Making a DSM Consistency Protocol Hierarchy-Aware: an Efficient Synchronization Scheme

Gabriel Antoniu, Luc Bougé, <u>Sébastien Lacour</u> IRISA / INRIA & ENS Cachan, France

DSM2003, Tokyo, May 13th 2003

Distributed Shared Memory

Distributed compute nodes

Shared virtual address space

Hierarchical Network Architectures

- Flat architecture:
 - Expensive network
 - Technically difficult

- Hierarchical architecture:
 - Cheaper network
 - Technically easier

Latencies: FastEthernet: 50-100 µs / SCI/Myrinet: 5 µs

DSM on Clusters of Clusters

Motivation:

- high-performance computing / code coupling
- Coupling with explicit data transfer:
 - MPI, FTP, …
- Key factor:
 - network latency

Principle: avoid communications over high-latency links

Roadmap

- Design, implement, evaluate a *hierarchical* memory consistency protocol
- Same semantics as with a flat protocol
- Well-suited for clusters of clusters
- High-performance oriented
- Few related works:
 - Clusters of SMP nodes: Cashmere-2L (1997, Rochester, NY)
 - Clusters of clusters: Clustered Lazy Release Consistency (CLRC, 2000, LIP6, Paris) → cache data locally

DSM-PM2: the Implementation Platform

- Portability
- Multi-threading

Starting Point: Home-Based Release Consistency

- Each page is attached to a Home-Node
 - Multiple writers, eager version
 - Home-Node:
 - holds up-to-date version of the page it hosts
 - gathers / applies page diffs

Flat Protocol & Hierarchical Architectures: Where Does Time Get Wasted?

- 1. At synchronization operations: lock acquisition and release
- While waiting for message acknowledgements (consistency protocol)
- While retrieving a page from a remote node (data locality \rightarrow CLRC, Paris)

Avoiding Starvation

- Control the lack of fairness
- Bounds to limit the number of consecutive acquisitions of a lock:
 - By the threads of a node
 - By the nodes of a cluster
 - Can be tuned at run-time

Flat Protocol & Hierarchical Architectures: Where Does Time Get Wasted?

- 1. At synchronization operations: lock acquisition and release
- While waiting for message acknowledgements (consistency protocol)
- While retrieving a page from a remote node (data locality \rightarrow CLRC, Paris)

Lock Release in a Flat Protocol

 Partially released locks can travel within a cluster

 Fully released locks (acks received from all clusters) can travel to remote clusters

Performance Evaluation: Thread Level

Local Thread Priority

max_tp	1	5	15	25	infinity
speed-up	1	3.4	5.8	6.9	~60 (unfair)

Inter-node message \rightarrow Intra-node message

Modification Aggregation

max_tp	1	5	15	25	infinity
speed-up	1	2.1	4.7	7.3	unfair

Less inter-node messages

SCI Cluster (10,000 C.S. per thread)

Partial Lock Release (node level): Performance Gain

Inter-cluster message receipt overlapped with intra-cluster computation (10,000 C.S. per thread)

Conclusion

- Hierarchy-aware approach to distributed synchronization
 - Complementary with local data caches (CLRC)
- New concept of "Partial Lock Release":
 - applicable to other synchronization objects (semaphores, monitors), except for barriers
 - applicable to other eager release consistency protocols
- More hierarchy levels, greater latency ratios:
 PING paraplapla.irisa.fr (131.254.12.8) from 131.254.12.68 : 56(84) bytes of data.
 64 bytes from paraplapla.irisa.fr (131.254.12.8): icmp_seq=9 ttl=255 time=385 usec
 PING ccgrid2003.apgrid.org (192.50.75.123) from 131.254.12.68 : 56(84) bytes of data.
 64 bytes from sf280.hpcc.jp (192.50.75.123): icmp_seq=9 ttl=235 time=322.780 msec