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Energy consumption is one of the main limiting factors for designing and deploying ultrascale

systems. Therefore, this paper presents challenges and trends associated with energy efficiency for

ultrascale systems based on current activities of the working group on ”Energy Efficiency” in

the European COST Action Nesus IC1305. The analysis contains major areas that are related to

studies of energy efficiency in ultrascale systems: heterogeneous and low power hardware architec-

tures, power monitoring at large scale, modeling and simulation of ultrascale systems, energy-aware

scheduling and resource management, and energy-efficient application design.

Keywords: energy and power measurement, data acquisition tools, energy modeling, scheduling,

applications, heterogeneous infrastructures, ultrascale computing.

Introduction

Energy consumption is one of the main limiting factors for designing and deploying Ultra-

scale systems. While energy monitoring and reporting combined with energy efficient design of

applications and frameworks is currently explored and can be reachable at small scale, dealing

with such concepts at ultra large scale is an open issue. Extracted from activities in working

group on ”Energy Efficiency” in the European COST Action Nesus IC130510, this article will

present current activities, challenges and trends associated with energy efficiency for ultra scale

systems.

Reaching levels of efficiency that are sufficient for ultrascale systems requires advances in

several relevant areas as illustrated in fig. 1. First of all the reduction of power usage need to

reach ultra scales is not possible without disruptive innovations in hardware. In particular, the

use of new low power Systems on Chips (SoCs) and exploiting heterogeneity on various levels

are promising trends. However, changes in hardware alone are not enough without proper as-

signment of applications to hardware and without optimising applications to take full advantage

of hardware architectures. For instance, the use of hardware accelerators while improving effi-

ciency usually requires specific implementation. Another important aspect needed to improve

energy efficiency is accurate and real time power monitoring which can be a challenge in ultra

scale systems per se. Monitoring and knowledge about hardware architecture and application

characteristics must be applied by scheduling and resource-management techniques that are
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moving from pure performance goals to energy consumption and thermal issues. For all these

areas modeling and simulation techniques are needed to analyse energy efficiency of hardware,

applications and whole computing systems at ultrascale level. On top of these areas the gen-

eral challenge is to integrate advances from all of them and to take a holistic approach to the

energy-efficiency analysis and management of ultrascale systems. For example this approach

should study software-hardware co-design or dependencies between IT systems components and

infrastructure (including thermal management, cooling, and appropriate metrics for assessment

of energy-efficiency). Other emerging areas of research include multi data centre management,

taking into consideration energy availability and price, and environmental issues.

Figure 1. Major areas that affect the analysis of energy efficiency in ultrascale systems

This paper concentrates on activities related to energy efficiency of ultrascale systems being

conducted within the Nesus project. Other surveys that deal with energy-efficiency in certain

areas of data centres include energy efficiency in cloud computing [60], large scale distributed

systems [63], and data centres [24].

Section 1 describes recent innovations at infrastructure level. Section 2 presents power and

energy monitoring devices and frameworks for distributed systems and associated challenges

on ultrascale. Section 3 addresses energy modeling and simulation while section 4 focuses on

resource management and scheduling. Section 5 explores challenges in designing energy efficient

large scale applications. The final section concludes this article.

1. Heterogeneous infrastructures : a key for energy efficiency

at ultrascale level

Up to now, most HPC systems are built on general purpose multi-core processors that

use the x86 and Power instruction sets (both to ensure backward productivity and enhance

programmers productivity). They are mainly provided by three vendors: Intel (around 85.8%

of the systems listed in the latest Top500 list11) and AMD (5.6%) for x86-64 bits CPUs and

IBM (7.8%) for the RISC Power Architecture used by IBM POWER microprocessors. While

initially designed to target the workstation and laptop market, these processors admittedly offer

very good single-thread performance (for instance 16 double-precision Floating-Point Operations

11Top500 List of November 2014 – http://top500.org
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per seconds (FLOPs) per cycle for Intel Nehalem), yet at the price of a relative low energy

efficiency. For instance, tab. 1 details the Thermal Design Power (TDP) of the top four processors

technologies present in the latest Top500 list.

Table 1. TDP of the main processors technologies present in the Top500 List (Nov. 2014)

Processor Technology Top500 Count Model Example max. TDP

Intel Sandybridge 231 (46.2%) Xeon E5-2680 8C 2.7GHz 130W 16.25W/core

IBM Power BQC 25 (5%) Power BQC 16C 1.6GHz 65W 4.1W/core

AMD x86 64 12 (2.4%) Opteron 6200 16C ”Interlagos” 115W 7.2W/core

In parallel, the main challenge opened to the HPC community remains the building an Ex-

ascale HPC system by 2020 while staying within a power budget of around 20 MW. As current

measures within a typical blade server estimate that 32.5% of its supplied power are distributed

to the processor, some simple arithmetic permit to estimate the average consumption per core in

such an EFlops system: around 6.4 MW would be dedicated to the computing elements, and we

can quantify their number by dividing the target computing capacity (1 EFlops) by the one of

the current computing cores (16 GFlops) thus leading to approximately 62.5×106 cores within

an Exascale system. Consequently, such a platform requires a maximal power consumption of

0.1W per core. In order to achieve this ambitious goal, alternative low power processor ar-

chitectures are required. In this context, two main directions are currently explored: (1) relying

on accelerators and co-processors (either General-Purpose Graphics Processing Unit (GPGPU)

such as the Nvidia Tesla cards, or Many Integrated Coress (MICs) e.g. Intel Xeon Phi) or

(2) using the low-power processors (ARM, Intel Atom etc.) primarily designed for the mobile

and embedded devices market. In parallel, the Cloud Computing (CC) paradigm has emerged

as a promising approach to consolidate in a cost-effective way existing computing platforms

so that many companies and researchers are engaged in efforts of scaling system software to

meet the requirements of diversifying on-line cloud applications and services. Therefore future

Ultrascale Computing Systems (UCSs) are envisioned as hybrid systems composed of heteroge-

neous resources and platforms ranging from ”traditional” High Performance Computing (HPC)

systems, CC infrastructures and ultra low-power computing systems. Another reason for this

tendency toward an heterogeneous design is that there is no single approach which is optimal for

all computing needs. Heterogeneous computing has become a necessity as it embodies the use of

multiple approaches to computational processing (CPUs, GPUs, FPGAs, etc.) to achieve supe-

rior throughput for each big data workload. Of course, assuming the applications run on top of

the platform are able to adapt to such heterogeneity, major power savings can be performed. In

the next paragraphs, we will detail the reason behind these hardware and virtualization trends

justifying there integration within an energy-efficient UCS platform.

