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Second and third order longitudinal structure functions and wavenumber spectra
of isotropic turbulence are computed using the eddy-damped quasi-normal
Markovian model (EDQNM) and compared to results of the multifractal formalism.
It is shown that both the multifractal model and EDQNM give power-law corrections
to the inertial range scaling of the velocity increment skewness. For the multifractal
formalism, this is an intermittency correction that persists at any high Reynolds num-
ber. For EDQNM, this correction is a finite Reynolds number effect, and it is shown
that very high Reynolds numbers are needed for this correction to become insignifi-
cant with respect to intermittency corrections. Furthermore, the two approaches yield
realistic behavior of second and third order statistics of the velocity fluctuations in
the dissipative and near-dissipative ranges. Similarities and differences are high-
lighted, in particular, the Reynolds number dependence. VC 2012 American Institute
of Physics. [doi:10.1063/1.3678338]

I. INTRODUCTION

The nonlinearity in the Navier-Stokes equations gives rise to an interaction between different
length-scales in a turbulent flow. These interactions are the basic mechanism behind the celebrated
Kolmogorov-Richardson energy cascade.1,2 This phenomenological picture of energy cascading
from scale to scale towards the scales in which dissipation becomes appreciable is the cornerstone
of a large number of turbulence models (e.g., Ref. 3). If locality in scale-space is assumed,
energy-conservation and local-isotropy will lead to a wavenumber dependence of the energy spec-
trum of the form

EðkÞ # !2=3k$5=3; (1)

with ! the energy flux, which, using the assumption of statistical stationarity, equals the energy
dissipation. A physical space equivalent of this scaling law is the scale dependence of the second-
order longitudinal structure function,

DLLðrÞ # !2=3r2=3: (2)

The definitions of DLL(r) and E(k) will be given below.
The possibility of corrections to the inertial range scaling of structure functions, due to the

intermittent character of the energy dissipation,4 was taken into account in a more general theory
advanced by Kolmogorov5 and Oboukhov.6 Experiments aiming at the measurement of the inter-
mittency corrections (e.g., Refs. 7 and 8) indeed showed small corrections to the scaling which
could be due to intermittency, in particular for higher-order structure functions. Subsequently, a
large number of phenomenological models were proposed to describe the intermittent character of
turbulence. Reference 9 gives an overview of work on intermittency up to 1995. One of the more
successful models, in the sense of reproducing the different features of isotropic turbulence, is the
multifractal model.9 This phenomenological description compares well to measurements and gives
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non-zero intermittency corrections to the inertial range scaling of the energy spectrum and of
higher order quantities.

A valuable theoretical tool to study the statistical properties of homogeneous turbulence is
two-point closure theory. The first theoretical approach of this kind, derived from the Navier-
Stokes equations, is the direct interaction approximation (DIA).10 Subsequent improvements11 of
this theory allowed to show that the k!5/3 dependence of the energy spectrum can be related
directly to the Navier-Stokes equations. Simplifications led to different related closures such as
the test-field model,12 the Lagrangian renormalized approximation,13 and the Eddy-damped quasi-
normal approximation (EDQNM).14 EDQNM is of the closures named here the simplest. It is
obtained by assuming in the DIA formulation that the two-time correlations decay exponentially
with a typical time-scale modeled phenomenologically. We note that this time-scale can also be
determined self-consistently within the EDQNM approach.15

These closures, although directly related to the Navier-Stokes equations, do not yield any
intermittency corrections to the scaling (1). However, the predicted results for scaling exponents
of the energy spectrum compare rather well to experimentally observed values.16 Indeed, at low
Reynolds numbers, corrections to the scaling exponents due to the finite Reynolds number are usu-
ally larger than the expected intermittency corrections and these finite Reynolds number effects
vanish very slowly.16–18 The fact that two-point closure and the multifractal formalism can treat
both low and very high Reynolds numbers using limited computational effort, makes these
approaches very attractive to study Reynolds-number effects.

The present work will compare the predictions of closure for second and third-order quantities
with results of the multifractal description at low, moderate, and high Reynolds numbers. EDQNM
seems an appropriate tool for this, since it shows good agreement with Direct Numerical Simulation
(DNS) and experiment at low and moderate Reynolds numbers and its numerical integration can be
performed for very high Reynolds numbers. The multifractal formalism also allows to investigate a
wide range of Reynolds numbers. The comparison of the two approaches, which were initially
developed for different purposes, allows then to disentangle effects due to intermittency corrections
from finite Reynolds number effects. Such a comparison is novel since most studies on two-point
closures focus on wave-number spectra and multifractal results have only been reported for structure
functions. Indeed, it is expected that corrections to second and third order statistics will be relatively
small, in particular the third order structure function should be free from intermittency effects. How-
ever, it is important to know how large these corrections exactly are for the interpretation of numeri-
cal and experimental results and in the present work, we try to contribute to this by quantifying the
corrections due to intermittency and finite Reynolds numbers for a wide range of Reynolds numbers.
We show that at moderate Reynolds numbers, corresponding to the Reynolds numbers currently
attainable in simulation and experiment, the inertial range of the velocity increment skewness com-
puted by EDQNM is characterized by a power law dependence. In addition, it is shown that the fi-
nite Reynolds number corrections are different for decaying and forced turbulence.

