

Reducing energy consumption and carbon footprint of data centers through heterogeneous leverage management

Eco-ICT 2024

Vladimir Ostapenco¹ Laurent Lefevre¹ Anne-Cécile Orgerie² Benjamin Fichel³

¹ Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP ² Univ Rennes, Inria, CNRS, IRISA ³ OVHcloud

Context

- Significant increase in the use of information and communication technologies (ICT)
- GHG emissions related to ICT were estimated to be between 2.1% and 3.9% of global GHG emissions in 2020 ¹
 - Risk of almost doubling and reaching more than 7% by 2025²
- Data centers are one of the essential components of ICT
 - \circ $\;$ Impacts are dominated by the usage phase, containing mostly electricity consumption $^{\rm 3}$
 - Estimated to consume approximately 1% of global electricity ⁴

¹ Freitag et al. (2020) ² The Shift Project (2021) ³ Malmodin et al. (2024) ⁴ Masanet et al. (2020)

Motivation

- **Numerous approaches** (energy/power leverages) **have been proposed** to reduce the energy usage of data centers ¹²³
- Multi-criteria impacts must be considered
 - Covering GHG emissions, pollution, and impact on air, water, and biodiversity
- We define *heterogenous leverage* as a leverage that can *cover both power/energy consumption and carbon footprint* of data centers
- Heterogeneous leverages
 - Technological (e.g. powering on/off or slowing down resources (DVFS, RAPL))
 - *Logistical* (e.g installation and decommissioning of machines)
- *Challenge*: Manage these heterogeneous leverages in a large-scale environment
 - To improve the overall energy and carbon footprint of the entire datacenter infrastructure

Heterogeneous leverage modeling

Types of leverages

Atomic action-based leverage

• Performs a directly applicable action on a single data center component

Examples :

- Power limiting of a compute node based on Intel RAPL technology
- Compute node deployment

Intelligent action-based leverage

- Performs a set of combined actions on multiple data center components
- Creates atomic action-based leverages on one or more datacenter components

Examples :

- Power capping of an entire data center
- Compute node end-of-life management

Evaluation of leverages for efficient leverage management

- Each leverage has
 - Various **impacts** on data center components (e.g. power draw, performance)
 - **Costs of applying** in terms of energy, time and even carbon footprint
- Assessment of costs and impacts using all possible combinations of leverage states is required
 - Results in a table of leverages

Table of leverages of DVFS leverage

States (Frequency)	Impacts (Power)	Impacts (Performance)	Costs (Time)
1.2 Ghz	17 W	0.4	1ms
1.4 Ghz	18 W	0.6	$1 \mathrm{ms}$
1.8 Ghz	22 W	0.7	1ms
$2.0 \mathrm{Ghz}$	24 W	0.9	$1 \mathrm{ms}$
2.6 Ghz	26 W	1	1ms

Table of leverages of compute node deployment leverage

States	Impacts (Rack space units)	Costs (Time)	Costs (Carbon footprint)
Initiated	0	0 days	$0 \text{ kg}CO_2 \text{eq}$
In-Progress	0	0 days	$0 \text{ kg}CO_2 \text{eq}$
Finished	1	24 days	1306 kg CO_2 eq

Dell PowerEdge R640

Applying leverages to data center components: Environmental Gantt chart

- Timeline of the complete life cycle of each data center component
- Contains leverages that have been applied to each data center component since the beginning of its life

Simplified example of environmental Gantt chart

Usage scenarios

- Leverage positioning for
- Instant infrastructure management
- Planning of actions in the future
- Metrics tracking
- Energy consumption
- Carbon emissions
- Replay of the past
- Dashboard
- Life Cycle Assessments
 - Follow the use and evolution of data center components

Management of leverages: Leverage management framework

- Management of leverages and their combinations
 - Analyzes infrastructure metrics and leverages impacts and costs
 - Chooses a set of leverages to apply
 - Places leverages on the environmental Gantt chart
- In order to
 - *Meet constraints (e.g.* power budget, cooling capacity)
 - *Reduce impacts* (e.g. energy consumption, carbon footprint)
 - *React to external events* (e.g. unfavorable weather conditons)
 - Respond to a request of a cloud provider operator
- Leverage execution monitoring
 - Detect and respond to problems when applying leverages

Validation: Temporary power capping at data center scale

Modeled, evaluated and implemented

- Atomic action-based leverages
 - Intel RAPL power limiting leverage
 - Shutdown leverage
- Intelligent action-based power capping leverage

Scenario operation

- Management framework places the intelligent action-based leverage with a power reduction objective on the Gantt Chart
- Intelligent action-based leverage finds a placement of atomic action-based leverages and places them on the Gantt Chart
- Leverage management framework verifies if power constraint is respected

Simulation

- Small data center with 5 compute nodes
- Power reduction objectives ranging from 10% to 90%

Power capping scenario execution environmental Gantt chart

 Instantaneous data center consumption can be significantly reduced by only slowing down compute nodes without canceling client workloads

Validation: Minimizing the global carbon footprint of a data center

- Modeled and simulated the *standard infrastructure management* process used by a cloud provider
 - Increasing workload management leverages
 - Compute node decommissioning leverages
- Created, modeled and simulated a *minimization scenario management* process
 - Workload re-balance leverages
 - Idle compute nodes management leverages
- For both scenarios
 - Placed the leverages on the environmental Gantt Chart
 - **Calculated the carbon footprint** of the infrastructure over a 10-year period

Evolution of carbon footprint over a 10-year period showing a significant reduction in the carbon footprint for the minimization scenario

Our approach allows

- Impacts accounting and estimation
- Impacts forecasts
- Further optimization of the infrastructure management

Conclusion

- Data centers must enter in a **new era of reduced** environmental impacts
- Providers face **challenges in management** of technological and logistical capabilities (leverages)
- Proposed approach based on
 - Heterogeneous leverage modeling and evaluation
 - Environmental Gantt Chart
 - Leverage management framework
- Opens the door to some large-scale facilities to integrate, plan, map, monitor and orchestrate environmental leverages

For more details

- Ostapenco, Vladimir, Laurent Lefèvre, Anne-Cécile Orgerie, and Benjamin Fichel. "Modeling, evaluating, and orchestrating heterogeneous environmental leverages for large-scale data center management." The International Journal of High Performance Computing Applications 37 (May 2023)
- https://hal.science/hal-04047008