Low-power processors. This growing market is nowadays considered as a credible basis to

build HPC components. For instance, the aim of the Mont-Blanc project [3], launched October

1st 2011, is to design supercomputers from ARM processors, using 15 to 30 times less energy

than conventional HPC platforms. The first part of the project (for the time period 2011-2013)

lead to a proof-of-concept 120 MFlops/W cluster named Tibidabo based on NVidia Tegra2

Server-on-Chip (SoC) (128 nodes featuring ARM Cortex A9 processors having 2 cores at 1

GHz frequency). It is worth mentioning that the Viridis ARM cluster of the University of
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Luxembourg (UL) HPC platform12, released at approximately the same moment, outperforms

Tibidabo since it has achieved a measured performance of 572 MFlops/W [49]. In all cases, the

Mont-Blanc project in currently in its second phase (until 2016) to continue on these efforts using

a total budget of 11,4Me. Similarly, the EuroCloud [2] project was focused on building ARM-

based Server-on-Chip, integrating 3D DRAM to provide a very dense low-power server. The

target was reaching a 10 times improvement in cost and energy-efficiency compared to state-of-

the-art servers. Generally, the trend of utilizing large number of low-power processors to replace

high-end CPUs is becoming more and more popular. Indeed, many different studies [46, 64, 66]

prove that such embedded processors provide significant power savings when compared to regular

hardware architecture.

More recently in [49], a comparative study has been performed as regards the performance

and energy efficiency of cutting-edge high-density HPC platform enclosures featuring either

very high-performing processors (such as Intel Core i7 or E7) yet having low power-efficiency,

or the reverse i.e. energy efficient processors (such as Intel Atom, AMD Fusion or ARM Cortex

A9) yet with limited computing capacity. The performed analysis confirms that when running

time-critical applications, it is still better to choose performance-efficient CPUs, such as Intel

Xeon E7 or Intel Core i7, as executions on these processors were considerably shorter compared

to low-power devices. On the other hand, their power draw was very high. The competition

between power-efficient devices is fierce and there is no single winner in the field of computational

performance. The results are dependent on the executed benchmark. However, when considering

the Performance per Watt (PpW) metric the ARM Cortex A9 always achieves the best results,

sometimes even better than Intel when power-greedy processors are considered. Moreover, out

of the three mentioned low-power CPUs, it executes applications in the shortest period of time

and its total energy consumption is the least, in some cases up to 12 times lower than the energy

usage of the rest of the CPUs.

Accelerators and co-processors. If the idea of benefiting from hardware heterogeneity (be-

tween Intel, AMD or ARM processors) is hopefully justified with the above-mentioned study,

it becomes even more prominent due to the advent of General-Purpose Graphics Processing

Unit (GPGPU) accelerators. Graphics Processing Units (GPUs) offer a greater performance per

watts than conventional CPUs – for instance the Nvidia Tesla M2090 cards present in the HPC

platform of the UL feature 512 cores for a TDP of 225W thus leading to 0.44W/core. Also,

several application are inherently ready to take benefit from the optimized vector instructions

featured by these decives. For instance, real-world Molecular Dynamics and Bio-informatics ap-

plications such as AMBER, mpiBLAST or MrBAYES can obtain great speedup when running

on GPU-enabled systems. Data and graphics presented in selected NVIDIA benchmarks13 show

respectively a 2.9X and 7.4X acceleration for NAMD and AMBER applications compared to

single CPU node execution when using one additional NVIDIA K20X GPU accelerator. More-

over, GPU accelerators were proven of relevance (together with ARM-based architectures) over a

series of 5 Map-Reduce benchmarking applications in [34]. Since GPGPU systems are also quite

energy-efficient, it definitively makes sense to try whenever possible to rely on such platforms,

with the caveat that the programming cost is far from negligible, and end users are generally

12http://hpc.uni.lu
132013 NVIDIA Computational Chemistry & Biology benchmarks – http://www.nvidia.com/docs/IO/122634/

computational-chemistry-benchmarks.pdf
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reluctant to spend the necessary time to adapt their workflow to use accelerators (whether GPU

or co-processor based).

Finally, UCS systems could also benefit from recent advances in the domain of Field-

Programmable Gate Arrays (FPGAs) since such systems have been gaining momentum through-

out genomics and life sciences. Programmable ”on the fly”, FPGAs are a way of achieving

hardware-based, application-specific performance without the time and cost of developing spe-

cific applications. FPGAs work well on many bioinformatics applications, for example those that

do searching and alignment which are highly parallelisable14.

Virtualization and Cloud Computing (CC). At an intermediate level (between software

and hardware), virtualization is emerging as the prominent approach to mutualize the energy

consumed by a single server running multiple Virtual Machines (VMs) instances. This approach,

commonly designated as Cloud Computing (CC) [17, 87] is increasingly advertised as THE

solution to most IT problems. In this paradigm, shared IT resources are dynamically allocated to

customer tasks and environments. It allows users to run applications or even complete systems

on demand by deploying them on the Cloud that acts like a gigantic computing facility. In

an HPC context, it is thus clear that the integration of the CC paradigm should be studied

since there is a strong wish, at least from commercial entities (e.g. Google, Apple, Microsoft or

Amazon), to serve HPC needs through Infrastructure-as-a-Service (IaaS) platforms to eventually

replace in-house HPC platforms. However, little understanding has been obtained about the

potential overhead in energy consumption and the throughput reduction for virtualized servers

and/or computing resources, nor if it simply suits an environment as high-demanding as a HPC

platform.

Our previous studies [44, 88] demonstrate that the overhead induced by the Cloud hy-

pervisors cannot be neglected for a pure HPC workload – namely the High Performance Lin-

pack (HPL) benchmark. Results show the fast degradation in the computing efficiency when the

number for computing nodes is artificially increased through virtualization. Nevertheless, it is

true that the above mentioned studies focus on a pure HPC workload (i.e. heavy computing and

communication intensive) whereas we witness in general a large variety of job types in our clus-

ters. For instance, sequential, mono-process or bag-of-tasks applications executed on a cluster

in a embarrassingly parallel way will not be penalized as much by running in a VM instance.

As a conclusion, the heterogeneity in computing resources is a necessity for UCSs systems

to ensure both a flexible adaptation to HPC workloads and significant power-savings. Yet taking

advantage of these heterogeneous resources assumes the possibility of measuring with a reason-

ably good accuracy the performance and the energy-efficiency of the system. The next section

details this aspect.

2. Power monitoring and profiling of ultrascale context

To enable energy optimization across the whole stack of an ultrascale high performance

computing system, it is desirable to gain insight into the consumption of existing systems at

all possible levels. Ideally, system designers and operators, as well as application developers,

should be able to easily access precise power data ranging from whole systems to individual

14http://www.scientific-computing.com/news/news_story.php?news_id=2245
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components inside a computation node. It should also be easily attributable to the code being

executed, again ranging from entire processes to parts of specific threads.

Currently, only some of this data are usually available, which is provided through as many

different interfaces as measurement devices and vendors are involved. There are grounds for

a standardization of energy data acquisition. Several software and hardware tools are being

used to analyze energy consumption in computing systems and data centers. Different levels

of measurement are provided, with each tool offering its own tradeoff between precision and

intrusiveness.