We choose to compare quantities in physical space (i.e., using structure functions), since most
experimental and theoretical efforts aiming at the understanding and description of intermittency
focus on these quantities (we note however that in principle intermittency corrections, if any,
should also be observed in wavenumber spectra). Therefore, we need to convert the Fourier-space
quantities into physical space quantities. It is described in Sec. II how this is done. The relations to
convert physical space quantities into their Fourier-space counterparts are also given. In Sec. III,
we will present the EDQNM model and we will give an outline of the multifractal description. In
Sec. IV, we present the results of the EDQNM model for these quantities and compare with the
multifractal results in both Fourier and physical space. Section V concludes this article.

II. EXACT RELATIONS BETWEEN SECOND AND THIRD ORDER QUANTITIES
IN FOURIER SPACE AND IN PHYSICAL SPACE

In this section, we will give the relation between the energy spectrum and the second order
structure function DLL(r), and between the nonlinear transfer and the third-order longitudinal ve-
locity structure function, DLLL(r). Even though the relations given here are not new (e.g., Refs.
19–21), the details of the derivation are dispersed or not well documented in literature and we
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think that it is, therefore, worth to write down in detail this derivation, which can be found in the
Appendix.

A. Derivation of the Lin-equation

The starting point is the Navier-Stokes equations for incompressible flow,

@uiðxÞ
@t
þ ujðxÞ

@uiðxÞ
@xj

¼ % 1

q
@pðxÞ
@xi

þ ! @
2uiðxÞ
@x2

j

; (3)

@uiðxÞ
@xi

¼ 0; (4)

with q the density and p the pressure. Time arguments are omitted for brevity. The three-
dimensional Fourier transfer is defined as

uiðkÞ ¼
1

ð2pÞ3

ð
uiðxÞe%ik&kdx: (5)

In Fourier space, the Navier-Stokes equations can be written

@uiðkÞ
@t
þ !k2uiðkÞ ¼ %

i

2
PijmðkÞ

ðð
ujðpÞumðqÞdðk % p% qÞdpdq (6)

with

PijmðkÞ ¼ kjPimðkÞ þ kmPijðkÞ; (7)

PijðkÞ ¼ dij %
kikj

k2
: (8)

To derive Eq. (6), the incompressibility condition was used to eliminate the pressure term. In iso-
tropic non-helical turbulence, the energy spectrum is related to ui(k) by

PijðkÞ
4pk2

EðkÞ ¼ uiðkÞu'j ðkÞ (9)

and since ui(x) is real, this gives

EðkÞ ¼ 2pk2uiðkÞuið%kÞ: (10)

In order to derive the equation for E(k), we multiply Eq. (6) by ui(%k). Then, we write a similar
equation for ui(%k) and multiply by ui(k). Summing both equations and averaging yields,

@

@t
þ 2!k2

" #
EðkÞ ¼ ipk2PijmðkÞ TijmðkÞ % T'ijmðkÞ

h i
¼ TðkÞ (11)

with

TijmðkÞ ¼
ðð

uiðkÞujðpÞumðqÞdðk þ pþ qÞdpdq; (12)

T'ijmðkÞ ¼
ðð

uið%kÞujð%pÞumð%qÞdðk þ pþ qÞdpdq: (13)
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By isotropy, it can be shown that T!ijm kð Þ ¼ %Tijm kð Þ. The RHS of the Lin-equation (11) is the
nonlinear transfer T(k), which we will relate to the third-order longitudinal structure function. But
first, we will give the relation between the energy spectrum and the second order longitudinal
structure function.

B. Relation between E(k) and DLL(r)

The second order longitudinal structure function is defined as

DLLðrÞ ¼ du2
L (14)

with

duL ¼ uL % u0L ¼
ri

r
uiðxÞ %

ri

r
uiðxþ rÞ: (15)

Its relation to the energy spectrum is

DLLðrÞ ¼
ð

EðkÞf ðkrÞdk (16)

with f(x) given by

f ðxÞ ¼ 4
1

3
% sinðxÞ % ðxÞ cosðxÞ

ðxÞ3

" #

: (17)

The derivation of this expression is given in the Appendix. A convenient expression to compute
the energy spectrum from the second order structure function is

EðkÞ ¼ u2

p

ð
1% DLLðrÞ

2u2

" #
kr sinðkrÞ % kr cosðkrÞ½ (dr (18)

and we refer to Mathieu and Scott21 for the derivation.

C. Relation between T(k) and DLLL(r)

The third order longitudinal structure function in homogeneous turbulence can be expressed as

DLLLðrÞ ¼ du3
L ¼ 3 uLu0 2L % u0Lu2

L

$ %
; (19)

which is related to the transfer spectrum by

DLLLðrÞ ¼ r

ð1

0

TðkÞgðkrÞdk (20)

with

gðxÞ ¼ 12
3 sin x% x cos xð Þ % x2 sin x

x5
(21)

with details given in the Appendix. The equivalent expression to compute the transfer spectrum
from DLLL(r) is21

TðkÞ ¼ k

6p

ð
sinðkrÞ

r

@

@r

1

r

@

@r
r4DLLLðrÞ
& '( )

dr: (22)

015108-4 Bos et al. Phys. Fluids 24, 015108 (2012)



D. Small scale behavior of DLL(r) and DLLL(r)

Before continuing, let us have a look at the behavior of the functions (17) and (21),

f ðxÞ ¼ 4
1

3
$ sin x$ x cos x

x3

! "
; (23)

gðxÞ ¼ 12
3 sin x$ x cos xð Þ $ x2 sin x

x5
: (24)

Taylor expansions of the sine and cosine terms show that for x ; 0,

f ðxÞ ¼ 2

15
x2 þOðx3Þ; (25)

gðxÞ ¼ 4

5
$ 2

35
x2 þOðx4Þ: (26)

Using this in Eqs. (16) and (20), we find for very small r,

DLLðrÞ ¼
2

15
r2

ð
k2EðkÞdk ¼ !r2

15"
; (27)

DLLLðrÞ ¼
4

5
r

ð
TðkÞdk $ 2

35
r3

ð
k2TðkÞdk ¼ $ 2

35
r3

ð
k2TðkÞdk; (28)

in which we used that

2"

ð
k2EðkÞdk ¼ !; (29)

ð
TðkÞdk ¼ 0; (30)

with ! the energy dissipation. So, we find that the structure functions of order 2 and 3 scale as r2

and r3, respectively, for very small r, which is expected since at small enough scales, the flow can
be considered as smooth.

