
1

Making a DSM Consistency Protocol 
Hierarchy-Aware: an Efficient 

Synchronization Scheme

Gabriel Antoniu, Luc Bougé, Sébastien Lacour
IRISA / INRIA & ENS Cachan, France

DSM2003, Tokyo, May 13th 2003



2

Distributed Shared Memory

n Distributed compute nodes
n Shared virtual address space

Mem. Mem. Mem.

CPU CPU CPU

DSM

network



3

Hierarchical Network
Architectures

Latencies: FastEthernet: 50-100 µs / SCI/Myrinet: 5 µs

n Flat architecture:
n Expensive network
n Technically difficult

n Hierarchical architecture:
n Cheaper network
n Technically easier



4

DSM on Clusters of Clusters

n Motivation:
n high-performance

computing / code 
coupling

n Coupling with 
explicit data 
transfer:
n MPI, FTP, ...

n Key factor:
n network latency

Solid mechanics

Thermodynamics

Optics

Dynamics

Satellite
design

Multi-threaded code coupling application



5

Latency Heterogeneity and
Memory Consistency Protocol

50-100 µs5 µs

Cluster A Cluster B

Principle: avoid communications over high-latency links



6

Roadmap

n Design, implement, evaluate a hierarchical memory 
consistency protocol

n Same semantics as with a flat protocol
n Well-suited for clusters of clusters
n High-performance oriented
n Few related works:

n Clusters of SMP nodes: Cashmere-2L (1997, Rochester, NY)
n Clusters of clusters: Clustered Lazy Release Consistency

(CLRC, 2000, LIP6, Paris) → cache data locally



7

DSM-PM2:
the Implementation Platform

n Portability
n Multi-threading

DSM-PM2

Communications
(Madeleine)

Threads
(Marcel)

Consistency Protocols Library

Basic Building Blocks

Page
Management

Communication
Management

PM2



8

Starting Point: Home-Based 
Release Consistency

n Each page is attached to a Home-Node
n Multiple writers, eager version
n Home-Node:

n holds up-to-date version of the page it hosts
n gathers / applies page diffs

Home-node

Sending page 
modifications at lock 

release time

Up-to-date version 

of the page

Page request

write

read
diff



9

Flat Protocol & Hierarchical Architectures:
Where Does Time Get Wasted?

1. At synchronization operations: lock 
acquisition and release

2. While waiting for message acknowledgements
(consistency protocol)

n While retrieving a page from a remote node
(data locality → CLRC, Paris)



10

1. Improving upon 
Synchronization Operations

Cluster A Cluster B

1 2

3 4

5

Executing in
critical section



11

Hierarchy-Unaware
Lock Acquisitions

Cluster A Cluster B

1 2

3 4

5

4 high-latency 
communications!



12

Priority to Local Threads

Cluster A Cluster B

1 2

3 4

5

3 high-latency
+ 1 low-latency
communications!



13

Priority to Local Nodes

Cluster A Cluster B

1 2

3 4

5

1 high-latency
+ 3 low-latency
communications!



14

Diff Aggregation at Node Level

1 25

n Flat protocol

n Hierarchical protocol

diff

Home-Node
diff

1 25

Home-Node
aggregated diffs: 1 + 5



15

Avoiding Starvation

n Control the lack of fairness
n Bounds to limit the number of

consecutive acquisitions of a lock:
n By the threads of a node
n By the nodes of a cluster
n Can be tuned at run-time



16

Flat Protocol & Hierarchical Architectures:
Where Does Time Get Wasted?

1. At synchronization operations: lock 
acquisition and release

2. While waiting for message acknowledgements
(consistency protocol)

n While retrieving a page from a remote node
(data locality → CLRC, Paris)



17

Lock Release in a Flat Protocol

Home
node

Cluster B Cluster C

diff

ack

invalidate

release

ack
Lock fully 
released

lock

Cluster A

Node 0 Node 1 Node 2



18

Lock Release in a
Hierarchical Architecture

Home 
node

Cluster B Cluster C

diff

ack

invalidate

release

ack

Full release
lock

Cluster A

Node 0 Node 1 Node 2

Time 
wasted 
waiting



19

2. Partial Lock Release in a
Hierarchical Architecture

Home 
node

Cluster B Cluster C

diff

ack
invalidate

release

ack

Full release
lock

Cluster A

Node 0 Node 1 Node 2

Time 
saved

lock
Partial 
Release



20

Partial Lock Release in a
Hierarchical Architecture

Cluster B Cluster C

ack

ack

Full 
release

notif

Node 0 Node 1 Node 2

Time 
saved

lock
Partial 
Release

n Partially released 
locks can travel 
within a cluster

n Fully released 
locks (acks 
received from all
clusters) can 
travel to remote
clusters



21

Performance Evaluation:
Thread Level

SCI Cluster
(10,000 C.S.
per thread)

lock
~60 (unfair)6.95.83.41speed-up

infinity251551max_tp
Local Thread Priority

unfair7.34.72.11speed-up
infinity251551max_tp

Modification Aggregation

Inter-node message → Intra-node message

Less inter-node messages



22

Partial Lock Release (node 
level): Performance Gain

lock

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6 7

Number of SCI clusters (2 nodes / cluster)

Ti
m

e 
pe

r 
C

.S
. (

us
)

Hierarchy-Aware Hierarchy-UNaware

(10,000 C.S.
per thread)

Inter-cluster message receipt overlapped 
with intra-cluster computation



23

Conclusion

n Hierarchy-aware approach to distributed synchronization
n Complementary with local data caches (CLRC)

n New concept of "Partial Lock Release":
n applicable to other synchronization objects (semaphores, 

monitors), except for barriers
n applicable to other eager release consistency protocols

n More hierarchy levels, greater latency ratios:
PING paraplapla.irisa.fr (131.254.12.8) from 131.254.12.68 : 56(84) bytes of data.
64 bytes from paraplapla.irisa.fr (131.254.12.8): icmp_seq=9 ttl=255 time=385 usec
PING ccgrid2003.apgrid.org (192.50.75.123) from 131.254.12.68 : 56(84) bytes of data.
64 bytes from sf280.hpcc.jp (192.50.75.123): icmp_seq=9 ttl=235 time=322.780 msec