We can classify the set of existing tools according to the position within the target system

where they are integrated.

2.1. External devices

These are energy measurement systems that have been used to measure energy consump-

tion and efficiency outside the experimental nodes. Measurements can be performed without

interfering with an experiment, but they may be infeasible for experiments that demand high

precision measures. Examples of this kind of devices are dedicated power-meters such as the Kill-

A-Watt [65] and Watt’s Up Pro [91]; power distribution units (PDUs) with metering capabilities;

PowerPack [43], which performs out-of-band measurements from various sources; vendor-specific

external systems such as IBM Power Executive; PowerScope [40], which uses a digital multime-

ter controlled using customized system calls; and Energy Endoscope [77], that offers detailed

real time measurements.

2.2. Intranode devices

The intranode group is composed of highly customized hardware instrumentation tools, such

as the PowerMon line of devices [22], placed between a node’s power supply and mainboard;

or the PowerInsight device [57], designed for component-level instrumentation of commodity

hardware; the ARM Energy Probe [15], integrated with the ARM development toolchain; and

the Linux Energy Attribution and Accounting Platform (LEA2P) [73].

2.3. Hardware sensors

Many recent components offer a number of built-in sensors able to directly report consump-

tion data at runtime. These may be exposed as performance counters or through a vendor-

provided API. For example, the Intel Running Average Power Limit (RAPL) interface reports

per-package estimates of total energy consumed on Intel Sandy Bridge CPUs and later; the

Nvidia Management Library (NVML) interface can query instant power draw values from re-

cent Nvidia Tesla GPUs; some motherboards report power draw value through extensions to the

Intelligent Platform Management Interface (IPMI)

2.4. Software interfaces

The Performance API (PAPI) [28] recently added a number of components which can access

a system’s integrated energy and power consumption. Being a mature library, it is a compelling

choice for hardware counter data acquisition. However, we feel that there is a place for a higher-

level abstraction with narrower scope and support for devices other than hardware counters
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(as in external devices), which may build upon any hardware counter interfaces (in fact, work

integrating PAPI as a low-level provider to our library is underway).

PowerAPI, from Sandia National Laboratories [74], is a recent attempt to standardize access

to power measurement data and power control. It is comprised of an API specification and a

reference implementation which already implements tightly coupled support for some energy

data sources. The platform and user role models defined in this specification, however, are

aimed towards HPC rather than cloud systems.

The Energy Measurement Library (EML) [29, 30] is a software library created to simplify

analysis of energy consumption in heterogeneous systems. It provides a very simple interface

for energy data acquisition and automatic run-time detection of available vendor interfaces and

supported devices. These features abstract platform-specific details away from instrumentation

code, greatly speeding up the measurement and experimentation process.

Other software interfaces which provide directly measured energy or power related infor-

mation are: the perf events [53] subsystem of the Linux kernel, which exports a variety of

hardware counters to Linux userspace applications, the power measurement library pmlib [18],

which implements a client/server architecture for out-of-band data collection from instrumented

code; LIKWID, a performance-oriented library that accesses performance counters in x86 archi-

tectures [84].

Finally, a number of software interfaces provide similar energy information which is not

directly measured, but estimated from runtime metrics and a certain analytical consumption

model instead. These include the PowerAPI from Spirals research group [27] or the Energy

Consumption Library [71].

2.5. Deploy to ultrascale level

Both physical wattmeters (either external, intranode or hardware sensors) and software-

based interfaces present advantages and drawbacks which are amplified at the ultrascale level,

while both solutions are desirable to monitor and to save energy.

Indeed, physical external wattmeters are the only solution to obtain a global view of the

energy consumption of an ultrascale system: including the air conditionning system and the

power units, which are non-negligible energy consumers. Such a global view is useful for the

system administrator, to size the emergency power supply systems for instance, or to have an

accurate trace in time of the electricity bill. It is also necessary for the system’s task scheduler

in order to avoid hot spots and balance the load energy-efficiently.

From the users’ and applications’ point of view, a much more detailed view is required,

since their goal and scale are different. Indeed, users need a higher measurement frequency

(which may go below the second) and a more focused view: at a node, core or even thread level.

Software-based tools are more suitable for such a fine- grained view in spite of their intrusive

behavior.

The challenge at ultrascale level consists in being able to combine both views and make them

available through a usable API. For instance, energy monitoring information for a 150 nodes plat-

form equipped with external wattmeters providing one measurement per second corresponds to

approximately 70 GB of data annually [35]. At ultrascale level, the amount of energy monitoring

data becomes rapidly unmanageable, even with scalable monitoring tools such as Ganglia [42].

In this context, an energy monitoring system may consist in an hybrid solution offering

fine-grained views for short time periods based on software interfaces, and aggregated metrics
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based on physical wattmeters for the higher views over longer time ranges. This system could

rely on round-robin databases for scalability purposes. It could even be tunable by the user in

order to avoid collecting, storing and processing useless energy monitoring data.

3. Energy modeling and simulation in ultrascale systems

As ultrascale systems gain momentum, their power provisioning has become a key concern.

A significant amount of the energy consumed by the system’s components is transformed into

heat, which may harm the reliability and the overall performance of the system. The higher

the energy consumption of an ultrascale system, the higher its operating and cooling cost is.

Therefore, energy efficiency has become a critical aspect of ultrascale systems that attracts

significant attention from the research community.

The ever increasing size and scale of such systems, inevitably leads to higher energy con-

sumption. This has forced scientists to re-examine the full spectrum of scheduling and resource

allocation algorithms. Accurate measurement at extreme scale is not an easy task. On the con-

trary, modeling and simulation techniques can be used to evaluate the performance of such

systems, regardless of their scale. They provide tools for easy and safe experimentation, in order

to investigate ways to reduce the energy consumption of such systems, assuring at the same time

satisfactory system performance and quality of service. For example, modeling and simulation

approaches can be utilized in case of energy efficient real-time scheduling in ultrascale systems,

where applications must meet their deadline and therefore a multi-criteria scheduling policy is

required to be employed.

A simulation model is preferred over analytical techniques, due to the fact that complex

systems would require much simplification in order to be studied analytically. With simulation,

we can evaluate the system for various workloads with different characteristics and for different

system configurations, by replacing, adding and removing system components easily. By control-

ling the simulation parameters of the performed experiments, useful conclusions can be drawn

about the impact of correlating factors [78].