The velocity-increment skewness is defined as

SðrÞ ¼ DLLLðrÞ
DLLðrÞ3=2

: (31)

Since at very small scales,

duL & r
@u

@x
; (32)

one finds that

lim
r!0

SðrÞ ¼ ð@u=@xÞ3

ð@u=@xÞ2
$ %3=2

: (33)

Using expressions (27) and (28), we find19
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lim
r!0

SðrÞ ¼ ½ð@xuÞ3%
½ð@xuÞ2%3=2

¼ & 153=2

35ð2Þ1=2

Ð1
0 k2TðkÞdk

½
Ð1

0 k2EðkÞdk%3=2
: (34)

In the case of high-Reynolds number, if the non-stationarity can be neglected at high k, or if the
turbulence is kept stationary by a forcing term acting only at small k, we have

ð
k2TðkÞdk '

ð
2!k4EðkÞdk; (35)

so that19

lim
r!0

SðrÞ ' & 153=221=2!

35

Ð1
0 k4EðkÞdk

½
Ð1

0 k2EðkÞdk%3=2
: (36)

The velocity-derivative skewness is then completely determined by moments of the energy spectrum.
If we assume that in the dissipation range, the energy spectrum is given by the self-similar form,

EðkÞ ( "1=4!5=4f ðkgÞ (37)

with g a typical length-scale characterizing the dissipation range, we find, using relations (29) and
(36), that

lim
r!0

SðrÞ ( !3

"

# $5=4

g&5

ð1

0

X4f ðXÞdX (38)

with X¼ kg. If we use the Kolmogorov viscous scale defined by

g ¼ ð!3="Þ1=4; (39)

we find that Eq. (38) simplifies to

lim
r!0

SðrÞ (
ð1

0

X4f ðXÞdX; (40)

so that the skewness tends to a constant, determined by the self-similar shape of the dissipation
range. We note that Eq. (37) with g defined by Eq. (39) is valid in the context of Kolmogorov’s
1941 (K41) framework. If corrections to the K41 scaling are present, as is the case in the multi-
fractal formalism, the skewness becomes a function of the Reynolds number.

E. Large scale behavior of DLL(r) and DLLL(r)

At large r, we find

DLLðrÞ ¼
4

3

ð
EðkÞdk ¼ 2u2; (41)

which is expected from Eq. (A1) since at large separation distances, the correlation between the ve-
locity at two points is supposed to vanish. DLLL(r) tends for the same reason to zero for large separa-
tion distances r. At large r, the velocity increment skewness should, therefore, go smoothly to zero,
since the velocity correlation should decay smoothly at large r. The exact way in which DLLL(r)
tends to zero depends on the behavior of the energy spectrum at the very low wavenumbers.

III. THE EDQNM MODEL AND THE MULTIFRACTAL DESCRIPTION

A. The EDQNM model

The EDQNM model is a closure of the Lin-equation in which the nonlinear transfer T(k) is
expressed as a function of the energy spectrum. The transfer T(k) is given by
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TðkÞ ¼
ðð

D
Hkpqðxyþ z3Þ k2 pEðpÞEðqÞ

"
%p3EðqÞEðkÞ

# dpdq

pq
: (42)

In Eq. (42), D is a band in p, q-space so that the three wave-vectors k, p, q form a triangle. x, y, z
are the cosines of the angles opposite to k, p, q in this triangle. This particular structure is common
to all closures derived from the direct interaction approximation.10 DIA is a self-consistent two-
point two-time theory without adjustable parameters. Simplifications are needed to obtain a
single-time (or Markovian) description introducting assumptions and adjustable parameters. In the
case of EDQNM, the simplifying assumption is that all time-correlations decay exponentially,
with a time-scale Hkpq modeled phenomenologically by

Hkpq ¼
1% expð%ðgk þ gp þ gqÞ & tÞ

gk þ gp þ gq
; (43)

in which gk is the eddy damping, expressed as

gk ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðk

0

s2EðsÞds

s

þ !k2 (44)

related to the timescale associated with an eddy at wavenumber k, parameterised by the EDQNM
parameter, k, which is chosen equal to 0.49.15 The exponential time-dependence in Eq. (43)
appears by the assumption that the initial conditions have vanishing triple correlation as would be
the case for a Gaussian field. Its influence vanishes at long times. For an extensive discussion of
the EDQNM model, see Refs. 22 and 23, but we want to stress that one of the key features of
EDQNM is that it is applicable at all Reynolds numbers (it is not an asymptotic theory) and at all
scales of a turbulent flow. In other words, its results go beyond mere scaling and can give insights
on the Reynolds number dependency of different quantities related to turbulence.

