
Performance of Cluster-enabled
OpenMP for the SCASH Software

Distributed Shared Memory System

Yoshinori Ojima1)

Mitsuhisa Sato1)

Hiroshi Harada2)

Yutaka Ishikawa3)

1) Information Science and Electronics, University of Tsukuba

2) Hewlett-Packard Japan,Ltd

3) The University of Tokyo

Overview
• Background, objective
• Software DSM system SCASH
• Omni/SCASH: OpenMP implementation

for Software DSM
• Comparison of the basic performance of

Myrinet and Ethernet
• Performance evaluation, Discussion
• Conclusion, future work

Background
• PC Cluster became a popular parallel computing

platform.
• Distributed memory programming

– Message passing library(MPI, PVM)
– Programming cost is large

• Shared memory programming
– Programmers can parallelize easily with OpenMP
– Programming cost is small

Omni/SCASH : OpenMP for Software
Distributed Shared Memory(DSM) System

This is cluster-enabled OpenMP

The objectives of research
• To evaluate performance of Omni/SCASH
• To investigate the performance factor

depending on the communication
performance of networks

• To investigate the problem of using a
commodity network (Ethernet) as well as
Myrinet

Software DSM System SCASH
• A Software DSM System as a part of SCore

cluster-system software
• Uses PM communication library,

implemented as user level library
• Per page-basis (using kernel page-faults)
• Two page consistency protocols

– invalidate and update
• Eager Release Consistency(ERC) memory

model with multiple writer protocol (diff)
• Consistency maintenance communication at

synchronization point

Omni/SCASH
• OpenMP Compiler for SCASH

– It translates OpenMP programs to multi-
threaded programs linked to SCASH
runtime library

“shmem” memory model
All variables declared statically
in global scope are private.
The shared address space must
be allocated by a library
function at runtime.

OpenMP
All variables are
shared by default
No explicit shared
memory allocation

Omni OpenMP Compiler

Transformation for “shmem” model
• OpenMP compiler for “shmem” memory model

– Detects references to a shared data object
– Rewrite it to the references to the objects which

are allocated in shared address space at
runtime.

– A global variable declaration

double x;
double a[100];
…
a[10] = x;

double *_G_x;
double *_G_a;
…
(_G_a)[10] = (*_G_x);
…
static _G_DATA_INIT(){
_shm_data_init(&_G_x,8,0);
_shm_data_init(&_G_a,800,0);

}

a declaration of the pointer which will
point into a shared object at runtime.

Extension of Omni/SCASH to OpenMP

• In Software DSMs, the allocation of pages
to home nodes greater affects performance

• OpenMP
– doesn't provide facilities for specifying how data

is to be arranged within the memory space
– there are no loop scheduling methods to define

the way in which data is passed between
iterations

Extension to OpenMP

An example of the extension
• Data mapping directive

• Loop scheduling clause, “affinity”

double a[100][200];
#pragma omni mapping(a[block][*])

#pragma omp for schedule(affinity,a[i][*])
for(i = 1; i < 99; i++)

for(j = 0; j < 200; j++)
a[i][j] = ...;

Comparison of basic
performance of network

Basic performance of network
• Comparison of basic communication

performance of Ethernet and Myrinet
– Page transmission cost
– Overhead of barrier operation

• Measurement condition
– programs are parallelized with OpenMP
– 1 processor per node is used

Evaluation platform
• PC cluster “COSMO”

version 5.0.1SCore

gcc 2.96(Optimize option –O4)Compiler

8Nodes

Linux Kernel 2.4.18OS

800Mbps Myrinet, 100base-TX EthernetNetwork

2GBMemory

1MBL2 Cache

PentiumII Xeon 450MHz(4-way SMP)CPU

Page transmission cost
• One dimensional array of 32KB(8pages)
• Master thread writes to every element in an array

which is followed by a barrier point
• At the barrier point, modified data is copied back

to their home nodes.
• Execution time from the beginning of the array

write operation to completion of barrier operation
Master Thread

…

1page

0 1 2

4byte * 8k Elements (8pages)

Page transmission cost

0

2

4

6

8

10

12

14

16

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

Range to write(index)

E
la

p
se

d
 t

im
e
(m

se
c
)

Ethernet
Myrinet

Overhead of barrier
operation
Overhead of barrier
operation

Gap for one step is
page transmission cost
Gap for one step is
page transmission cost

Myrinet : ~0.24ms/page　
Ethernet : ~0.7ms/page
Myrinet : ~0.24ms/page　
Ethernet : ~0.7ms/page

Overhead of barrier operation
• Two-dimensional array of 256KB(8pages * 8) is

allocated in shared memory space
• It is mapped with block distribution
• Slave threads read every element mapped to

master thread which is followed by a barrier point
• At the barrier point, no consistency maintenance

communication occurs

Slave thread

Slave thread

Master thread

4byte *
8k Elements

Slave thread

0

5

10

15

20

25

30

35

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

Range to read(index)

E
la

p
s
e
d
 t

im
e
(m

s
e
c
)

barrier(Ether)

no-
barrier(Ether)
barrier(Myri)

no-
barrier(Myri)