3.1. Simulating multi-criteria scheduling techniques

In [83], two metrics are used which describe the computational power and energy efficiency

of the system. Based on these metrics, the authors propose scheduling policies for hard real-

time tasks that are executed on a heterogeneous cluster with power-aware dynamic voltage

and frequency scaling (DVFS) processors. Clusters are often part of ultrascale systems, used as

an underlying infrastructure in computational grids and clouds. Therefore, the findings of this

research are also useful for ultrascale systems. In this study, the authors propose multi-criteria

scheduling policies, in order to reduce the energy consumption of a power-aware heterogeneous

cluster, meeting at the same time the task deadlines. The cluster consists of DVFS processors

that can adjust their clock frequency, based on the performance requirements of the system.

Furthermore, since hardware failures often occur in large-scale systems, the impact of replacing

high-performance processors with high-efficiency processors is studied. The main reason that

simulation experiments were performed instead of tests in a real system, is that it is practically

impossible to isolate the energy consumption of the processors in a real system, as other factors

may affect its energy consumption.
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The service capacity of a system is determined by the number and service rate of its proces-

sors. In a simulation experiment, this information is required in order to adjust the arrival rate

of the tasks, so that the system is balanced. The ratio between the arrival rate and the overall

system service rate represents the load of the system. While setting the parameters for a small

system is relatively an easy task, particular attention is needed in case of complex large-scale

systems, so that the system stability is guaranteed. By increasing or decreasing the number of

processors in the system model and by adjusting the arrival rate of the tasks, the performance

of the system can be examined at different scales via simulation.

There have been several other research papers that examine by simulation energy efficient

scheduling techniques in large-scale systems. For example, in [90], the authors propose a power-

aware scheduling algorithm for clusters where virtual machines (VMs) are dynamically provided

for executing tasks. Their algorithm is implemented in a simulator and in an experimental

two-node multi-core cluster. In [81], the authors study the energy savings that can be gained

from the application of DVFS and dynamic power management (DPM), in a real-time 2-level

heterogeneous grid system. DPM puts the idle components of the system into low-power sleep

states whenever this is possible. Simulation results reveal that under certain conditions, these

techniques can work together and achieve significant energy savings.

3.2. Modeling complex workloads

A large percentage of the workload submitted to large-scale systems is bag-of-tasks (BoT)

applications. Each BoT is a collection of independent tasks that do not need to communicate with

each other and they can run on any processor and in any order. BoT scheduling is extensively

studied in the literature. In [82], Terzopoulos and Karatza view BoT scheduling from an energy

efficiency perspective. They apply a DVFS mechanism to a heterogeneous cluster environment

where BoTs are submitted dynamically. They also consider high-priority tasks in the workload.

As tasks are distributed to the most appropriate computing nodes, faster processors could be

congested with tasks while slower ones could remain idle for longer periods. Furthermore, when

scheduling BoT applications, some tasks may finish sooner than other sibling tasks when they

are executed by fast processors. This can result in large synchronization delays. In this case, by

exploiting DVFS, these tasks could be executed at lower speeds and consume minimum amounts

of energy. Simulation experiments show that by applying the proposed DVFS mechanism when

BoTs are executed, energy savings can be achieved without affecting the execution of high-

priority tasks.

In [54] users submit and run their tasks on the provider’s resources with Service Level Agree-

ments (SLAs). In SLAs, consumers and providers agree upon resource usage, pricing and quality

of service commitments. Tasks are considered to be BoT applications with deadline constraints.

The proposed power-aware scheduling algorithms are tested through simulation. In [26], the

authors propose a Power Aware Job Scheduler (PAJS) for high performance computing clusters,

where energy efficiency is achieved and response time is minimized by scaling the supply volt-

age. The proposed scheduler targets the optimization of both, power and performance. The key

novelty in this research is the utilization of a dynamic threshold-voltage scaling (DTVS) tech-

nique for the reduction of cumulative power utilized by each node in the cluster. Furthermore,

independent tasks within a job are scheduled to the most suitable computing nodes. Simulation

results show the effectiveness of DTVS.

M. Bagein, J. Barbosa, V. Blanco, I. Brandic, S. Cremer, S. Frémal, H.D. Karatza...
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3.3. Energy efficient cloud computing

Cloud computing offers many benefits to users. However, large-scale virtualized data centers

require large amounts of electrical power, resulting in high operating costs. Due to the variability

of the workload, the VM placement in the servers should be optimized continuously in an online

manner. In [23] Beloglazov and Buyya conduct competitive analysis and prove competitive

ratios of optimal online deterministic algorithms for the single VM migration and dynamic

VM consolidation problems. Additionally, based on an analysis of historical data, they propose

adaptive heuristics for dynamic consolidation of VMs. With simulation experiments using real-

world workload traces the authors show the effectiveness of the proposed algorithms, as energy

savings are gained and a high level of adherence to the SLAs is achieved.

3.4. Modeling and simulation of thermal processes

In a view of higher densities and scale of computing systems one of big challenges is to

combine the simulation of power distribution with thermodynamic ones that gives the overview

of the overall system energy-efficiency at the desired level of details.

In order to characterize the thermal distribution, there are several approaches that are

differentiated by their accuracy and required model size. Fig. 2 gives the general overview [51].

Figure 2. Existing approaches complexity [51]

For now, Computation Fluid Dynamics (CFD) simulations are considered as the most accu-

rate approach. However, they require lots of effort, while preparing model and even more time

to obtain rewarding results, which makes it expensive to use in terms of big systems simula-

tions. As an alternative, Potential Flow Model (PFM) has been proposed [45], that benefits

from the reduction of the model. Another approach follows proper orthogonal decomposition

methodology [51] and corresponds to Reduced Order Models entity in fig. 2.

As the complexity of computing systems is increasing together with the growing importance

of their energy efficiency, the processes of their evaluation has become difficult and complex to

perform not only in real environments but also by the means of simulation tools. Thus, effort is

being put to find a tradeoff between the simulation accuracy and required time complexity. As a

results models based on the law of energy conservation and the basic heat transfer equation has

been applied as the starting point of the work done by [62], [80], [76], where the heat recirculation

idea was introduced and expanded into the concept of heat distribution matrix. Thermodynamics
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models have also been introduced, together with the models for power consumption of cooling

infrastructure for the whole data center in [70].

3.5. Energy-aware modeling and simulation tools

The growing importance of efficient computing systems and emergence of new computing

paradigms caused gaining importance of modeling and simulation of various computing archi-

tectures and corresponding algorithms. In the recent years several simulation tools have been

developed in order to address these issues. Among them, one should mention CloudSim [31],

GreenCloud [55], BigSim [95] and DCworms [56]. CloudSim enables modeling and simulation of

Cloud computing data centers and focuses on evaluating different approaches for provisioning

host resources to virtual machines. It provides basic means to model power consumption and

network traffic. GreenCloud pays more attention to networks aspects of cloud environments

with a fine-grained modeling of the energy consumed by the elements of the data center, such

as servers, switches, and links. However, a main focus is devoted to the packet-level simulation

of communications in the data center networks. On the other hand, BigSim is a tool allowing

simulation and performance prediction of machines with a very large number of processors. It

provides the ability to evaluate the performance of specific applications on very large computer

clusters. Finally, DCworms enables simulation of computing infrastructures to estimate their

performance, energy consumption, and energy-efficiency metrics for diverse workloads and man-

agement policies. Compared to other tools, DCworms allows simulating a wide scope of physical

and logical architectural patterns. In particular, it enables simulations of complex distributed

architectures containing models of the whole data centers, containers, racks, nodes, etc. with a

detailed energy and thermal modeling of each component. Moreover, DCworms provides means

for modeling application performance both in HPC and cloud environments. These tools ben-

efit from the models that are widely present in the literature. A direction of such studies span

from network systems [89] through storage systems [13] up to servers systems [72]. Additionally,

researchers considered also virtualized environments [68]. In [20] authors propose models that

present data center power usage in a comprehensive way.

