

International Conference on Grid computing, high-performAnce and Distributed Applications GADA'07

November 29-30, 2007 - Vilamoura, Algarve, Portugal

SNMP-based Monitoring Agents and Heuristic Scheduling for Large-scale Grids

Edgar Magaña¹⁻², Laurent Lefèvre³, Masum Hasan¹, and Joan Serrat²

¹ Cisco Systems, Inc. emagana, masum@cisco.com

³ INRIA RESO / Université de Lyon LIP UMR 5668 (CNRS, ENS Lyon, INRIA, UCB), France

laurent.lefevre@inria.fr

² Universitat Politècnica de Catalunya serrat@tsc.upc.edu

- Introduction
- Grid Resource Management (GRM)
- Policy-based Grid Management Architecture
- SBLOMARS Monitoring Agents Approach
- BLOMERS Heuristic Scheduler Approach
- Grid5000 Experiments
- Conclusions and Future Work

Introduction (I)

Grid Computing Definition:

- "Grid is an interconnected collections of geographically distributed and heterogeneous hardware and software infrastructure that provides dependable, consistent, pervasive, and inexpensive access to high-end computational capabilities". [Foster_Grid2]
- -Grid Systems has to fulfill following three points:
 - » Coordinates Resources that are not under centralized management.
 - » Uses standard, open, generic protocols and interfaces.
 - » Provides non-trivial Quality of Services (QoS).

Introduction (II)

Grid Computing Tendencies:

- Grid Services should be provided to users regardless of network technology, administrative domain or operative platform (Heterogeneity).
- Effective access to large amount of computing, network and storage resources, reducing procurement, deployment, maintenance and operational cost.
- Network Performance: Fault-tolerance, Scalability and Flexibility.

- Introduction
- Grid Resource Management (GRM)
- Policy-based Grid Management Architecture
- SBLOMARS Monitoring Agents Approach
- BLOMERS Heuristic Scheduler Approach
- Grid5000 Experiments
- Conclusions and Future Work

Grid Resource Management (I)

Definition

It is the ability to discover, allocate, negotiate, monitor, and manage the use of network-accessible capabilities in order to achieve various end-to-end or global qualities of service*.

^{*}J. Nabrzyski, J. M. Schopf and J. Weglarz, "Grid Resource Management State of the Art and Future Trends" Kluwer Academic Publishers. Boston, USA October 2003. ISBN 1-4020-7575-8.

Grid Resource Management (II)

Main Activities:

- GRM is regarded as a vital component of the Grid infrastructure.
- It coordinates and shares multiple kinds of resources efficiently.
- GRM must fulfill strict functional requirements from heterogeneous, and sometimes conflicting, domains (e.g., the users', applications and networks domains).
- It must adhere to non-functional requirements that are also rigid, such as reliability and efficiency in terms of time consumption and load on the host nodes.

Grid Resource Management (III)

Therefore...

GRM is a very challenging issue. Where, several project are proposing their approaches:

Integrated Services Architecture

Grid Resource Management (IV)

Remaining Problems:

- Swift and dynamic allocation and reservation of computational resources.
- **Algorithms** to find available resource.
- Reduce resources analysis and scheduling times. (Makespan)
- Dynamic resources discovery and analysis.
- Makespan is normally reduced but Load
 Balancing is not taking into account.
- Allocation of network resources per service.

Divide and Conquer

Grid Resource Management (V)

Three Grid Management Phases:

Resource Discovery and Monitoring (SBLOMARS)

- Which resources are available to a given user
- Selecting resource source to search in more detail
- Filtering out resources that do not meet the minimal job requirements

Resource Scheduling (BLOMERS)

- Given a group of possible resources must be selected on which to schedule the job
- Algorithms for scheduling should be applied
- Load Balanced techniques should be take into account
- Setting up times also have to be considered

Job Allocation and Execution (PbGRMA)

- Job submission through simple commands or policies
- Monitoring progress and evaluation of the performance
- Notification to users when jobs have done
- Cleaning up any temporal information on the server side

- Introduction
- Grid Resource Management
- Policy-based Grid Management Architecture
- SBLOMARS Monitoring Agents Approach
- BLOMERS Heuristic Scheduler Approach
- Grid5000 Experiments
- Conclusions
- Ongoing and Future Work

Policy-based Grid Management Architecture

Policy-based Grid Management Architecture*

Features:

- We obtain a gorgeous synergy by coupling Policy-based Technology and SNMP-based Agents and Genetic Algorithms.
- Simplifies Grid Services deployment and management
- Support for dynamic, reconfigurable on demand, secure and highly customizable computing storage and networking environments
- Dynamic extensibility and flexibility of the architecture
- Deployment and Activation of Grid services in all planes

^{*}E. Magaña, L. Lefevre and J. Serrat. "Autonomic Management Architecture for Flexible Grid Services Deployment Based on Policies". ARCS'07, Zurich, Switzerland. 2007.

