contrast to the refinement of the linear filtering approximation proposed by Deutsch and
Simonin [35,36], here we do not operate on the level of fluid quantities as “seen” by inertial particles
but rather modify the “response of particles to fluid structures.” This has the advantage that the
calibration of our model equations is rather simple (i.e., it suffices to determine the empirically
observed zero crossing of the acceleration correlation) in comparison to evaluating fluid quantities
on the basis of individual inertial particle trajectories. In principle, it should also be possible to
determine zeros of acceleration directly from measurement campaigns which would thus allow to
access and parametrize statistical quantities such as velocity and acceleration correlation functions.
In particular, explicit formulas for the variance of velocity (20) and acceleration (23) could offer
a quite accurate characterization of inertial particle dynamics with respect to its Stokes number
dependencies. Nonetheless, in cases where zeros of acceleration are inaccessible one might also
resort to phenomenological parametrizations as suggested by Fig. 7(b) or by directly fitting the
variances (20) and (23) which are oftentimes available in experiments [5]. Hence, the proposed
modeling approach might offer additional diagnostic tools, e.g., for a more accurate determination
of integral timescales whose estimation are usually limited by the length of particle trajectories.

It will be a task for the future to further investigate the peculiar notion of preferential
sampling/preferential concentration by extending the modeling techniques and possibly combine
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them with generalized vortex models similar to those in Refs. [45–48]. Furthermore, as we currently
operate at the level of second-order statistics, much more could be understood by focusing for
instance on the behavior of the flatness of velocity increment, which highlights the implication of
the existence of intermittent corrections. To include this behavior, we would first need to derive the
action of the linear filtering at this higher level of statistics and then to generalize both the stochastic
process as well as the parametrization of Batchelor to include intermittent corrections, as was done
for Lagrangian velocity in Ref. [19]. Furthermore, the proposed model might be generalized to
particle pairs, which opens up the way for investigating particle collisions [32] on the basis of
simple stochastic models or the multifractal formalism.

ACKNOWLEDGMENTS

J.F. acknowledges funding from the Humboldt Foundation within a Feodor-Lynen fellowship and
also benefited from financial support of the Project IDEXLYON of the University of Lyon in the
framework of the French program “Programme Investissements d’Avenir” (ANR-16-IDEX-0005).
B.V. and R.B.C. are supported by U.S. National Science Foundation grant (NSF-GEO-1756259).
R.B.C. is also thankful for the support provided through the Fulbright Scholar Program.

[1] A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence (Courier Dover,
New York, 2007).

[2] U. Frisch, Turbulence (Cambridge University Press, Cambridge, UK, 1995).
[3] S. B. Pope, Turbulent Flows (Cambridge University Press, Cambridge, UK, 2000).
[4] F. Toschi and E. Bodenschatz, Lagrangian properties of particles in turbulence, Annu. Rev. Fluid Mech.

41, 375 (2009).
[5] N. Machicoane, P. D. Huck, A. Clark, A. Aliseda, R. Volk, and M. Bourgoin, Recent developments

in particle tracking diagnostics for turbulence research, in Flowing Matter (Springer, Berlin, 2019),
pp. 177–209.

[6] N. M. Qureshi, U. Arrieta, C. Baudet, A. Cartellier, Y. Gagne, and M. Bourgoin, Acceleration statistics of
inertial particles in turbulent flow, Eur. Phys. J. B 66, 531 (2008).

[7] S. Ayyalasomayajula, A. Gylfason, L. R. Collins, E. Bodenschatz, and Z. Warhaft, Lagrangian Measure-
ments of Inertial Particle Accelerations in Grid Generated Wind Tunnel Turbulence, Phys. Rev. Lett. 97,
144507 (2006).

[8] K. D. Squires and J. K. Eaton, Preferential concentration of particles by turbulence, Phys. Fluids 3, 1169
(1991).

[9] J. K. Eaton and J. R. Fessler, Preferential concentration of particles by turbulence, Int. J. Multiph. Flow
20, 169 (1994).

[10] R. Monchaux, M. Bourgoin, and A. Cartellier, Analyzing preferential concentration and clustering of
inertial particles in turbulence, Int. J. Multiph. Flow 40, 1 (2012).

[11] M. Bourgoin and H. Xu, Focus on dynamics of particles in turbulence, New J. Phys. 16, 085010 (2014).
[12] M. R. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Phys.

Fluids 26, 883 (1983).
[13] L. Chen, S. Goto, and J. C. Vassilicos, Turbulent clustering of stagnation points and inertial particles, J.

Fluid Mech. 553, 143 (2006).
[14] K. Gustavsson and B. Mehlig, Statistical models for spatial patterns of heavy particles in turbulence, Adv.