3.6. Summary

As a conclusion, energy efficiency and performance prediction of ultrascale systems is a

difficult task that can greatly benefit from modeling and simulation techniques. However, full

system simulation, as opposed to simulating individual system components, is still a difficult

task. As stated in [61], full system simulation at an abstraction level that includes a sufficient

level of detail is infeasible without resorting to parallel simulation. The main obstacles are the

simulation execution time and the memory footprint. Therefore, by running parallel simulation

models on large-scale systems, the performance of complex ultrascale systems can be predicted

and enhanced. Although several approaches and tools have been developed, the emerging het-

erogeneous and low power hardware architectures as well as attempts to build ultrascale systems

bring new challenges for simulations models. In particular, appropriate modeling of applications

execution on heterogeneous computing nodes is needed. Simulations also should reflect energy

consumption of all additional infrastructure needed by ultrascale systems. One of such essential

element is cooling, which requires accurate (but sufficiently fast) simulation of thermal processes
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in a computing center. The big challenge is also efficient simulation of large-scale systems, which

may require simplified models and statistical/machine learning methods.

4. Resource management and scheduling in extra large scale

systems

Research and development in large-scale systems over the last years had been mostly driven

by performance, whereas rises in energy consumption were generally ignored. The result was

a steadily growing in the performance, driven by more efficient system design and increasing

density of the components according to Moore’s law [37]. As the power wall was reached there

was the need to increase performance by introducing parallel computing elements. Extra large

scale systems will be characterized by the heterogeneity in hardware resources where a single

node may be composed by a set of very different computing elements, such as a multicore CPU,

manycore CPUs and GPUs, FPGAs, among others. The resource management for a system

with such diversity of components needs to allow resource sharing at a finer level of granularity

so that the performance per Watt of an active node is maximized. Future schedulers have to

consider power limitations and energy usage optimization when making scheduling decisions [19],

as power consumption is actually one of the main factors to achieve sustainability of extra large

scale systems.

The concept of virtualization [86] has been successfully introduced in modern data centers,

to achieve the necessary isolation among applications, and to increase resources usage rate.

Virtualization was first introduced with the IBM mainframe systems in the 1960s, to refer to

a virtual machine (VM) [10]. Although virtualization is a well developed technology it intro-

duces additional overhead, that for scientific workload on an extra scale system may represent

a significant loss of energy.

Resource sharing with the purpose of reducing the energy costs of a data center has been

studied first for web loads [32], where workloads are of similar type. For scientific applications,

the expected workloads are heterogeneous with different requirements in terms of computing

power, storage, I/O and type of computing elements, thus imposing additional requirements on

resource management and scheduling systems.

4.1. Workload characteristics

Scientific loads result from a variety of applications being the most common the following

ones: a) bag-of-tasks (BoT), where each job is composed by a set of independent tasks that

can run in any resource [82]; b) workflow applications, which represent many relevant real

world problems [52], such as the Montage and Epigenomics workflows, among others. The first,

created by NASA/IPAC, to stitch together multiple input images to create custom mosaics

of the sky and, the second, is a workflow used for genome sequence processing; c) specific

frameworks for data mining, such as the MapReduce model [33], and d) MPI jobs used in

many processing intensive simulation problems. The diversity of workloads imposes challenges on

resource management systems in order to deal simultaneously with such variety of applications.
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4.2. Virtualization

A scheduler in a virtualized system has the purpose of deploying resources in a way to fulfill

customer requests. More recently scheduling in virtualized systems has another goal, namely to

deploy resources in order to minimize energy consumption.

Virtualization technology provides an additional infrastructure layer on top of which multiple

VMs can be deployed. Virtualization technology can improve resource utilization, but it also

consumes resources and thus creates an energy consumption overhead [59] - mostly through a

hypervisor. As reported in [50], a hypervisor based on full virtualization, i.e., KVM , creates

much higher overhead (11.6%) than one based on paravirtualization (0,47%), such as Xen, as

opposed to using physical machines. Additionally, too big VM images are sources of additional

losses, e.g. too large memory allocation and storage size.

While scheduling Cloud resources there are several causes of energy inefficiency [60]. For

example rescheduling VMs every couple of minutes would perhaps give optimal deployment at

the moment, however re-scheduling itself would probably consume more energy than it saves.

Heavy VM migrations can lead to a performance overhead, as well as the energy overhead. While

a performance loss can be avoided by using live migrations of VMs [58], the resulting energy

overhead is often overlooked. When migrating a VM from one node to another, both nodes

must be powered on until the migration is complete [69]. This includes both time and energy

overheads for the migration, which is only rarely considered in the literature in the context of

job placement.

Adaptation of more lightweight architectures for hypervisors, such as those based on micro-

kernel [16], have still not take its full swing, and are mostly used in embedded systems, rather

than Cloud Computing. However, most recently a technology based on Linux containers (e.g.,

Docker [85]) has shown some worthwhile benefits due to its lightweight design, fast deployment

and low resource consumption footprint [39]. Furthermore, its performance is almost identical to

bare-metal deployment as the applications running inside a container directly utilize hardware

resources. On the one hand, due to its still relative immaturity the container technology offers

a limited set of features, where adding more features could easily eliminate its benefits based

on the lightweight design. On the other hand, hypervisor technology started with a heavyweight

design, and due to optimization efforts it significantly increased its efficiency without losing its

basic features.

