Preliminary Evaluation of

Dynamlc Load Balancing Using
Loop Re-partitioning on
Omni/SCASH

Yoshiaki Sakae™, Satoshi Matsuoka ™ *2,
Mitsuhisa Sato™ and Hiroshi Harada™

“1 Tokyo Institute of Technology, Japan

*2 JST, Japan< |
“3 Tsukuba University, Japan
“4 Compag Computer, Japan

2003/5/13 CCGrid2003

N

Background

#®Commodity cluster tends to be
heterogeneous In performance

s Incremental extension of nodes

= Incremental upgrade of nodes
m Cluster of clusters

#\When a program is executed on
hetero-cluster, Its total performance
IS often dominated by the slowest
host.

*We'll abbreviate performance heterogeneous cluster as hetero-cluster

Time [sec]

An Example of Performance
Degradation on Hetero-Cluster

N

L

200

Execution Time of SPLASH Il Water on Hetero-Cluster

180

160

AN

140

—4&— Pentium |11 500MHz
== Celeron 300MHz x 1 + Pentium I11 500MHz

== Celeron 300MHz x 2 + Pentium Il 500MHz[]

120

100 |

80

60

40

The slower nodes
dominate the entire
performance as if
It were all 300MHz

nodes
.

We need a load

balancing

20

mechanism
|

Number of Nodes

In This Work

N

#We extended Omni/SCASH to
support hetero-clusters

= Loop re-partitioning mechanism to

achieve dynamic load balancing based on
runtime performance

= Page migration mechanism based on page

reference counting (not yet implemented
completely)

#\We report the effect of loop re-
partitioning on hetero-cluster

Omni/SCASH [Sato et al. '00]

(http://www.pccluster.org/)

N

" @One of the OpenMP implementation on
Software DSM, SCASH [Harada et al. '98]

#® Translates C or F77 + OpenMP programs
Into C with runtime library calls

= Intermediate code (Xobject) is a kind of AST

+ Omni provides Java class libraries to process the
AST easily

+ Each node of the AST is a Java object
= Omni encapsulates each parallel region into a
separate function which is invoked from master
thread

= A Global variable is allocated by the SCASH
function and transposed to the pointer to that’

Target Problems

N

L

#® Load imbalance caused by runtime settings

= EsSp. when an application is executed on hetero-
cluster

Static techniques are inadequate, because
the performance ratio varies on each

cluster setting

#® Dynamic scheduling based on runtime
performance + page migration

N

_ Processors = 3

OpenMP Schedulings

schedule(static)

Iteration Space

I

schedule(static, chunk size)

< b
chunk_size

schedule(dynamic, chunk size)

B

N

Speerees o
chunk_size

schedule(quided, chunk size)

. B

chunk_size

Static

Dynamic

N

Our Proposal: Profiled Scheduling

Load balancing based on runtime self-profiling

#® Target: parallel loops specified with the “#pragma
omp for” directive

#® Measures the execution time of the target loop on
each thread

@ Adjusts chunk size of the parallel loop dynamically
based on measured performance

Assumptions:

= The application has no load imbalance inherently

= The target loop has no changes of a work load among the
Iterations

The Syntax of Profiled Scheduling

N

L

#pragma omp [parallel] for
schedule(profiled[, chunk_size[, eval_size[, eval_skip]]])

@ eval_skip specifies the initial iteration size which
IS executed normally

= When eval_skip is omitted or O, start profiling from the
head of iters

@ eval_size specifies the size of profiling iterations
= When eval_size is omitted, evaluation loop size: 1

@ chunk_size specifies the size of chunk

= When the chunk_size is omitted or O, divide remaining
iters in a block manner based on performance ratio

= When the chunk_size = n (n > 1), divide remaining iters
cyclically based on performance ratio

Examples of Profiled

N

L

#pragma omp [parallel] for
schedule(profiled[, chunk_size[, eval_size[, eval_skip]]])

— Example: Num Proc = 3, Performance Ratio = 3:1:2

schedule(profiled) _
- >< >< >.
il 3n n 2n :
schedule(profiled, 2, 3) : L :
3 6 2 4 : :
schedule(profiled, 2, 3, 1) _ L _
T (e e]
* — e T S B :
3 T B 24 - : : :
[]: executed on proc 0 [l: executed on proc 2
[: executed on proc 1 [J: profiling loop