- Introduction
- Grid Resource Management (GRM)
- Policy-based Grid Management Architecture
- SBLOMARS Monitoring Agents Approach
- BLOMERS Heuristic Scheduler Approach
- Grid5000 Experiments
- Conclusions and Future Work

SBLOMARS Monitoring Agents Approach (I)

Definition and Features:

- SNMP-based Balanced Load Monitoring Agents for Resource Scheduling
- It is a pure decentralized monitoring system in charge of permanently capturing computational resource performance based on autonomous distributed agents.
- it integrates SNMP technology and thus, offers an alternative solution to handle heterogeneous resources.
- it implements complex dynamic software structures, which are used to monitor from simple personal computers to robust multiprocessor systems or clusters with even multiple hard disks and storage partitions.
- It distributes the monitoring activities into a set of sub-monitoring instances which are specific per each kind of computational resource to monitor (processor, memory, software, network and storage)

SBLOMARS Monitoring Agents Approach (I)

SBLOMARS Monitoring Agents Approach (I)

Data Structures:

XML Reports "Storage"

```
<?xml version="1.0" encoding="UTF-8" ?>
<!-- Edited with Agent BLOMERSXML v1.0 ...
<!-- Monitoring Resources Service xmlns:xsi= ...
<Monitoring_Storage_Available_Information>
 <Device_Type>Storage/Device_Type>
 <Number of Elements>3</Number of Elements>
  <Storage Device>
  <Label>C:\ Label: Serial Number f010b634</Label>
  <Space_Total>21476171776/Space_Total>
  <Space_Available>6833168384/Space_Available>
  <Space Used>14643003392/Space Used>
  <Space Used Percent>68</Space Used Percent>
  </Storage Device>
 <Storage Device>
  <Label>G:\ Label:Disco local Serial Number 302e</Label>
  <Space_Total>10733957120</Space_Total>
  <Space_Available>3095842816/Space_Available>
  <Space Used>7638114304/Space Used>
  <Space Used Percent>71/Space Used Percent>
  </Storage Device>
 <Storage Device>
  <Label>H:\ Label:SHARED Serial Number 48f893</Label>
  <Space Total>34290843648/Space Total>
  <Space_Available>13172244480
  <Space Used>21118599168/Space Used>
  <Space_Used_Percent>61</Space_Used_Percent>
 </Storage_Device>
</Monitoring_Storage_Available_Information>
```

Dynamic Software Structures - "Storage"

```
[0] → "Number of Element"
   [0] → Element ID (String)
   [1] → Total Space Available (Long – Bytes)
   [2] → Total Space Free (Long – Bytes)
   [3] → Total Space Used (Long – Bytes)
   [4] → Total Space Used Percentage (Long – Bytes)
   [5] \rightarrow \dots (Available when it could be requiered)
[1] → "Number of Element"
   [0] → Element ID (String)
   [1] → Total Space Available (Long – Bytes)
   [2] → Total Space Free (Long – Bytes)
   [3] → Total Space Used (Long – Bytes)
   [4] → Total Space Used Percentage (Long – Bytes)
   [5] \rightarrow \dots (Available when it could be requiered)
[N] \rightarrow (As long as the number of resource elements)
```

exits on the monitored node)

SBLOMARS Monitoring Agents Approach (II)

Graphical User Interface:

Grid 5000 CPU Resource Performance Monitoring by SBLOMARS

- Introduction
- Grid Resource Management (GRM)
- Policy-based Grid Management Architecture
- SBLOMARS Monitoring Agents Approach
- BLOMERS Heuristic Scheduler Approach
- Grid5000 Experiments
- Conclusions and Future Work

BLOMERS Heuristic Scheduler Approach (III)

Definition and Activities:

- Balanced Load Multi-Constrain Resource Scheduler (BLOMERS)
- This scheduler makes use of the statistical resource availability information generated by SBLOMARS agents.
- This procedure examines the set of available resources, generates a number of candidates and evaluates the candidate resources to select a final subset to be allocated and communicates the results.
- Every resource (not node) is assigned an ID which is the reference to generate new populations in our approach.
- The reference ID is taken in its binary representation to perform "Mutation and Crossover" operations.