4.3. Resource management and scheduling

Resource managers and schedulers for large systems are, in general, monolithic [38]. They

are implemented as a single, centralized scheduling algorithm that controls the execution of all

jobs. Examples are the widely used systems like PBS [67], Maui [48] and Moab [11] that are

characterized by isolating the jobs in a static allocation of resources to each job. The central-

ized control becomes a scalability bottleneck for extra large systems and do not guarantee the

simultaneous execution of different types of loads. To alleviate this control restraint, a two level

control approach is applied that implements a high-level control scheduler, which offers sets of

resources to other frameworks. An example is Mesos [36] that provides so-called resource offers

to frameworks such as Hadoop/Yarn [41] and MPI jobs, which accept or reject these offers

for scheduling their own jobs. The disadvantage of the two-level approach is that it leads to

suboptimal resource usage as it isolates applications by assigning a specific set of resources to
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2015, Vol. 2, No. 2 117



each framework. Such approach represents a pessimistic sharing policy since it locks resources

that can potentially be idle as they are taken by a frame- work that commonly exhibits uneven

workload, which eventually results in a waste of energy. To improve the resource sharing among

several frameworks and to overcome the centralized control constraint, Schwarzkopf et al. [38]

proposed a flexible and scalable scheduler based on a shared-state approach. Full access to

all nodes is granted to each framework that compete in a free-for-all manner, and uses an

optimistic concurrency to resolve conflicts when updating the system state. In this approach all

framework schedulers run in parallel, while having the constraint to observe the system state

when committing the schedule decisions. If the scheduler fails a commit operation, it has to

obtain a new schedule for its jobs.

Workflow applications represent a relevant class of scientific workloads and workflow schedul-

ing has been addressed primarily for single workflow scheduling, i.e., a schedule is generated for

a workflow and a specific number of processors, used exclusively throughout the workflow exe-

cution. When several workflows are submitted, they are considered as independent applications

that are executed on independent subsets of processors. However, because of task precedence,

not all processors are fully used when executing a workflow, thus leading to low efficiency. The

efficient usage of any computing system depends on how well the workload is mapped to the

processing units. One way to improve system efficiency is to consider concurrent workflows, i.e.,

sharing processors among applications, so that throughout its execution, the workflow can use

any processor available in the system. Although the processors are not used exclusively by one

workflow, only one task runs on a processor at any one time. Resource sharing among workflow

applications with the aim of improving resource usage rate and dealing with the dynamic nature

of a large system, where jobs are submitted at any time, have been studied in [14, 47, 93]. This

approach may be used to specify a workflow scheduling framework to compete for resources in

an extra large scale system.

The scheduling of BoT applications, also called, divisible load applications, have been ex-

tensively studied in a static and a dynamic approach. In [25] it was proposed a framework

for running concurrent BoT applications in heterogeneous systems, where jobs are submitted

and schedule dynamically without prior knowledge of the workload. Similarly with workflow

concurrent execution, the aim is to reduce the maximum ratio between the processing time an

application takes to complete concurrently with the time it would require to complete if executed

alone.

From the previous discussion, we can see that there are frameworks available to manage the

concurrent execution of the most typical scientific workloads, being a relevant middleware to be

consider in order to obtain efficient resource management for extra large systems.

4.4. Summary

The diversity of workloads will require that a diversity of frameworks need to be considered

in the same system, which interoperability may not exist or may not be desirable, to keep

the system manageable. Additionally, with the large number of nodes that will constitute an

extra large system, only a distributed concurrent deployment of sets of resources by framework

schedulers, such as one proposed in [38], will have conditions to achieve scalability. However,

this approach may not generate optimal energy efficient job scheduling as it only tackles an

architectural design of the scheduler. Therefore, applying machine learning techniques to predict
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workloads, such as [92] or the one introduced for Cloud environments in [12], may be developed

to obtain long-term stability and improved energy eficient resource management.

5. Towards an Energy Efficient Design of Ultrascale

Applications

To satisfy requirements and constraints in terms of computing and energy consumption,

strong potential in energy savings can be achieved by the consolidation on physical servers of

numerous virtualized services.

Moreover, Green 500 [5], the world contest of the most efficient HPC systems, shows that re-

cent years trends offer real potential of energy saving and performances thanks to CPUs+GPUs

heterogeneous systems. Nevertheless, both technologies are not yet fully compatible: the stan-

dardization of contexts of virtual machines does not accommodate the specific hardware of

graphics accelerators and hybridization performance of these two technologies are still less than

expected.

However, we think that the most efficient and easily deployed computing nodes can bring to

ultrascale systems some energy solutions. We mainly focus our work on two points. Firstly, by

kick up bottlenecks of interoperability between virtualized contexts and hardware accelerators

and secondly, in boosting a widely used component that can easily optimize a number of current

applications.

In the first section, we present the trends of the most efficient hardware architectures in a

scientific context. In the second section we present two software mechanisms to reduce latencies

of data transmissions between virtual machines and so provide unleashed access to graphics

accelerators from virtualized applications.

Beyond scientific applications, where GPUs are widely appreciated, we will show that us-

age of accelerators can also bring strong potential performance and energy cutback. With this

point of view, the third section focuses on a parallelized implementation of a DBMS engine, a

fundamental computing component of many applications, from small embedded devices to Big

Data applications.

The last section is finally interested in new perspectives for the use of SoC (system on Chip

- SoC) and their potential in both computing performance and power consumption.

5.1. Green 500 and Hybrid Architectures

From several years, Green 500 top list, devoted for the most efficient supercomputing sys-

tems, shows that a trend is mainly driven by heterogeneous architectures, combining multi-core

CPU and GPU (see tab. 2). The system performance must be at least as high as the 500th of

the Top List of the world fastest computer [6].

Computing characteristics of current Green500 top machines indicate that most of them

are build upon Intel IvyBridge CPU and Nvidia or AMD GPU. A new Japanese competitor,

PEZY-SC [9] stands up at the second position with a proprietary accelerator embedding 1024

cores. It claims peak a performance of 50GFlops/W in single precision.

Globally, systems in Green500 show a predominance of Intel CPU (429), AMD (29) and

IBM (38) high end processor. For accelerator, Nvidia GPU is also predominant (50), before

Intel Xeon Phi (20), followed by AMD GPU (4). The couple Intel CPU and Nvidia GPU is
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Table 2. Top 10 of Green500, November 2014

Gflops/
Watt

Year Site Manufacturer Processor Accelerator /
Co-Processor

5,27 2014
GSI Helmholtz Center,

Germany
AMD, ASUS,
FIAS, GSI

Xeon E5-2690v2
10C 3GHz

AMD FirePro
S9150

4,95 2014
High Energy Accelerator
Research Organization /

KEK, Japan

PEZY Computing /
Exascaler Inc.

Xeon E5-2660v2
10C 2.2GHz

PEZY-SC

4,45 2013
GSIC Center,

Tokyo Institute
of Technology, Japan

NEC Xeon E5-2620v2
6C 2.1GHz

Nvidia K20x

3,97 2014 Cray Inc., United States Cray Inc. Xeon E5-2660v2
10C 2.2GHz

Nvidia K40m

3,63 2013
Cambridge University,

United Kingdom
Dell Xeon E5-2630v2

6C 2.6GHz
Nvidia K20

3,54 2013 Financial Institution,
United States

IBM Xeon E5-2680v2
10C 2.8GHz

Nvidia K20x

3,52 2013
Center for

Computational Sciences,
University of Tsukuba

Cray Inc. Xeon E5-2680v2
10C 2.8GHz

Nvidia K20x

3,46 2014 SURFsara Bull SA Xeon E5-2450v2
8C 2.5GHz

Nvidia K40m

3,19 2012
Swiss National

Supercomputing Centre
(CSCS)

Cray Inc. Xeon E5-2670
8C 2.6GHz

Nvidia K20x

3,13 2013
ROMEO HPC Center -
Champagne-Ardenne

Bull SA Xeon E5-2650v2
8C 2.6GHz

Nvidia K20x

largely dominant in top 10. GPU is now well established as an efficient accelerator, either on

computing performance or energy consumption.