Overhead of Barrier operation

Overhead of Barrier
operation
Overhead of Barrier
operation

Myrinet : ~0.7ms

Ethernet : ~9ms

Myrinet : ~0.7ms

Ethernet : ~9ms

Barrier : from beginning to completion
of barrier operation

No-barrier : from beginning to
completion of read operation

Barrier : from beginning to completion
of barrier operation

No-barrier : from beginning to
completion of read operation

Performance Evaluation

Performance Evaluation
• laplace

– A simple Laplace equation solver using a Jacobi
5-point stencil operation

– Written in C
– Two versions

• Parallelized with OpenMP(OpenMP version)
• Written using SCASH library(SCASH version)

– The array size is 1024×1024(double precision)
– The number of iteration is 50

• NPB EP
– Fortran，parallelized with OpenMP(by RWC)，Class A

• NPB BT, SP
– Fortran，parallelized with OpenMP，Class A
– Affinity scheduling

0

2

4

6

8

10

1 2 4 8 16

Number of processors

E
la

p
s
e
d
 t

im
e
[s

e
c
]

1-way(Ether)

2-way(Ether)

1-way(Myri)

2-way(Myri)

Laplace

0

2

4

6

8

10

1 2 4 8 16

Number of processors

E
la

p
s
e

d
 t

im
e

[s
e

c
]

1-way(Ether)

2-way(Ether)

1-way(Myr i)

2-way(Myr i)

SCASH version OpenMP version
Myrinet : ~13.3 times with 16 processors

Ethernet : ~3.0 times

Myrinet : ~13.3 times with 16 processors

Ethernet : ~3.0 times

0

2

4

6

8

10

1 2 4 8 16

Number of processors

E
la

p
s
e
d
 t

im
e
[s

e
c
]

1-way(Ether)

2-way(Ether)

1-way(Myri)

2-way(Myri)

Laplace

0

2

4

6

8

10

1 2 4 8 16

Number of processors

E
la

p
s
e

d
 t

im
e

[s
e

c
]

1-way(Ether)

2-way(Ether)

1-way(Myr i)

2-way(Myr i)

SCASH version OpenMP version
Myrinet : ~13.3 times with 16 processors

Ethernet : ~3.0 times

Myrinet : ~13.3 times with 16 processors

Ethernet : ~3.0 times

Application of affinity scheduling

A mismatch exists
between the alignment
of data and loops

The number of page
faults increases

affinity scheduling to match
alignment of data and loops

• Laplace(OpenMP version)

Peformance improvement with
affinity scheduling(Ethernet)

0

2

4

6

8

10

1 2 4 8 16

Number of processors

E
la

p
se

d
 t

im
e
[s

e
c
]

1-way(normal)
2-way(normal)
1-way(affinity)
2-way(affinity)

Improvement by ~10%Improvement by ~10%

Peformance improvement with
affinity scheduling(Ethernet)

0

2

4

6

8

10

12

1 2 4 8 16

Number of processors

E
la

p
se

d
 t

im
e
[s

e
c
]

1-way(normal)
2-way(normal)
1-way(affinity)
2-way(affinity)

Improvement by ~10%Improvement by ~10%

0

2

4

6

8

10

12

14

16

18

0 4 8 12 16

Number of processors

P
e

rf
o

rm
a
n

c
e

[M
o

p
s
]

OMP(1way)

OMP(2way)

MPI(1way)

MPI(2way)

NPB EP

0

2

4

6

8

10

12

14

16

18

0 4 8 12 16

Number of processors

P
e

rf
o

rm
a

n
c

e
[M

o
p

s
]

OMP(1way)

OMP(2way)

MPI(1way)

MPI(2way)

Myrinet Ethernet
Myrinet : ~11.6 times

Ethernet : ~7.2 times

Myrinet : ~11.6 times

Ethernet : ~7.2 times

NPB SP

0

100

200

300

400

500

0 4 8 12 16

Number of processors

P
e

rf
o

rm
a
n

c
e
[M

o
p
s
]

OMP(1way)

OMP(2way)

MPI

0

100

200

300

400

500

0 4 8 12 16

Number of processors

P
e

rf
o

rm
a
n

c
e

[M
o

p
s
]

OMP(1way)

OMP(2way)

MPI

Myrinet Ethernet

Myrinet : ~6.2 times

Ethernet : no speedup

Myrinet : ~6.2 times

Ethernet : no speedup

NPB BT

0

100

200

300

400

500

600

700

0 4 8 12 16

Number of processors

P
e
rf

o
rm

a
n
c
e
[M

o
p
s
]

OMP(1way)

OMP(2way)

MPI

0

100

200

300

400

500

600

700

0 4 8 12 16

Number of processors

P
e

rf
o

rm
a
n

c
e

[M
o

p
s
]

OMP(1way)

OMP(2way)

MPI

Myrinet Ethernet
Myrinet : ~9.5 times

Ethernet : ~3.4 times

Myrinet : ~9.5 times

Ethernet : ~3.4 times

Summary
• We evaluated performance of

Omni/SCASH
– Good performance was achieved with Myrinet
– With Ethernet, the overhead of barrier

operation was very large
• For ethernet-based cluster:

– Applications with small communication are
suitable for Ethernet

– When using Omni/SCASH, we have to
carefully optimize communication in
applications

Future work
• More detailed analysis on:

– performance difference of Ethernet and
Myrinet

– overhead of barrier operation with Ethernet
• Re-design Omni/SCASH for Ethernet
• To improve locality, we are currently

designing first touch page allocation facility
• Performance tuning tools to make

performance tuning easier
– Performance counters, profiler