Phys. 65, 1 (2016).
[15] J. Bec, L. Biferale, G. Boffetta, A. Celani, M. Cencini, A. Lanotte, S. Musacchio, and F. Toschi,

Acceleration statistics of heavy particles in turbulence, J. Fluid Mech. 550, 349 (2006).
[16] M. Bourgoin, N. T. Ouellette, H. Xu, J. Berg, and E. Bodenschatz, The role of pair dispersion in turbulent

flow, Science 311, 835 (2006).

014303-15

https://doi.org/10.1146/annurev.fluid.010908.165210
https://doi.org/10.1140/epjb/e2008-00460-x
https://doi.org/10.1103/PhysRevLett.97.144507
https://doi.org/10.1063/1.858045
https://doi.org/10.1016/0301-9322(94)90072-8
https://doi.org/10.1016/j.ijmultiphaseflow.2011.12.001
https://doi.org/10.1088/1367-2630/16/8/085010
https://doi.org/10.1063/1.864230
https://doi.org/10.1017/S0022112006009177
https://doi.org/10.1080/00018732.2016.1164490
https://doi.org/10.1017/S002211200500844X
https://doi.org/10.1126/science.1121726


JAN FRIEDRICH et al.

[17] J.-F. Pinton and B. L. Sawford, A Lagrangian view of turbulent dispersion and mixing, in Ten Chapters
in Turbulence, edited by P. A. Davidson, Y. Kaneda, and K. R. Sreenivasan (Cambridge University Press,
Cambridge, UK, 2012), pp. 132–175.

[18] B. L. Sawford, Reynolds number effects in Lagrangian stochastic models of turbulent dispersion, Phys.
Fluids 3, 1577 (1991).

[19] B. Viggiano, J. Friedrich, R. Volk, M. Bourgoin, R. B. Cal, and L. Chevillard, Modelling Lagrangian
velocity and acceleration in turbulent flows as infinitely differentiable stochastic processes, J. Fluid Mech.
900, A27 (2020).

[20] K. Sala and J. Marshall, Stochastic vortex structure method for modeling particle clustering and collisions
in homogeneous turbulence, Phys. Fluids 25, 103301 (2013).

[21] G. I. Taylor, Diffusion by continuous movements, Proc. Lond. Math. Soc. s2-20, 196 (1922).
[22] A. Obukhov, Description of Turbulence in Terms of Lagrangian Variables (Elsevier, Amsterdam, 1959),

pp. 113–116.
[23] A. M. Reynolds, Superstatistical Mechanics of Tracer-Particle Motions in Turbulence, Phys. Rev. Lett.

91, 084503 (2003).
[24] A. Innocenti, N. Mordant, N. Stelzenmuller, and S. Chibbaro, Lagrangian stochastic modelling of

acceleration in turbulent wall-bounded flows, J. Fluid Mech. 892 , A38 (2020).
[25] A. M. Lattanzi, V. Tavanashad, S. Subramaniam, and J. Capecelatro, Stochastic models for capturing

dispersion in particle-laden flows, J. Fluid Mech. 903, A7 (2020).
[26] L. Chevillard, S. G. Roux, E. Lévêque, N. Mordant, J.-F. Pinton, and A. Arnéodo, Lagrangian Velocity

Statistics in Turbulent Flows: Effects of Dissipation, Phys. Rev. Lett. 91, 214502 (2003).
[27] L. Biferale, G. Boffetta, A. Celani, B. J. Devenish, A. Lanotte, and F. Toschi, Multifractal Statistics of

Lagrangian Velocity and Acceleration in Turbulence, Phys. Rev. Lett. 93, 064502 (2004).
[28] A. Arnéodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A. Busse, E. Calzavarini, B. Castaing, M.

Cencini, L. Chevillard, R. T. Fisher, R. Grauer, H. Homann, D. Lamb, A. S. Lanotte, E. Leveque, B.
Luthi, J. Mann, N. Mordant, and W. C. Muller, Universal Intermittent Properties of Particle Trajectories
in Highly Yurbulent Flows, Phys. Rev. Lett. 100, 254504 (2008).

[29] L. Chevillard, B. Castaing, A. Arneodo, E. Lévêque, J.-F. Pinton, and S. G. Roux, A phenomenological
theory of Eulerian and Lagrangian velocity fluctuations in turbulent flows, C. R. Phys. 13, 899 (2012).

[30] R. Friedrich, Statistics of Lagrangian Velocities in Turbulent Flows, Phys. Rev. Lett. 90, 084501 (2003).
[31] R. Gatignol, The Faxen formulas for a rigid particle in an unsteady non-uniform Stokes flow, J. Mec.

Theor. Appl. 1, 143 (1983).
[32] A. Pumir and M. Wilkinson, Collisional aggregation due to turbulence, Annu. Rev. Condens. Matter Phys.