We performed simulations of the EDQNM model in the unforced case by integrating numeri-
cally Eq. (42), starting from an initial spectrum,

Ekð0Þ ¼ Bk4 exp %ðk=kLÞ2
h i

; (45)

with B chosen to normalize the energy to unity and kL¼ 8k0, k0 being the smallest wavenumber.
The resolution is chosen 12 gridpoints per decade, logarithmically spaced. In the decaying simu-
lations results are evaluated in the self-similar stage of decay, in which "/ekin, with ekin the ki-
netic energy, is proportional to t%1. Forced simulations are evaluated when a steady state is
reached. The forcing in these cases corresponds to a region k< kL, in which the energy spectrum
is kept constant.

B. The multifractal description

In this section, some key concepts of the multi-fractal description will be presented. A more
detailed presentation and references can be found in Appendix C.

In the multifractal description, the velocity-increments duL (defined in expression (15)) at
scales r in the inertial range are modeled by the product of two independent random variables

duL ¼ brn: (46)

In this expression, n is a zero average Gaussian random variable of variance r2, where r2 is twice
the mean-square of the velocity fluctuations. The quantity br introduces the scale dependence in
the statistics of the velocity increments. It is defined as

br ¼
r

L0

% &h

(47)
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with L0 the integral lengthscale. The particularity of the approach lies in the fact that the exponent
h is a fluctuating quantity. If a constant value h¼ 1/3 is chosen, K41 behavior is recovered. In the
multifractal framework, h is determined by the probability density function

PrðhÞ /
r

L0

! "1$DðhÞ
: (48)

If the unknown function DðhÞ is given (for example by comparison with experimental results), a
complete description of the inertial range statistics of the velocity increments can be obtained.
Multifractal assumptions, namely the existence of the h-exponents, and their respective distribu-
tion functions (Eqs. (47) and (48)) cannot be directly tested on experimental data. Only predicted
statistically averaged quantities, such as structure functions and skewness, can be compared
against data (cf. Ref. 9) and such predictions are found consistent with experiments, as we can see
from the results presented in this article.

An extension to take into account the dissipative effects was proposed by Paladin and Vul-
piani24 and Nelkin.25 Further details on the multi-fractal description, including the expressions for
br and Pr(h), are given in the Appendix.

IV. RESULTS FOR SECOND AND THIRD ORDER QUANTITIES

A. Results in Fourier space

In the following, we will consider three different values of the Reynolds number

Rk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi

15
u2

2

!"

s

: (49)

These values are Rk¼ 380, 2500, and 25 000. The lowest corresponds to a typical Reynolds num-
ber for laboratory experiments in jets or wind-tunnels, the second one to the highest Reynolds
number obtained in wind-tunnel turbulence, i.e., in the Modane windtunnel,26 and Rk¼ 25 000
corresponds to the Reynolds number of large scale atmospheric flows and no controlled experi-
mental results of isotropic turbulence are available. In the following, we will present results for
these Reynolds numbers. All quantities are normalized by Kolmogorov scales, which means that
they are non-dimensionalized by using the variables ! and ". For example, all lengthscales are nor-
malized by g¼ (!3/")1/4. This normalization allows to collapse the dissipation range of the differ-
ent quantities if this range becomes independent of the viscosity. This is the case in the K41
phenomenology. In the presence of intermittency, this is not the case anymore. It will however be
shown in the following that also in that case, the dissipation ranges of the different quantities
nearly collapse in the present range of Reynolds numbers.

In Figure 1, EDQNM results for the energy spectrum is shown for three distinct Taylor-scale
Reynolds numbers. We observe a clear k$5/3 power-law in the log-log representation. However,
when showing the compensated spectra in log-lin representation, it is observed that only at the high-
est Reynolds number, a clear plateau can be discerned. At small k, this plateau drops to zero and at
large k, a viscous bottleneck is observed.

Since we are interested in second and third order quantities in the present work, we also show
the nonlinear transfer. Again, we observe that the asymptotic case, here indicated by a plateau
around zero in between the negative and the positive lobe of the transfer spectrum, is only
observed at the highest Reynolds number.

The energy and transfer spectra computed from the multifractal description are shown in
Fig. 2. The results are shown for relatively low Reynolds numbers (up to Rk¼ 400), since the nu-
merical integration for higher values yielded extremely noisy results in the dissipation range. A
bumpy large-scale behavior is observed in the compensated energy spectra, corresponding to the
ad-hoc modeling of the large scales, as explained in Appendix C. This modeling also causes the
relatively narrow negative peak in the transfer spectrum. In the following, when presenting the

015108-8 Bos et al. Phys. Fluids 24, 015108 (2012)



structure functions, we do not need a smooth behavior for the large-scales and we will, therefore,
not use the ad-hoc modification of the large scales. In the dissipative and near-dissipative ranges,
the spectral quantities (such as power spectrum and nonlinear transfer) obtained from EDQNM
closures and the multifractal formalism is very similar. In the dissipation range, a viscous bottle-
neck is observed in both descriptions.

FIG. 1. (Color online) Results for the energy spectrum computed by the EDQNM model. In the center plot, we show the
compensated spectrum. In the bottom figure, the nonlinear transfer is plotted. All quantities are normalized by Kolmogorov
scales.
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B. Results for structure functions

We used Eqs. (16) and (20) to compute the structure functions from the energy spectra and
transfer spectra shown in Sec. IV A. The results for the second order structure function are shown
in Figure 3. We show the multifractal prediction in the same graph. In the log-log representation,
we clearly observe the smooth r2 small scale behavior and the plateau proportional to the kinetic
energy at large scales. In between a power-law dependence close to r2/3 is observed.

