
2003/5/13 CCGrid2003

Preliminary Evaluation of
Dynamic Load Balancing Using
Loop Re-partitioning on
Omni/SCASH
Yoshiaki Sakae*1, Satoshi Matsuoka *1 *2,
Mitsuhisa Sato*3 and Hiroshi Harada*4

*1 Tokyo Institute of Technology, Japan
*2 JST, Japan

*3 Tsukuba University, Japan
*4 Compaq Computer, Japan

2

Background
Commodity cluster tends to be
heterogeneous in performance
! Incremental extension of nodes
! Incremental upgrade of nodes
! Cluster of clusters
When a program is executed on
hetero-cluster, its total performance
is often dominated by the slowest
host.

*We’ll abbreviate performance heterogeneous cluster as hetero-cluster

3

An Example of Performance
Degradation on Hetero-Cluster

Execution Time of SPLASH II Water on Hetero-Cluster

0

20

40

60

80

100

120

140

160

180

200

1 2 4 8

Number of Nodes

Ti
m

e
[s

ec
]

Pentium III 500MHz

Celeron 300MHz x 1 + Pentium III 500MHz

Celeron 300MHz x 2 + Pentium III 500MHz

We need a load
balancing
mechanism

The slower nodes
dominate the entire
performance as if
it were all 300MHz
nodes

4

In This Work
We extended Omni/SCASH to
support hetero-clusters
! Loop re-partitioning mechanism to

achieve dynamic load balancing based on
runtime performance

! Page migration mechanism based on page
reference counting (not yet implemented
completely)

We report the effect of loop re-
partitioning on hetero-cluster

5

Omni/SCASH [Sato et al. ’00]
(http://www.pccluster.org/)

One of the OpenMP implementation on
Software DSM, SCASH [Harada et al. ’98]
Translates C or F77 + OpenMP programs
into C with runtime library calls
! Intermediate code (Xobject) is a kind of AST

" Omni provides Java class libraries to process the
AST easily

" Each node of the AST is a Java object
! Omni encapsulates each parallel region into a

separate function which is invoked from master
thread

! A Global variable is allocated by the SCASH
function and transposed to the pointer to that

6

Target Problems
Load imbalance caused by runtime settings
! Esp. when an application is executed on hetero-

cluster

Static techniques are inadequate, because
the performance ratio varies on each
cluster setting

Dynamic scheduling based on runtime
performance + page migration

7

OpenMP Schedulings
Processors = 3

schedule(static)

schedule(static, chunk_size)

schedule(dynamic, chunk_size)

schedule(guided, chunk_size)

chunk_size

Iteration Space

Dynamic
chunk_size

chunk_size

Static

8

Our Proposal: Profiled Scheduling
Load balancing based on runtime self-profiling
Target: parallel loops specified with the “#pragma
omp for” directive
Measures the execution time of the target loop on
each thread
Adjusts chunk size of the parallel loop dynamically
based on measured performance
Assumptions:
! The application has no load imbalance inherently
! The target loop has no changes of a work load among the

iterations

9

The Syntax of Profiled Scheduling
#pragma omp [parallel] for

schedule(profiled[, chunk_size[, eval_size[, eval_skip]]])
#pragma omp [parallel] for

schedule(profiled[, chunk_size[, eval_size[, eval_skip]]])

eval_skip specifies the initial iteration size which
is executed normally
! When eval_skip is omitted or 0, start profiling from the

head of iters
eval_size specifies the size of profiling iterations
! When eval_size is omitted, evaluation loop size: 1

chunk_size specifies the size of chunk
! When the chunk_size is omitted or 0, divide remaining

iters in a block manner based on performance ratio
! When the chunk_size = n (n > 1), divide remaining iters

cyclically based on performance ratio

10

Examples of Profiled
#pragma omp [parallel] for

schedule(profiled[, chunk_size[, eval_size[, eval_skip]]])
#pragma omp [parallel] for

schedule(profiled[, chunk_size[, eval_size[, eval_skip]]])

