Heavy and Lightweight Dynamic Network Services: Challenges and
Experimentsfor Designing I ntelligent Solutionsin Evolvable Next Generation
Networks

Laurent Lefévre
INRIA /LIP (UMR CNRS, INRIA, ENS, UCB)
Ecole Normale Supérieure de Lyon
46 allée d’ltalie - 69364 Lyon Cedex 07 - France
laurent.|efevre@inria.fr

Abstract

Programmable and active networks allow specified
classes of users to deploy dynamic network services
adapted to data streams requirements. Based on our ex-
perience in high performance active networking, this pa-
per compares two alternative approaches for adding dy-
namic solutions in the network : heavy and lightweight dy-
namic network services. We propose and describe solutions
to efficiently manage and deploy heavy services (requiring
resources and closely linked with middleware or applica-
tions) and lightweight network services (generic and prag-
matic solutions with limited impact on network infrastruc-
ture). Experiments on local and wide area platforms are
presented.

1. Introduction

Next generation evolvable networks will require flexibil-
ity for the deployment of network services. Programmable
and active networks propose an alternative solution for net-
work and protocols designers to dynamically deploy per-
sonalized services inside equipments. Active networks
transform the route-route paradigm of IP networks to route-
process-route abstraction. But how to design and evaluate
the cost and impact of processing requirements to be able to
support large scale deployment of services ?

We have recently shown that high performance soft-
ware active networks environments can support Gbits
networks[4, 5]. Most of experiments are performed on
medium scale managed platform. We need now to find scal-
able solutions for a wide deployment of dynamic services
on Internet. Two main kinds of services show different ben-
efits. Heavy Services (requiring CPU resources) allow the
deployment of high level functions in the network that can

greatly support some applications (like Grid data streams
[6]). On the opposite side, Lightweight Network Services
(functions requiring a small specified amount of resources
(CPU, states...)) seem a more pragmatic and generic way
to widely deploy personalized services.

Our main problem is that the running duration of a ser-
vice is unknown (depending on data stream length) and
the resources needed by a new service will be only know
during execution step. Moreover, previous works [3] have
demonstrated that predictability of services consumption is
not usable within programmable networks domain. So we
must propose dynamic solutions to support heterogeneous
active services. We present the Feedback stream based
(FBSb) load balancing policy in order to efficiently deploy
active services between internal nodes of a cluster-based ac-
tive router. Based on a daemon collector and distributed
agents, the policy improves load decisions taken by the pro-
grammable network equipment.

On the other way, proposing lightweight network ser-
vices allow to easily design enough provisioned network
equipments. But mapping and urbanizing these function-
alities remains an open problem.

We base our deployment on the Tamanoir high perfor-
mance execution environment[5]. We show that Tamanoir
is able to support both kind of dynamic services on Gbit
networks. We will show experiments done with Tamanoir
deploying heavy services and lightweight network function-
alities.

This paper shows that both approaches (heavy vs.
lightweight services) are mandatory to dynamically support
large classes of applications and that they open different
problems.

The paper is organized as follows. In section 2, the
Tamanoir active network environment is briefly described.
We focus section 3 on how to support heterogeneous heavy
network services. Section 4 presents architecture and first

experiments on lightweight network functionalities. We fin-
ish by some conclusions and future directions for the de-
ployment of intelligent solutions in evolvable next genera-
tion networks.

2. Tamanoir : High Perfor mance Execution en-
vironment

The integration of new and dynamic technologies into
the shared network infrastructure is a challenging task, and
the growing interest in the active networking field[7] might
be seen as a natural consequence.

In our active networking vision, routers and any network
equipments (like gateways, proxies,...) can perform com-
putations on user data in transit, and end users can modify
the behavior of the network by supplying programs, called
services, that perform these computations. These routers
are called active nodes (or active routers), and propose a
greater flexibility towards the deployment of new function-
alities, more adapted to the architecture, the users and the
service providers requirements.

The aims of the Tamanoir[5] project is to design an high
performance active node based on standard hardware and
software and able to deploy services inside the network.
Tamanoir Active Nodes (TAN) (Fig. 1) provide persistent
active routers which are able to handle various data stream
(audio, video, Grid...) on several planes (data,control and
management) at the same time (multi-threaded approach).
The both main transport protocol (TCP/UDP) are supported
by the TAN for carrying data. We use the ANEP (Ac-
tive Network Encapsulated Protocol)[1] format to send data
over the active network.