Green 500 and Top 500 are mainly relevant in computation-intensive domain but these

performance criteria could not be sufficiently suitable for many real world applications. [79]

focused on an alternative efficiency benchmarking for large-scale graph algorithms class, more

relevant to data-intensive problems.

The problem here is to minimize energy resources dedicated to large graph exploration. The

authors of this work propose two reference parallel kernels (replicated-csr and replicated-csc)

and different scales of free graph problems (from 220 up to 242 numbers of vertices). Benchmark

uses the elapsed times for both kernels, but the rankings for Graph 500 [4] are determined by

problem size and the throughput in numbers of edges traversed per second, TEPS (Traversed

Edges Per Second).

Analysis of Graph 500 list [7] shows that best efficiency, 445 GTEPJ (109 Traversed Nodes

Per Joule) was reached on a small scale graph problems (220 vertices) solved on hybrid ma-

chine, with Intel CPU and NVIDIA K20 GPU. The second competitor score, 230 GTEPJ, was

reached by an Android Smartphone. On large scale problem (238 and 241 vertices), only two

competitors provide machine power consumption in order to estimate energy efficiency. Those

are BlueGene/Q (Power BQC 16C, 1.6GHz) with only 5.40 and 3.71 METPJ (106 Traversed

Nodes Per Joule).

5.2. Sharing Hardware Accelerators Between Virtual Machines

Accelerators like GPU or MIC devices can dramatically improve computation performance.

Therefore, it is interesting to exploit them in virtualized contexts, either with ”on the shelf”

libraries (e.g. cuFFT, cuSparse) or through custom code (OpenCL, CUDA). However, these

accelerators are considered as specific hardware and do not match legacy requirements to enable
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virtualized drivers. Nvidia Grid [8] announces a network GPU grid allowing several users to

share GPU resources, but not in the framework of usual virtualization.

Nevertheless, there exist some tools that can be used to access and share GPUs in virtual

environments. GVirtuS [21] is one of them. It acts as a bridge between the unique privileged

virtual machine (VM) and unprivileged VM. To use hardware accelerator from one virtualized

context, an application has to transfer operation requests and their data to the privileged VM,

which has direct hardware access to accelerators. When the device terminates its job, results

have to be returned back to unprivileged VM. Data transfer between VM is performed thanks to

network links (TCP/UDP stack) which are implemented as ring buffers. This mechanism allows

an overlapping of write and read operation; however, it leads to four data copies. This weakness

can break down the performance in terms of time, energy and memory usage, although each

copy of data is positioned in the unique and physical system memory.

In order to overcome it and boost performance, we developed two original techniques to

optimize data transfers between a privileged and an unprivileged VMs, hosted on the same

physical machine using Xen virtualization solution.

The first transfer mechanism transfers data already located in memory. Instead of copying

data between virtual machines, we grant the privileged VM to access data pages of an unprivi-

leged VM. In order to achieve this, we developed a kernel module, GNTADDR, which retrieves

page identifiers of target memory zones. Identifiers are then transferred to the privileged VM

which uses them to map pages and then access data. With a 4096 byte page size and 8 bytes per

identifier, the transferred data volume is reduced by 512. The accelerator device managed by the

privileged VM has therefore a direct access to data produced in an unprivileged VM without

any expensive duplication. Shared pages are always owned by the unprivileged VM and still

exist after the transfer. However, this mechanism cannot avoid the four duplications inherent of

a ring buffer pages when identifiers need to be transferred. That is why we developed a second

scheme.

The second scheme improves transfer of ”short time lived” data. In order to avoid any dupli-

cation, we designed a ring buffer instantiated inside a shared memory block, named GNTRING.

Shared memory spaces are managed (allocation, mapping, sharing) and owned by the ring buffer,

but data can be placed and pulled out by processes either in privileged or unprivileged VM. Here

again, the VM has a direct access to data hosted in the ring buffer without any duplication.

An asynchronous mode is also implemented in order to be more flexible. This mode saves some

internal signal interactions and is therefore more efficient.

With these two original mechanisms, data transfers between VM machines and hardware

devices can be performed with a reduced delay. Performances of these tools are depicted at fig. 3.

We compared our tools with the native Xen TCP socket transfer mechanism and the ring buffer

implementation of XenSocket [94].

GNTRING is used to transfer page identifiers retrieved by GNTADDR. The resulting tool

is named RINGADDR. These tools were evaluated with raw ping-pong data transfers, sending

datasets of different sizes and waiting for the acknowledgment signal. For each size, we ran

hundred transfers and we computed averages. Ring buffers have a size of 1 MB (256 pages).

These tests were conducted on a hexacore CPU (AMD Phenom II X6 1090T 3.2 GHz) with 8

GB of RAM. We used Xen v4.3 hypervisor. The virtual machine has 2 GB of RAM and two

CPU cores. Ubuntu v3.2 is the operating system for all domains.
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Figure 3. Performance comparison of Xen transfer mechanisms

We consider TCP transfer mechanism as our reference as it is the standard communication

mechanism between machines. Firstly, we observe that XenSocket is more efficient than TCP,

thanks to its internal ring buffer which overlaps read and write operations. Secondly, we see that

RINGADDR is more efficient than XenSocket for data size smaller than 500 MB, with speedups

between 2 and 5. Above 500 MB, performances are similar. Finally, we notice that both modes of

GNTRING yield the best performances. Compared to XenSocket, speedups are between 5 and 30

in synchronous mode and between 6 and 390 in asynchronous mode. Peak measured bandwidth

is about 500GB/s, and latency becomes quite transparent for data exchange between virtualized

domains.

For future works, these tools will be extended to inter VM communications to perform more

efficient data transfers without requiring hardware, e.g. MPI jobs or web services. Also, those

tools will be integrated inside GVirtuS in order to improve hardware accelerator handling.

5.3. Low Power SoC

New embedded platforms, where CPU and GPU are shipped together on the same die (SoC)

and share the same memory space, offer two main new perspectives. The first one is a capability

to only transfer data owner grant between CPU and GPU, avoiding costly data duplication.