3 6 2 4

1 3n n 2n

Example: Num Proc = 3, Performance Ratio = 3:1:2

schedule(profiled, 2, 3)

schedule(profiled)

3 6 2 4

schedule(profiled, 2, 3, 1)

1

: executed on proc 0
: executed on proc 1

: executed on proc 2
: profiling loop

11

Code Translation when Profiled
Scheduling is Specified

__ompc_func() is invoked on
the slave threads in parallel
_ompc_profiled_get_time()
measures the runtime
performance
_ompc_profiled_sched_next()
calculates the next chunk
of iteration based on
measured performance

#pragma parallel omp for schedule(profiled, 10)
for (i = 0; i < n; i++) {

LOOP_BODY;
}

static void __ompc_func(void **__ompc_args) {
int i, lb, ub, step;
long long start = 0, stop = 0;
lb = 0, ub = N, step = 1;
_ompc_profiled_sched_init(lb, ub, step, 10);
while (_ompc_profiled_sched_next(&lb, &ub, start, stop)) {
_ompc_profiled_get_time(&start);
for (i = lb, i < ub; i += step) {

LOOP_BODY;
}
_ompc_profiled_get_time(&stop);

}
}

User code

Translated code

Translated at the level of the
intermediate representation of
Omni

Translated at the level of the
intermediate representation of
Omni

Runtime
performance
measurement

Dynamic load balancing based
on performance prediction

(loop re-partitioning)

12

Overview of Loop Re-partitioning
Algorithm
_ompc_profiled_sched_next()

LR: loop re-partitioning

LR enabled? Predict exec. speed
when LR is performed

Perf gain？

Assign iters based
on chunk_vect

Store division ratio
in chunk_vect

Calc exec. speed
Exc. speed data

Yes

Perform LR
Yes

Assign iters based
on chunk_vect

No

Disable LR

No

13

Dynamic/Guided v.s. Profiled
Dynamic/Guided scheduling
! Needs atomic access to the index managed

centrally at every sub-loop index calculation
! Involves communication on the distributed

memory environment
Profiled scheduling
! Doesn’t need the index managed centrally
! Each thread has chunk size for all threads in

chunk_vector
! Communication occurs only after evaluation loop

" When the target loop has no changes of a work load
among the iterations, loop re-partitioning may
complete on its first attempt

14

Dynamic Page Migration Idea (1/2)
Counts the number of page faults at the
SDSM level (c.f. precise page reference
counting with hardware support
[Nikolopoulos et al. ’00])
Migrates the page to the node with the
most number of remote references to the
given page
! Because we can’t count local accesses directly,

unnecessary page migration may occur

15

Dynamic Page Migration Idea (2/2)
Keeps migration records to avoid the page
ping-pong, and restore locality within
several repetition
Performs page migration only during the
target parallel loops
! Excludes unnecessary page reference data
! Enables timely page migration based on appropriate page

reference data

We plan
! Speculative page migration based on feedback from loop

re-partitioning
! Re-enable loop re-partitioning after page migration

16

Coordinate Profiled Scheduling with
Page Migration

Profiled scheduling and page migration
affect each other
! Loop re-partitioning will cause poor data

locality
! Page migration will affect performance

prediction

Exploits both profiled scheduling and page
migration gradually
! Both will reach the stable state in early stage

of iterations
! Needs some heuristics to balance both

17

Preliminary Evaluation
Evaluation points
! Overhead of profiled scheduling itself on performance

homogeneous settings
! Comparison against static, dynamic and guided scheduling

on performance heterogeneous environment
Benchmark programs
! NPB2.3 EP (C + OpenMP version made by RWCP)

" Due to few communications, we can evaluate pure efficiency
of profiled scheduling