FIG. 2. (Color online) Results for the energy spectrum computed from the multi-fractal description. In the center plot, we
show the compensated spectrum. In the bottom figure, the nonlinear transfer is plotted.
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The multifractal prediction closely resembles the EDQNM result in the dissipation range. The
differences between the two models are more clearly visible in the compensated plot, where we
observe that for Rk¼ 2500, the power-law dependence is clearly steeper than r2/3. The largest dif-
ference is observed at large r. Indeed, the multifractal description does not take into account the
shape of the velocity correlation at large r. This correlation should in a realistic flow smoothly
tend to zero, but this effect is not taken into account in the formalism. Note that we prefer to show
here the results without the ad-hoc modification proposed in Sec. IV A. We further observe that
the structure function computed from EDQNM, as for the energy spectra, does not display a clear
plateau in the compensated representation for Rk< 25 000.

The results for the third-order structure functions are shown in Figure 4. Again, we clearly
observe the smooth small-scale behavior proportional to r3. In this range, the multifractal model
closely follows the EDQNM results. For larger r, a close to linear dependence is observed and at
large scales, the structure-function decreases towards zero. Also here, the multifractal formalism
does not take into account the large scales. In the inertial range, at very large Rk, the third order
structure function should scale as

DLLLðrÞ ¼ $
4

5
!r: (50)

It is observed that this is only reached at the highest Rk for EDQNM and only for a short range of
scales. The multi-fractal results collapse with Eq. (50) already at Rk¼ 380.

FIG. 3. (Color online) The second order longitudinal structure function computed by EDQNM and the multifractal model.
Straight black lines indicate powerlaw behavior proportional to r2 and r2/3, respectively. In the bottom figure, the functions
are compensated according to K41 scaling.
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C. Results for the velocity increment and derivative skewness

In Figure 5 top, we show the velocity increment skewness for different Reynolds numbers. In
the K41 phenomenology, this quantity should give a constant value in the inertial range. It is
observed that the fact that DLLL(r) tends to zero smoothly for large r results in a gently decreasing
function, rather than a constant value.

In the dissipation range, all curves nearly collapse. Only the multifractal approach gives a
slightly higher value than the rest, since the velocity derivative skewness is a function of Rk, as
will be shown later, in Figure 6. At large scales, the multifractal result closely follows the high-
Reynolds EDQNM result up to the cut-off of the multi-fractal result.

In the center and top graph of Figure 5, we compare the results also with experimental results.
At Rk¼ 380, we compare with hot-wire measurements in an air-jet experiment.27 At small scales,
the experimental value is significantly larger than the theoretical results. At these scales, the accu-
racy of the hot-wire probe decreases however. In the inertial range, the multi-fractal approach is
very close to the experimental value. The EDQNM curve drops much faster to zero. Inhomogene-
ity and anisotropy of the experimental turbulent field could be behind this discrepancy.

At Rk¼ 2500, a comparison is made with the velocity increment skewness measured in the
return-channel of the ONERA wind-tunnel in Modane. The Reynolds number obtained in these
experiments is one of the highest measured in wind-tunnel turbulence. Unfortunately, at large
scales, the third-order statistics are not fully converged so that no smooth curve is available there.
However, the general trend of the curves is quite similar at all scales. A surprising fact is here the

FIG. 4. (Color online) The third order longitudinal structure function computed by EDQNM and the multifractal model.
Straight black lines indicate powerlaw behavior proportional to r3 and r1, respectively. In the bottom figure, the functions
are compensated according to K41 scaling. The asymptotic result 4/5 is indicated by a dashed line.
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power-law that is observed in the inertial range of both the multifractal result and the EDQNM
result. Indeed, in the multifractal approach, this power-law is a signature of inertial-range intermit-
tency and the model is developed to take this into account. In the EDQNM approach, however,
this power-law is a transient effect, due to the finite-Reynolds number. In EDQNM, this power-
law vanishes thus at high Reynolds number.

FIG. 5. (Color online) Comparison of the longitudinal velocity increment skewness between EDQNM and the multifractal
approach. In the center figure, results are compared to air-jet results. In the bottom plot, the results are compared to high-
Reynolds number wind-tunnel experiments. The straight black line indicates a powerlaw proportional to r!0.04.
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In Figure 6, we show the Reynolds number dependency of the longitudinal velocity derivative
skewness, as computed by Eq. (34). The quantitative prediction of the derivative skewness is a
severe test for a model, since S(0) depends on the precise shape of the far dissipation range, as can
be seen from Eq. (36). We see that for EDQNM, this quantity saturates for Rk> 100 at a value
around 0.4. In the multifractal approach, this quantity follows a power-law of the Reynolds num-
ber (see Eqs. (C7) and (C9)) with an exponent around 0.13. Also shown are the results of direct
numerical simulations28,29 and experimental results as compiled in Ref. 30. The DNS results show
a slightly increasing trend from 0.4 to 0.6 for a Reynolds number going from 10 to 1000. The ex-
perimental results, corresponding to a variety of different flow types, show a larger scatter, with a
trend from 0.3 to 0.7 for a Reynolds number going from 20 to 104. We can conclude that the skew-
ness of the longitudinal velocity derivatives depends only weakly on the Reynolds number. Taking
into account the scatter observed in the empirical data, this dependence is consistent with the mul-
tifractal prediction. More work is needed to refine the formalism if one wants to obtain more pre-
cise quantitative agreement with the experimental values of S(0). Specially designed experiments
could help to improve the data at very high Reynolds numbers that could confirm or infirm the
predictions of MF or EDQNM at very high Reynolds numbers.