Service #1
Service #2 N
Service #3

. TAMANOIRd

stream channel

Service #n
service channel

Figure 1. TAN : Tamanoir Active Node

Tamanoir supports these 4 different execution environ-
ment levels (Fig. 2) (programmable network interface card,
kernel space, user space and distributed resources) in order
to fit service requirement as smoothly as possible (in terms
of CPU and memory requirements). We classify services in
three kinds :

o lightweight service : stateless services or services re-
quiring few processing capabilities;

Distributed
Ressources

Execution
Environment

Kernel

NIC (Programmable)

1] a

Data Streams

Figure 2. TAN Architecture

e medium services : services requiring state and few
computing and memory resources;

e heavy service : services applying intensive computa-
tion on the stream, or caching huge quantity of data.

3. Heavy network services
3.1. Supporting heter ogeneousstreamsand services

High level and application oriented active services (com-
pression, cryptography, transcoding on-the-fly...) require
intensive computing resources. To support these heavy ser-
vices, a Tamanoir Active Node embeds a dedicated clus-
ter to efficiently deploy parallel services on streams. The
main problem is that the running duration of a service is un-
known (depending on data stream length) and the resources
needed by a new service will be only know during execu-
tion step. Moreover, previous works [3] have demonstrated
that predictability of services consumption is really not us-
able within programmable networks domain. So we must
propose dynamic solutions to support heterogenous active
services. We propose the Feedback stream based (FBSh)
load balancing policy in order to efficiently deploy active
services between internal nodes of the cluster.

We adapt the Linux Virtual Server (LVS)[8] software
suite, dedicated to provide distributed servers like ftp, web,
mail.... A Linux Virtual Server is a group of internal back-
end nodes and a front-end.

We modify and adapt LVS functionalities for active net-
working and use it to distribute Tamanoir Execution Envi-
ronment. A dedicated machine is configured as a front-end
and is used to route packets from the Internet to back-end

Cluster Tamanoir Node

TAN

Q\ server

dlient Front End
TAN
O—O B

TAN

O

Figure 3. Tamanoir active router based on a
cluster

Tamanoir nodes replicated on each machine of internal clus-
ter (figure 3).

3.2. Feedback stream based load balancing policy
(FBSD)

Common load balancing strategies (like Round Robin
where the front end sequentially choose a back-end when
a new stream crosses the cluster based equipment or Least
Connected where the front-end chooses a back-end with
the smallest number of active connections) can be effi-
cient when deployed services are homogeneous (web or ftp
server). For a cluster based active node, dynamic strategies
must be deployed to ensure that back-end nodes are equally
loaded with active services.

We focus on the front end machine which can take dy-
namic decisions when a new data streams arrive on the
equipment. We add a weight table in the Front end in or-
der to maintain a global” load view of the cluster. CPU
and memory load are periodically transmitted to front end
machine.

Front End

fbagent
UDP message Q
proc entry I proc entry
ip_vs_fbsb TAN kerndl
netfilter

director kernel

Figure 4. Architecture of FBSb policy

The FBSb architecture is based on a central collector and
distributed agents :

3.2.1 FELC : Front End Load Collector

The FELC is the daemon running on the LVS font-end ma-
chine in order to collect information about load from each
agent. The other task of FELC is to provide this information
to the kernel space (trough a proc entry).

The IP Virtual Server (ipvs) FBSb scheduling module
supports three tasks. The fist one is to set up the proc entry
where FELC will write the load of the nodes. The second
one is to choose a node (the less loaded). The last one is
to remove the proc entry when unloaded. When a new data
stream is sent to the best” back end, the front end machine
virtually increases the workload of the back-end in its table
in order to avoid re choosing the same machine when a new
stream arrives.

3.2.2 FeedBack Agent

An agent (fbagent) is deployed on all back-end nodes de-
ploying Tamanoir. This component monitors the CPU load
of the back-end node (Figure 4) and periodically reports this
CPU load to the Front End Load Collector. The transaction
is done over UDP protocol. In order to reduce the traffic
fbagent provides caching capabilities in order to only send
the CPU load when this measure goes over a threshold.

3.3. Experiments

Our experiments have been made on a local platform of
4 Compaq DL360 Bi-Pentium Il 1.7 Ghz for the cluster
Tamanoir node and 12 SUN LX50 for client machines con-
nected through Myrinet[2] network.

We validate our cluster based active router and associ-
ated policies with a wide set a scenario. Few of them are
presented here. We select two different kind of services:

e Heavy service (3-DES encryption) : this service makes
an intensive use of CPU (1 stream calling this service
saturates a CPU, in our test implementation);

e Medium service (stateful traffic analysis) : this service
uses the CPU in a less intensive way, but its impact is
not transparent (3-4 streams calling this service satu-
rate a CPU, in our test implementation).