BLOMERS Heuristic Scheduler Approach (IV)

Pseudo Code:

```
CleaningBuffer (Pk)
Initialize (k, Pk);
Evaluate (Pk);
Do

{
   Select_Resource_Candidates (Pk);
   Crossover (Pk);
    If Evaluate(Pk+1) == Minimal Constraints;
        Ends Do-While;
    ELSE
        Mutation(Pk+1);
    If Evaluate(Pk+2) == Minimal Constraints;
        Ends Do-While;
    }
Deliver (k_solution);
```

Where:

(**Pk**) Is the selected Population (set of resources)

(**k**) Is one kind of resource (memory, storage, etc.)

BLOMERS Heuristic Scheduler Approach (V)

Crossover:

CHROMOSOME

Storage $0 \rightarrow ID$ 24: 147.83.106.199:6400 Parent 1 0000 0110 00

Storage 1 → ID 45: 147.83.106.167:6401 Parent 2 0000 1100 01

CHROMOSOME

Storage_1 → ID_25: 147.83.106.199:6401 Child 1 0000 0110 **01**

Storage $0 \rightarrow ID_44: 147.83.106.167:6400$ Child 2 0000 1100 00

Mutation:

Storage_1 → ID_25: 147.83.106.199:6401

Parent 1

CHROMOSOME

0000 0110 01

Child 1 Storage N \rightarrow ID 57: 147.83.206.199:6401 0000 1110 01

- Introduction
- Grid Resource Management (GRM)
- Policy-based Grid Management Architecture
- SBLOMARS Monitoring Agents Approach
- BLOMERS Heuristic Scheduler Approach
- Grid5000 Experiments
- Conclusions and Future Work

SBLOMARS and BLOMERS Approach (I)

General Scenario:

Grid5000 Experiments (I)

SBLOMARS PERFORMANCE:

Twenty-four Hours CPU Usage

Sixty Seconds CPU Usage

Forty-eight Hours Memory Usage

Grid5000 Experiments (II)

SBLOMARS FLEXIBILITY:

Fix Timing between SNMP Traps

Auto-configuration between SNMP Traps

Grid5000 Experiments (III)

SBLOMARS SCALABILITY:

SBLOMARS Configuration Time

SBLOMARS Starting Time

SBLOMARS Responding Time

Grid5000 Experiments (IV)

- Grid5000: 4000 CPUs/cores on 10 sites around 10Gbit/s networks.
 Heterogeneous architectures. http://www.grid5000.fr
- The total amount of nodes performing this experiment were 115.
- Every node was running a processor generator application to simulate processor load.
- Each scheduling algorithm was working along 120 minutes (2hrs) receiving 30 jobs every 60 seconds. On every node were also running a background processes generator. It was running randomly for the whole experiment (6hrs)
- Round-robin: This algorithm schedules every job received to the next available node from a list of nodes available.
- Least Used: This algorithm schedules based on the average of the least used node.

http://nmg.upc.es/~emagana/sblomars/grid5000.html

Grid5000 Experiments (v)

Grid 5000 CPU Resource Performance Monitoring by SBLOMARS

- Introduction
- Grid Resource Management (GRM)
- Policy-based Grid Management Architecture
- SBLOMARS Monitoring Agents Approach
- BLOMERS Heuristic Scheduler Approach
- Grid5000 Experiments
- Conclusions and Future Work

Conclusions and Future Work

- BLOMERS implements a Genetic Algorithm, which it offers a parallelism to multi-constraint service requests avoiding to be enclosed into a local minima.
- It improves resource load-balancing and reduces the makespan in any scheduling.
- BLOMERS is a scalable system based on a distributed agents design and its flexibility allows it to handle heterogeneous devices.
- It is able to schedule large numbers of services in real scenarios, such as Grid5000 testbed.
- Current evaluation results do not include yet, the effect of network latency and other communication impairments.
- We are including network performance between end-to-end edge routers as an entry parameter for our genetic algorithm. Resources with high latencies or jitter will be taken into account.

Questions?

Laurent Lefèvre

http://perso.ens-lyon.fr/laurent.lefevre laurent.lefevre@inria.fr

Edgar Magaña

http://nmg.upc.es/~emagana/ emagana@cisco.com emagana@nmg.upc.edu

http://nmg.upc.es/~emagana/sblomars/grid5000.html