D. Influence of large-scale forcing

To conclude this results section, we address the influence of a large scale forcing on the scal-
ing of the velocity increment skewness. Indeed, in experiments of nearly isotropic turbulence, we
often consider a turbulence generated by a grid, advected by a mean velocity. This corresponds in
the frame moving with the mean flow, to freely decaying turbulence. Direct numerical simulations
of isotropic turbulence are often forced at the large scales in order to obtain a Reynolds number
that is as high as possible. The difference between the two types of turbulent flows is important.
For example in Ref. 31, it was shown that the normalized dissipation rate is nearly twice as high
in decaying turbulence as it is in forced turbulence. Also for the appearance of scaling ranges, this
difference can be important. The difference between decaying and forced turbulence in approach-
ing the asymptotic form of the third-order structure function was reported in Ref. 32. In Figure 7,
we show how the inertial range scaling of the energy spectrum improves when considering statisti-
cally stationary forced turbulence at the same Reynolds number. We observe the appearance of a
large peak in the spectrum, corresponding to the forcing. We also observe that the compensated
energy spectra display a clear scaling range, already at a Reynolds number of Rk¼ 380. The
velocity-increment skewness of these forced calculations shows however no clear plateau at this
Reynolds number, but its inertial range behavior follows closely the Rk¼ 2500 decaying turbu-
lence result.

We determined the power-law exponents in the inertial range of the velocity-increment skew-
ness for the six curves in Figure 7. The exponents "n were obtained by multiplying the results for
the velocity-increment skewness with rn and choosing the n for which an intermediate plateau was
observed. In Figure 8, the results are displayed. We recall that the exponent which is given by the
multifractal formalism is approximately 0.04. We clearly see that in the EDQNM computations,

FIG. 6. (Color online) The velocity derivative skewness as a function of the Reynolds numbers for EDQNM and MF. Also
shown are DNS results from Refs. 28 and 29 and experimental results from Ref. 30.
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the exponent tends to zero for very high Reynolds numbers and that the correction is larger for
decaying turbulence. It is clear from this figure that Reynolds numbers of at least order 103 are
needed in order to have Reynolds number corrections which become of the order of the intermit-
tency corrections. At lower Reynolds numbers, the finite Reynolds number corrections are larger
than the intermittency corrections. For decaying turbulence, the Reynolds number needs to be
even larger to distinguish the intermittency corrections.

FIG. 7. (Color online) The influence of a large scale forcing on scaling are illustrated for the energy spectrum and the ve-
locity increment skewness. The black-dotted lines correspond to forced turbulence at the same Reynolds number as the
decaying cases considered.

FIG. 8. (Color online) Power-law exponents in the inertial range of the velocity-increment skewness computed by the
EDQNM model as a function of the Reynolds number.
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V. CONCLUSION

In the present work, we computed second and third order structure functions from EDQNM
results. We compared these structure functions with results from the multifractal formalism. It
was shown that in the near dissipation range, the different approaches give very similar results. It
was shown that the appearance of asymptotic scaling ranges is very slow for the structure func-
tions as was also observed in previous work.16,17

The results for the velocity increment skewness were also compared to experimental results.
It was shown that the intermittency correction to this quantity given by the multifractal model
almost collapsed with the scaling-correction induced by the finiteness of the Reynolds number in
the EDQNM simulations. In particular at a Reynolds of Rk¼ 2500, the two corrections almost
coincide. This shows that at Reynolds numbers currently achievable in controlled experiments and
simulations, intermittency corrections to the skewness can not be distinguished from low Reynolds
number effects. An interesting perspective is to investigate to what extent intermittency correc-
tions to higher-order quantities such as the flatness can be distinguished from Reynolds number
effects (see e.g., Ref. 33). This task is within the framework of closure-theory far from trivial and
will be left for future work.

APPENDIX A: RELATION BETWEEN SECOND ORDER STRUCTURE FUNCTION
AND THE ENERGY SPECTRUM

We will give here a detailed derivation of the relation between second order structure func-
tions and the kinetic energy spectrum. Parts of this derivation can be found in different textbooks,
but we think it is useful for the interested reader to give all the details in this work.

Starting from Eq. (14), homogeneity allows to write

DLLðrÞ ¼ 2 u2
L $ uLu0L

! "
(A1)

¼ 2
rirj

r2
uiuj $ uiu0j

! "
: (A2)

Using the inverse Fourier transform and Eq. (9), we can relate this to the energy spectrum

DLLðrÞ ¼ 2
rirj

r2
uiuj $

ð
uiðkÞujð$kÞeik%rdk

$ %
(A3)

¼
rirj

r2
uiuj $

ð
PijðkÞ
4pk2

EðkÞeik%rdk

$ %
: (A4)

Defining /, the angle between k and r, we find

rirj

r2
PijðkÞ ¼ ð1$ cos2 /Þ: (A5)

Also, in isotropic turbulence, the Reynolds stress tensor takes the form,

uiuj ¼ u2dij; u2 ¼ 2

3

ð
EðkÞdk; (A6)

so that, introducing conveniently oriented spherical coordinates, we write,

DLLðrÞ ¼ 2u2 $ 2

ð ð1$ cos2 /Þ
4pk2

EðkÞeik%r2pk2 sin /d/dk

¼
ð

EðkÞ 4

3
$
ð
ð1$ cos2 /Þeik%r sin /d/

& '
dk: (A7)
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The integral over / can be performed analytically by introducing f¼ cos / and x¼ kr