7, 141 (2016).
[33] C.-M. Tchen, Mean Value and Correlation Problems Connected with the Motion of Small Particles

Suspended in a Turbulent Fluid (Springer, Berlin, 2013).
[34] J. Hinze, Turbulence (McGraw–Hill, New York, 1959).
[35] E. Deutsch, Dispersion de particules dans une turbulence homogène isotrope stationnaire calculée par

simulation numérique directe des grandes échelles, Ph.D. thesis, Ecully, Ecole centrale de Lyon, 1992.
[36] E. Deutsch and O. Simonin, Large eddy simulation applied to the modelling of particulate transport

coefficients in turbulent two-phase flows, in Proceedings of the 8th Symposium on Turbulent Shear Flows,
Vol. 1 (Springer, 1991), pp. 10.1.1–10.1.6.

[37] P. Février, Etude numérique des effets de concentration préférentielle et de corrélation spatiale entre
vitesses de particules solides en turbulence homogène isotrope stationnaire, Ph.D. thesis, Toulouse, INPT,
2000.

[38] T. Berk and F. Coletti, Dynamics of small heavy particles in homogeneous turbulence: A Lagrangian
experimental study, J. Fluid Mech. 917, A47 (2021).

[39] M. Cencini, J. Bec, L. Biferale, G. Boffetta, A. Celani, A. S. Lanotte, S. Musacchio, and F. Toschi,
Dynamics and statistics of heavy particles in turbulent flows, J. Turbul. 7, N36 (2006).

[40] H. Yu, K. Kanov, E. Perlman, J. Graham, E. Frederix, R. Burns, A. Szalay, G. Eyink, and C. Meneveau,
Studying Lagrangian dynamics of turbulence using on-demand fluid particle tracking in a public turbu-
lence database, J. Turbul. 13, N12 (2012).

014303-16

https://doi.org/10.1063/1.857937
https://doi.org/10.1017/jfm.2020.495
https://doi.org/10.1063/1.4824278
https://doi.org/10.1112/plms/s2-20.1.196
https://doi.org/10.1103/PhysRevLett.91.084503
https://doi.org/10.1017/jfm.2020.203
https://doi.org/10.1017/jfm.2020.625
https://doi.org/10.1103/PhysRevLett.91.214502
https://doi.org/10.1103/PhysRevLett.93.064502
https://doi.org/10.1103/PhysRevLett.100.254504
https://doi.org/10.1016/j.crhy.2012.09.002
https://doi.org/10.1103/PhysRevLett.90.084501
https://doi.org/10.1146/annurev-conmatphys-031115-011538
https://doi.org/10.1017/jfm.2021.280
https://doi.org/10.1080/14685240600675727
https://doi.org/10.1080/14685248.2012.674643


SINGLE INERTIAL PARTICLE STATISTICS IN …

[41] http://turbulence.pha.jhu.edu/.
[42] G. Batchelor, Pressure fluctuations in isotropic turbulence, in Mathematical Proceedings of the Cambridge

Philosophical Society, Vol. 47 ( Cambridge University Press, Cambridge, UK, 1951), pp. 359–374.
[43] C. Meneveau, Transition between viscous and inertial-range scaling of turbulence structure functions,

Phys. Rev. E 54, 3657 (1996).
[44] R. Benzi, L. Biferale, R. Fisher, D. Q. Lamb, and F. Toschi, Inertial range Eulerian and Lagrangian

statistics from numerical simulations of isotropic turbulence, J. Fluid Mech. 653, 221 (2010).
[45] J. Friedrich and R. Friedrich, Generalized vortex model for the inverse cascade of two-dimensional

turbulence, Phys. Rev. E 88, 053017 (2013).
[46] B. Marcu, E. Meiburg, and P. K. Newton, Dynamics of heavy particles in a Burgers vortex, Phys. Fluids

7, 400 (1995).
[47] J. Köhler, J. Friedrich, A. Ostendorf, and E. L. Gurevich, Characterization of azimuthal and radial velocity

fields induced by rotors in flows with a low Reynolds number, Phys. Rev. E 93, 023108 (2016).
[48] S. Ayyalasomayajula, Z. Warhaft, and L. R. Collins, Modeling inertial particle acceleration statistics in

isotropic turbulence, Phys. Fluids 20, 95104 (2008).

014303-17

http://turbulence.pha.jhu.edu/
https://doi.org/10.1103/PhysRevE.54.3657
https://doi.org/10.1017/S002211201000056X
https://doi.org/10.1103/PhysRevE.88.053017
https://doi.org/10.1063/1.868778
https://doi.org/10.1103/PhysRevE.93.023108
https://doi.org/10.1063/1.2976174