We validate two kind of services deployment :

e 200: composed by 1 stream calling a service of en-
cryption and 11 streams calling for a traffic analysis
with different delays of arrival of 1 second (201), 2
seconds (202) and 5 seconds (205).

e 300: composed by 4 streams calling a service of en-
cryption and 8 streams calling for traffic analysis. with
different delays of arrival of 0 second (300), 1 second
(301) and 2 seconds (302).

Table 1. Feedback stream-based, Round Robin and Least Connected load balancing policies

FBSh RR LC
TEST | MAX AVG MIN | MAX AVG MIN | MAX AVG MIN
201 | 38.22 20.20 1598 | 43.25 20.13 1551 | 3850 20.31 1543
202 | 3331 20.04 1573 | 3749 20.12 1541 | 36.44 20.17 15.47
205 | 3292 1942 1553 | 38.81 19.62 1545 | 37.38 19.61 1544
300 | 52.68 24.16 16.15| 93.64 26.06 1545 | 64.65 2550 16.36
301 | 50.83 24.63 1547 | 90.31 26.93 16.12 | 64.01 25.60 15.40
302 | 50.96 2329 1538 | 9290 2553 1592 | 57.83 25.07 15.68

We compare our Feedback stream based policy with
Round Robin (RR) and Least Connected (LC) policies
(table 3.2). We can note here that RR and LC strate-
gies provide efficient results to the 20x test case due to
the nearly homogeneous scenario (only one heavy service
and 11 medium services). When services distribution be-
comes strongly heterogeneous (case 30x), we can note that
a feedback based policy clearly improves performances of
the whole equipment. We also observe that FBSb policy
strongly reduces deviation of experiments (table 3.3).

Table 2. Mean and standard deviation for 3
load balancing policies

Lightweight network services seem a more pragmatic
way to support large number of heterogeneous streams. A
Lightweight Network Functionality (LNF) is a network ser-
vice requiring a small specified amount of resources (CPU,
states...).

Main problem concerns the mapping and urbanization
of network functionalities. How to imagine a large deploy-
ment of dynamic and programmable network services on
Internet and how to map services on network equipments
? We can classify different mapping scenario depending on
openness of the network :

e Service mapped on the data path

— A service (eventually composed on several
blocks) is deployed on a specific dedicated equip-

ment located on the data path (Fig. 5).

FBSh RR LC
TEST | SDeV AVG | SDeV AVG | SDeV AVG
201 331 2020 | 430 2013 | 3.75 2031
202 3.09 2004 | 393 2012 | 358 20.17 ATBIC]
205 326 1942 | 397 1962 | 3.81 1961 @ /
300 9.12 2416 | 1496 26.06 | 12.00 25.50
301 8.87 2463 | 1487 26.93 | 10.43 25.60
302 8.78 2329 | 13.61 2553 | 10.52 25.07

We have briefly presented our architecture for the de-
ployment of a Feedback stream based load balancing strat-
egy. First experiments show needs and benefits of hav-
ing such policy when heavy heterogeneous services are de-
ployed in a cluster-based active equipment.

4. LNF : Lightweight Network Functionalities
4.1. Mapping LNF

A lot of deployed active and programmable network so-
lutions are performed on controlled platforms. It remains
hard to evaluate the need of computing resources in cluster
based active equipments to support large number of heavy
services. We need to associate heavy services with prag-
matic and generic dynamic functionalities which could sup-
port scalability and tolerance issues.

Figure 5. Service on data path

— Service replicated on several network equip-
ments (Fig. 6). This approach can be linked with
active network solutions.

Figure 6. Replicated service

O

— Service distributed on various equipments
(Fig. 7). This approach allows to support
pipelined services but needs to deal with fault
tolerance (if one of the service block crashes).

e Services outside the data path

— Service mapped out of the data path : allows to
map a service on a dedicated equipment (legacy
solution) (Fig. 8).

Figure 7. Distributed service

O —]

Figure 8. Unique service out of the data path

— Distributed service outside the data path : require
monitoring sensors to evaluate the cost of for-
warding streams several times during transport.

(Fig. 9)

Figure 9. Distributed service outside the data
path

4.2. Supporting LNF in Tamanoir Active Nodes

Within software based active routers, operating systems
play an important role. Recent version of Linux provide
possibilities to support filtering functionalities in the kernel
(NetFilter module). With hooks (fig. 10) linked to specific
packet actions, users can run personalized applications.

The Tamanoir system is an active Execution Environ-
ment which allows users to efficiently deploy personal-
ized services inside the network. \We propose to deport
lightweight active services from distributed resources and
user space (high level JVM) to kernel space (low level Net-
Filter modules). Our goal is to provide new levels of perfor-
mance to software active routers.