ðp

0

ð1# cos2 /Þ sin /eikr cos /d/ ¼
ð1

#1

ð1# f2Þeixfdf ¼ 1þ @2

@x2

" #ð1

#1

eixfdf

¼ 1þ @2

@x2

" #
eix # e#ix

ix
¼ 2 1þ @2

@x2

" #
sin x

x

¼ 4
sin x

x3
# cos x

x2

" #
; (A8)

yielding

DLLðrÞ ¼ 4

ð
EðkÞ 1

3
# sinðkrÞ # ðkrÞ cosðkrÞ

ðkrÞ3

" #

dk: (A9)

APPENDIX B: RELATION BETWEEN THIRD ORDER STRUCTURE FUNCTION
AND THE ENERGY TRANSFER SPECTRUM

The Fourier transform of uLu0 2L with respect to r is

FTr uLu0 2L

h i
¼ (B1)

¼ uLðkÞu2
Lð#kÞ (B2)

¼ uLðkÞ
ðð

uLðpÞuLðqÞdð#k # p# qÞdpdq (B3)

¼
ðð

uLðkÞuLðpÞuLðqÞdðk þ pþ qÞdpdq (B4)

¼
rirjrm

r3

ðð
uiðkÞujðpÞumðqÞdðk þ pþ qÞdpdq (B5)

¼
rirjrm

r3
TijmðkÞ: (B6)

Analogously, we find

FTr u2
Lu0L

h i
¼

rirjrm

r3
T&ijmðkÞ: (B7)

So that

DLLLðrÞ ¼ 3
rirjrm

r3

ð
TijmðkÞ # T&ijmðkÞ
$ %

eik'rdk: (B8)

It is clear from the definitions (12) and (13) that (Tijm kð Þ # T&ijm kð Þ is a third order tensor, symmet-
ric in the indices j and m and solenoidal in the index i, so that, its general form is

TijmðkÞ # T&ijmðkÞ ¼ T ðkÞPijmðkÞ: (B9)

After multiplication of both sides by Pijm(k), one finds

T ðkÞ ¼
PijmðkÞ

4k2
TijmðkÞ # T&ijmðkÞ
$ %

¼ TðkÞ
4ipk4

: (B10)

We substitute this in Eq. (B8),
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DLLLðrÞ ¼ 3
rirjrm

r3

ð
TðkÞ
4ipk4

PijmðkÞeik$rdk: (B11)

Defining /, the angle between k and r, we find that

rirjrm

r3
PijmðkÞ ¼ 2k cos /ð1% cos2 /Þ (B12)

and thus

DLLLðrÞ ¼ 6

ð
cos/ð1% cos2 /Þ TðkÞ

4ipk3
eik$rdk: (B13)

Introducing again conveniently oriented spherical coordinates, we write this as

DLLLðrÞ ¼ 6

ð1

0

ðp

0

cos/ð1% cos2 /Þ TðkÞ
4ipk3

eik$r & 2pk2 sin /d/dk (B14)

¼ %3i

ð1

0

TðkÞ
k

ðp

0

cos/ð1% cos2 /Þeik$r & sin /d/dk: (B15)

As for DLL(r), the integral over / can be performed analytically by introducing f¼ cos / and
x¼ kr

ðp

0

cos/ð1% cos2 /Þ sin /eikr cos /d/ ¼
ð1

%1

fð1% f2Þeixfdf

¼ %2i
2 sin x

x2
þ 6 cos x

x3
% 6 sin x

x4

" #
; (B16)

yielding

DLLLðrÞ ¼ 12r

ð1

0

TðkÞ 3 sin kr % kr cos krð Þ % ðkrÞ2 sin kr

ðkrÞ5
dk: (B17)

APPENDIX C: THE MULTIFRACTAL DESCRIPTION

The multifractal formalism can be seen as a probabilistic interpretation of the averaged behav-
ior of velocity structure functions. More precisely, for a scale r in the inertial range, using both the
standard arguments of the multifractal formalism9 and the probabilistic formulation of Castaing,34

the velocity increment duL(x,r)¼ uL(xþ r)% uL(x) can be represented by the product of two inde-
pendent random variables, duL(x,r)¼brn, with n a zero average Gaussian random variable of var-
iance r2¼ h[duL(x,L0)]2i, where L0 is the integral length scale and a stochastic variance br ¼ ð r

L0
Þh

where the exponent h fluctuates itself according to the law PrðhÞ / ð r
L0
Þ1%DðhÞ. This gives a com-

plete one-point probabilistic description (including structure functions and probability density
functions) of the velocity increments in the inertial range given by an empirical function DðhÞ.
This function is both scale and Reynolds number independent and is called the singularity spec-
trum in the inviscid limit. Paladin and Vulpiani24 and Nelkin25 then proposed a natural extension
to the dissipative scales and the respective description of the velocity gradients. This adds to the
description, a Reynolds dependence through the fluctuating nature of the dissipative scale
gðhÞ ¼ L0ðRe=R(Þ%1=ðhþ1Þ, where Re ¼ rL0=! and R( ¼ 52 a universal constant related to the
Kolmogorov constant.27 The relation between this Reynolds number and the Taylor-scale Reyn-
olds number is

Re ¼
4

R(
R2

k: (C1)
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Let us remark that in a K41 framework, the variable h¼ 1/3 is unique and does not fluctuate and
one recovers the classical Kolmogorov prediction gK ¼ gðh ¼ 1=3Þ ¼ L0ðRe=R$Þ%3=4.