The second one is to perform the same amount of workload on a low-power platform, expect-

ing comparable performances with much less energy: new TegraK1 SoC’s platform, which have

equivalent computation capability (4 ARM cores + 192 GPU cores), but needs only 11W com-

pared to test-platform (50W for CPU + 188W for GPU). In embedded systems (smartphones,

tablets), the low power processors market is mainly dominated by ARM SoC. ARM architecture

is RISC, so executable code is little bigger (20%) but core hardware architecture is less complex

than x86 counterparts. Globally ARM cores need less energy than x86 core equivalents. ARM

Cortex CPUs, and MALI GPU companion, are distributed as system on chip (SoC) design in

order to be implemented by external founders but they are free to mix different kind of CPU

and GPU cores on chips.

SoC technologies enable CPU and GPU but also memory and network blocks to be closely

coupled on one chip. This technology could throw away two main hardware bottlenecks:

• Memory space becomes shared between CPUs and GPU. This improvement can eliminate

time consuming data duplication between processor and accelerator.
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• Hardware interfaces (PCI/PCIe) are replaced by direct links (routed lines), more efficient

and less power consuming than external chipset (north or south bridge).

Anyway, this technology imposes some limitation, essentially about the lack of flexibility:

• Memory space is not expandable: current accelerators embed no more than 12 GB. This

drawback could impose rewrite or redesign algorithms in a distributed approach.

• Lack of I/O: HDD, networking, etc.

Nvidia has developed in 2013 such technology on its TegraK1 processor which joins together

four 32 bit CPU cores or two 64bit CPU cores with 192 Kepler GPU cores.GPU architecture in

Tegra K1 is virtually identical to the Kepler GPU architecture used in high-end systems (Tesla

K20), but also includes a number of optimizations for mobile system usage to preserve power

and deliver industry-leading mobile GPU performance. While the highest-end Kepler GPUs in

desktop, workstation, and supercomputers include up to 2880 single-precision floating point

CUDA cores and consume around 200 W, the Kepler GPU in Tegra K1 consists of 192 CUDA,

cores and consumes a couple of watts. Its peak performance is announced around 300 GFLOPS

at 6 W total power draw [1] or 50 GFLOPS/W. This is over 10 times more power-efficient than

the world most power-efficient oil-cooled supercomputer. This type of architecture has more

cores than many entry-level to mainstream desktop GPUs of just few years ago.

At the end of 2014, Nvidia announces the next generation, including four 64 bit, four 32 bit

CPU cores and 256 Maxwell GPU cores for its new TegraX1. Performance grows up to 1000/500

GFlops on FP16/FP32 with 2 times less energy.

5.4. Discussion

According to [55], we estimate that processing servers represent around 70% of total data-

center energy consumption, while connection links and switches account for 30%. It means that

efforts to reduce energy consumption must focus on computing servers and the same trend should

be followed for data-center servers. Cooling is also a major energy consumer, but is not taken

into account here. Its impact can be considered as a ratio penalty, linearly correlated with power

of computing and networking components.

Green 500 and Green Graph 500 are mainly relevant in the domain of scientific computing,

but what about most of data centers? One fact is that GPU accelerators can be now considered

as valuable accelerators but they still need a larger adoption, especially in industrial and business

applications. One of the most common usages of data centers is hosting enterprise information

(ERP, CRM, mail or web servers, cloud, etc.) and commercial applications (e-business, finance

and telecoms). Virtualization and services consolidation in these data centers become a common

trend to reduce energy consumption by focusing workloads on fewer physical servers often save

40 to 80% [75]. In this matter, we point the lack of a solution which combines advantages of

virtualized architectures and hardware accelerators.

GPUs benefit from much more computation power at the same order of energy consumption

than classical CPUs. Except in some application fields like video games, graphical editing or

HPC, GPUs are currently under exploited. There is indeed a considerable amount of scientific

publications about exploitation of GPUs, either in computing power and in energy efficiency, for

scientific simulations. Works are however relatively limited to other fields of applications, like

those of data centers.

In the context of exascale applications, and specially in BigData or IoT elastics applications,

virtualization flexibility is a major advantage for dynamically redeploying resources according
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to user needs. Bringing this flexibility level to GPU accelerator could combine the advantages

of power and energy efficiency to that kind of applications.

Conclusions

This article reports the various activities explored in the working group ”Energy Efficiency”

from the Nesus European COST IC1305 action. The identified trends and challenges studied by

the group concentrate on the use of efficient hardware, especially exploiting heterogenity and

low power chips, effective and lightweight monitoring for large scale systems, enabling analysis

of future ultrascale systems by modeling and simulation, including detailed models of workloads

as well as thermal and cooling aspects, specific resource management approaches, and proper

design of applications with power and efficiency in mind.

Based on this analysis some specific observations were made that that led to identification

of challenges to be studied further by the energy-efficiency group within the Nesus action.

First of all, the heterogeneity in computing resources is a necessity for ultrascale systems to

ensure both a flexible adaptation to HPC workloads and significant power-savings. Yet taking

advantage of these heterogeneous resources assumes the possibility of measuring with a reason-

ably good accuracy the performance and the energy-efficiency of the system. Another challenge

apart from the energy-efficiency itself is the ease of programming, which can be a blocker. Hence,

an important point to explore is a trade-off between energy-efficiency gains and programming

effort (including a selection of a hardware platform, application design and optimization).

The challenge related to monitoring at ultrascale level, to make it manageable, is to be able

to combine both fine-grained measurements for short time periods based on software interfaces,

and aggregated metrics based on physical wattmeters for the higher views over longer time

ranges.

As ultrascale systems are future goal rather than commonly available, energy efficiency and

performance prediction of ultrascale systems is a difficult task that can greatly benefit from

modeling and simulation techniques. However, full system simulation, as opposed to simulating

individual system components, is still a difficult task. The main obstacles are the simulation

execution time and the memory footprint. The possible solutions to this problem to be studied

include running parallel simulation models on large-scale systems as well as simplified models and

statistical/machine learning methods. Another challenges needed to tackle to obtain accurate

full system simulation are appropriate modeling of applications execution on heterogeneous

and low power hardware architectures, and simulation of cooling, which requires accurate (but

sufficiently fast) simulation of thermal processes in a computing center.

Similarly to modeling and simulation the scheduling and resource management techniques

will be constrained in their accuracy and scalability by a complexity and size of ultrascale

systems. Thus, they will have to take advantage of distributed concurrent allocation of sets of

resources and the use of machine learning techniques to enable improvements in energy efficiency.

The important challenge will be to deal with a variety of workloads and adaptation of scheduling

and resource management methods to their specifics.

Finally, the crucial aspect in obtaining energy-efficiency will be appropriate application

design. To achieve it applications will have to take advantage of new heterogeneous and low

power architectures. The use of these architectures will increase needs for interdisciplinary op-

timizations such as software-hardware co-design or exploiting detailed models of application by

schedulers managing heterogeneous resources.
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75. Bernd Schäppi, Thomas Bogner, and Hellmut Teschner. Efficacité énergétique des technolo-
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