The various modules which are set up into the OS ker-
nel can be modified dynamically by active services. A
Tamanoir active service, running inside the user space con-
figure the LNF in kernel by sending a control message (see
Fig. 11) to the LNF. This on-the-fly configuration allows to
dynamically deport personalized function inside the kernel.

NF_IP_PRE_ROUTING

NF_IP_FORWARD

NF_IP_POST_ROUTING

NF IP LOCAL IN NF IP LOCAL OUT

Figure 10. NetFilter Hooks

TAMANOIR

user space

kernel space

Figure 11. Mixing LNF in kernel and heavy
service in user space

4.3. Experiments

We experiment the deport of active forwarding service
inside the kernel for UDP active packets (Fig. 12).

Packets crossing the Tamanoir active node remaining in
the Linux kernel layer spend around 7 microseconds for ba-
sic forwarding operations with UDP (Fig. 12). This is small
compared to user space version with with standard Java Vir-
tual Machines (SUN, IBM or compiled version (GCJ))

These experiments of deported services show the flexi-
bility for configuring the NetFilter module from Tamanoir
Service. By using standard messages, we can easily con-
figure and active NetFilter module to dynamically support
Lightweight Network functionalities in the kernel of active
nodes.

Time of crossing of ANEP packet according to the Payload packet

10000 E

1000 | .o UDP - KERNEL LINUX —— 1
- UDP - SUN SDK 1.3 ---------

UDP - IBM SDK 1.3 -
UDP -GCJ 3.0

100 + 1

Time of crossing (us)

10 |
e

. . . .
0 5000 10000 15000 20000 25000
ANEP Payload size (bytes)

Figure 12. ANEP packets using UDP protocol
processed by heavy services (in JVM / user
space) or LNF (in kernel space)

5. Conclusion and future works

Next generation evolvable networks will require flexi-
bility in terms of network services. We have shown that
Tamanoir project is able to support current bandwidth net-
work requirements (Gbits) with the help of optimized ar-
chitecture. But heterogeneous streams and services require
efficient solutions for scalable architecture and networks.

Both approaches (heavy vs. lightweight services) require
various support and respond to various requirements from
applications. Mixing both of them (on network architecture
or inside a node) seems also to be a performant solution for
large networks.

We want to more deeply explore the heterogeneous as-
pects of cluster based programmable nodes by taking into
account of heterogenous clusters (in terms of resources
(CPU, memory) and dedicated hardware (cryptographic
card, video card. . .)) in order to adapt dynamically our load
balancing policy.

Our current activities concern the deployment and vali-
dation of LNF at large scale in an emulated large platform
(RNRT Grid5000 project).

Acknowledgements

The author wish to thank P. Giacomin and J.P. Gelas for
their help during evaluation step.

References

[1] S. Alexander, B. Braden, C. Gunter, A. Jackson,
A. Keromytis, G. Minden, and D. Wetherall. Active
Network Encapsulation Protocol (ANEP). RFC Draft,
Category : Experimental, July 1997.

[2] N. Boden, D. Cohen, R. Felderman, A. Kulawik, C. Seitz,
J. Seizovic, and W.-K. Su. Myrinet : a gigabit per second
local area network. |EEE-Micro, 15(1):29-36, Feb. 1995.

[3] V. Galtier, K. Mills, and Y. Carlinet. Modeling cpu demand
in heterogeneous active networks. In 2002 DARPA Active
Networks Conference and Exposition (DANCE’ 02), San Fran-
cisco, CA, May 2002.

[4] J.-P. Gelas, S. El Hadri, and L. Lefévre. Tamanoir: a software
active node supporting gigabit networks. In ANTA 2003 : The
second Inter national Workshop on Active Networ ks Technol o-
gies and Applications, pages 159-168, Osaka, Japan, may
2003.

[5] J.-P.Gelas, S. E. Hadri, and L. Lefévre. Towards the design of
an high performance active node. issue of Parallel Processing
Letters (PPL) journal, 13(2):149-167, June 2003.

[6] L. Lefévre, C. Pham, P. Primet, B. Tourancheau, B. Gaidioz,
J. Gelas, and M. Maimour. Active networking support for the
grid. In N. W. lan W. Marshall, Scott Nettles, editor, IFIP-
TC6 Third International Working Conference on Active Net-
works, IWAN 2001, volume 2207 of Lecture Notes in Com-
puter Science, pages 16-33, Oct. 2001. ISBN: 3-540-42678-
7.

[7] D. Tennenhouse and D. Wetherall. Towards an active network
architecture. Computer Communications Review, 26(2):5-18,
April 1996.

[8] W. Zhang. Linux Virtual Server for Scalable Net-
work Services. In Ottawa Linux Symposium, 2000.
http://www:.linuxvirtualserver.org.