Meneveau35 proposed an elegant interpolation formula between the inertial range and the far
dissipative range. Following these works, Ref. 27 proposed a probabilistic formulation of velocity
increments that covers the entire range of scales. The expressions for br and PrðhÞ in this descrip-
tion are

br ¼

r

L0

! "h

1þ r

gðhÞ

! "%2
" #ð1%hÞ=2

(C2)

and

PrðhÞ ¼
1

ZðrÞ

r

L0

! "1%DðhÞ

1þ r

gðhÞ

! "%2
" #ðDðhÞ%1Þ=2

; (C3)

where ZðrÞ is a normalization factor such that
Ð hmax

hmin
PrðhÞdh ¼ 1. We will take hmin¼ 0 and

hmax¼ 1. Given the parameters of the flow, namely L0, the large scale variance r2 and Re, this
description requires one additional free parameter R$ and a parameter function DðhÞ that can be
measured from empirical data. We will takeR$ ¼ 52 and a parabolic approximation for the singu-
larity spectrum DðhÞ ¼ 1% ðh%c1Þ2

2c2
. The so-called intermittency coefficient has been estimated

from data to be c2¼ 0.025.27 The remaining parameter c1 is chosen such that, in the inertial range,
the third order structure function h|duL|3i is proportional to the scale r. This gives c1 ¼ 1

3þ
3
2c2.

The proposed description has been shown to accurately describe the symmetric part of the ve-
locity increments probability density functions and even order structure functions. In particular,
using Eqs. (C2) and (C3), even order structure functions are given by the following integral

h½duLðx; rÞ(2qi ¼ hn2qi
ðhmax

hmin

b2q
r PrðhÞdh; (C4)

with hn2qi ¼ r2qð2qÞ!
q!2q . Furthermore, one can show27 that the mean dissipation

h!i ¼ 15"hð@xuÞ2i ¼ 15" lim
r!0

hðduLÞ2qi
r2

) r3

L0

15

R$
(C5)

is independent on the Reynolds number. Since the Gaussian noise n is independent on the fluctuat-
ing exponent h, odd order structure functions vanish. Some modifications of the noise n have been
proposed in Refs. 27 and 34 in order to take into account a non-zero skewness. Nevertheless, with-
out any additional free parameters, the Karman-Howarth-Kolmogorov equation

hðduLÞ3i ¼ %
4

5
h!ir þ 6"

dhðduLÞ2i
dr

(C6)

gives a prediction for the third order moment h(duL)3i, and thus the skewness, knowing only the
second order one. This study was carried out and compared against experimental data in Ref. 27.
As a final remark, we would like to add that such an approach allows to give a prediction for the
third order moment of velocity gradients, i.e.,

hð@xuÞ3i ¼ % 6"r2

L4

"
2

Zð0Þ

ðhmax

hmin

2h% 1%DðhÞ½ ( gðhÞ
L

! "2ðh%2Þþ1%DðhÞ
dhþ F

#

; (C7)
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where F is a negligible additive term, coming from the Taylor’s development of the normalization
factor ZðrÞ, and given in Ref. 27. Using Eq. (C7), a steepest-descent calculation shows that the
skewness of the derivatives behaves as a power law of the Reynolds number, i.e., #Sð0Þ $ Rv#1

e
with

v ¼ min
h
# 2ðh# 2Þ þ 1#DðhÞ

hþ 1

! "
# 3

2
min

h
# 2ðh# 1Þ þ 1#DðhÞ

hþ 1

! "
: (C8)

Using a quadratic approximation for the parameter function D and c2¼ 0.025, one gets

# Sð0Þ $ R0:067
e : (C9)

These result were already obtained by Nelkin25 using a different, although related, approach,
based on the asymptotically exact relationship hð@xuÞ3i ¼ #2!hð@2

x uÞ2i.
Finally, we need to discuss the behaviour of the multifractal description at scales of the order

of the integral length scale L0. At this stage, the proposed formalism (Eqs. (C2) and (C3)) is valid
only in the limit r ' L0, such that the integrals correspond to their steepest-descent values. The
multifractal description describes hereby an asymptotic state in which the influence of the decay
of the turbulence or the energy-input mechanism is not taken into account. The inertial range starts
directly at the integral scale. Second order structure functions do, therefore, not smoothly tend to a
constant value around L0 and the third-order structure function does not tend to zero. The present
work is not devoted to an extension of the description to take into account explicitly the large
scales. However, in order to compute the energy and transfer spectra from structure functions
through the relations (18) and (22), we need a smooth behavior around the large scales for the inte-
grals to converge. For this reason, we propose an ad-hoc modification of the multifractal descrip-
tion. First, we use br¼ 1 (i.e., independent on h and non fluctuating) and PðhÞ uniform for r( L.
This is equivalent to a Gaussian modeling of the velocity increments, with a scale independent
variance. Unfortunately, this description is not continuous (because of the dissipative corrections).
Moreover, one has to extend the validity of the Karman-Howarth-Kolmogorov Eq. (C6) itself in
order to get a realistic behaviour of the third order moment at large scales. In order to get a contin-
uous and differentiable in scale description of the velocity increments, we propose to replace the
scale r entering Eqs. (C2) and (C3) by the ersatz r0¼L0 tanh (r/L0). The hyperbolic tangent allows
a smooth transition to r0¼ r for r ' L0 and r0¼L0 for r ) L0. Still, this does not fix the unrealis-
tic behavior of Eq. (C6) at large scales. Thus, the prediction of h[du(x,r0)]3i obtained from Eq.
(C6) using the ersatz r0 is furthermore multiplied by a large-scale cutoff of the form
exp #r02= 2L2

0

# $# $
. We stress again that this approach is completely ad-hoc and only used in order

to allow computation of wave-number spectra.
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