! NPB2.3 CG (C + OpenMP version made by RWCP)
" Data locality has large impact on performance, because

there are many accesses to shared arrays
" We can anticipate that there may be performance drops

without some page migration mechanism

18

Evaluation Environment
Performance heterogeneous cluster
! Pentium III 500MHz node x 6
! Celeron 300MHz node x 1
! Other settings are the same

" Intel 440BX Chipset
" 512MB Memory
" Myrinet M2M-PCI32C

RedHat 7.2 (linux-2.4.18)
SCore-5.0.1
gcc-2.96 -O

19

EP Class S Performance
(Homogeneous Settings)

Execution Time of EP Class S on Homo-Cluster (chunk_size:
none)

0

5

10

15

20

25

30

35

1 2 4

Number of Nodes

Ti
m

e
[s

ec
]

s tatic

dynamic

guided

profiled

There is no
overhead with

profiled

20

EP Class S Performance
Execution Time of EP Class S on Hetero-Cluster (chunk_size: none)

0

10

20

30

40

50

60

1 2 4
Number of Nodes

Ti
m

e
[s

ec
]

s tatic (Cel x 1 + Pen III)

dynamic (Cel x 1 + Pen III)

guided (Cel x 1 + Pen III)
profiled (Cel x 1 + Pen III)

static (Pentium III x 4)

21

CG Class A Performance
Execution Time of CG Class A on Hetero-Cluster (chunk_size:

none)

0

10

20

30

40

50

60

70

80

90

1 2 4

Number of Nodes

Ti
m

e
[s

ec
]

s tatic (Cel x 1 + Pen III)
guided (Cel x 1 + Pen III)
profiled (Cel x 1 + Pen III)

Performance drops due to
the overhead of profiled

22

Breakdown of CG Class A

80065088Barrier
2720116456Page Fault at SCASH Level
31.1%29.6%L2 miss ratio

ProfiledStatic

More page faults with profiled, because the data
access range may change on each iteration
More barriers with profiled, because it will repeat
unnecessary profiling loops (see next figure)

23

Overview of Loop Re-partitioning
Algorithm (again)
_ompc_profiled_sched_next()

LR: loop re-partitioning

LR enabled? Predict exec. speed
when LR is performed

Perf gain？

Assign iters based
on chunk_vect

Store division ratio
in chunk_vect

Calc exec. speed
Exc. speed data

Yes

Perform LR
Yes

Assign iters based
on chunk_vect

No

Disable LR

No

BarrierBarrier

24

Conclusion
We extended Omni/SCASH to support
profiled scheduling for dynamic load
balancing
We made sure that profiled scheduling is
more effective than static/dynamic/guided
one on hetero-cluster with EP which are
not influenced by data placement
Profiled scheduling reveals its overhead
due to changes in data access ranges
We showed the plan of page migration
extension to SCASH

25

Future Work
Complete the implementation of page
migration
Integrate loop re-partitioning with
page migration
Evaluate this system with more
applications

	Preliminary Evaluation of Dynamic Load Balancing Using Loop Re-partitioning on Omni/SCASH
	Background
	An Example of Performance Degradation on Hetero-Cluster
	In This Work
	Omni/SCASH [Sato et al. ’00](http://www.pccluster.org/)
	Target Problems
	OpenMP Schedulings
	Our Proposal: Profiled Scheduling
	The Syntax of Profiled Scheduling
	Examples of Profiled
	Code Translation when Profiled Scheduling is Specified
	Overview of Loop Re-partitioning Algorithm
	Dynamic/Guided v.s. Profiled
	Dynamic Page Migration Idea (1/2)
	Dynamic Page Migration Idea (2/2)
	Coordinate Profiled Scheduling with Page Migration
	Preliminary Evaluation
	Evaluation Environment
	EP Class S Performance(Homogeneous Settings)
	EP Class S Performance
	CG Class A Performance
	Breakdown of CG Class A
	Overview of Loop Re-partitioning Algorithm (again)
	Conclusion
	Future Work