Code Translation when Profiled
Scheduling 1s Specified

-
N
#praama parallel omp for schedule(profiled, 10) Translated at the level of the
for (i=0;i<n;i++){ intermediate representation of
LOOP_BODY; — Omni
1\, User code -
static void __ompc_func(void **__ompc_args) {

® |0l pynamic load balancing based | inti: Ib. ub, step;

the | on performance prediction | !ong long start =0, stop =0;

& o (loop re-partitioning) Ib=0,ub =N, step = 1;
_ — = _ompc_profiled_sched _init(lb, ub, step, 10);
mea_... .-C %mpc_profiIed_sched_next(&lb, &ub, start, stop)) {
pe rformance _ompc_profiled _get_time(&start); =

@ _ompc_profiled_sched_next) | | " (=B <uo +=siep)t . Runtime
calculates the next chunk - YA I NEEE

} measurement

of iteration based on _ompc_profiied_get_time(&stop); __
measured performance }

}

Translated code -

Overview of Loop Re-partitioning

Algorithm

N

_ompc_profiled _sched next()

LR: loop re-partitioning

LR enabled?

Calc exec. speec JPredict exec. speed
Exc. speed data when LR is performed

Perform LR

Perf gain?

,| Assign iters based
on chunk_vect

Disable LR

§tore division ratio
in chunk_vect

Assign iters based

on chunk_vect

12

Dynamic/Guided v.s. Profiled

N

! # Dynamic/Guided scheduling

= Needs atomic access to the index managed
centrally at every sub-loop index calculation

s Involves communication on the distributed
memory environment

Profiled scheduling
= Doesn’'t need the index managed centrally
= Each thread has chunk size for all threads in
chunk_vector

= Communication occurs only after evaluation loop

+ When the target loop has no changes of a work load
among the iterations, loop re-partitioning may
complete on its first attempt

13

Dynamic Page Migration ldea (1/2)

#® Counts the number of page faults at the
SDSM level (c.f. precise page reference
counting with hardware support
[Nikolopoulos et al. '00])

#® Migrates the page to the node with the
most number of remote references to the
given page

= Because we can’'t count local accesses directly,
unnecessary page migration may occur

14

Dynamic Page Migration ldea (2/2)

#® Keeps migration records to avoid the page
ping-pong, and restore locality within
several repetition

#® Performs page migration only during the

target parallel loops

m EXcludes unnecessary page reference data

m Enables timely page migration based on appropriate page
reference data

#® We plan

m Speculative page migration based on feedback from loop
re-partitioning
m Re-enable loop re-partitioning after page migration

15

N
\J

Coordinate Profiled Scheduling with
Page Migration

#® Profiled scheduling and page migration
affect each other

= Loop re-partitioning will cause poor data
locality

= Page migration will affect performance

prediction @

® Exploits both profiled scheduling and page
migration gradually

= Both will reach the stable state in early stage
of iterations

s Needs some heuristics to balance both

16

Preliminary Evaluation

N

Evaluation points
s Overhead of profiled scheduling itself on performance
homogeneous settings

s Comparison against static, dynamic and guided scheduling
on performance heterogeneous environment

@ Benchmark programs
= NPB2.3 EP (C + OpenMP version made by RWCP)
+ Due to few communications, we can evaluate pure efficiency
of profiled scheduling
= NPB2.3 CG (C + OpenMP version made by RWCP)

+ Data locality has large impact on performance, because
there are many accesses to shared arrays

+ We can anticipate that there may be performance drops
without some page migration mechanism

17

N

Evaluation Environment

L

#®Performance heterogeneous cluster
s Pentium 11l 500MHz node X 6
= Celeron 300MHz node x 1

s Other settings are the same
+ Intel 440BX Chipset
+ 512MB Memory
¢+ Myrinet M2M-PC132C

#RedHat 7.2 (linux-2.4
#SCore-5.0.1
#gcc-2.96 -0

EP Class S Performance

N

35

30

25

Time [sec]
= N
o1 o

=
o

&)

o

(Homogeneous Settings)

none)

= S tatic

NN

e=fll= dynamic

guided
\“\ &= profiled

—

Execution Time of EP Class S on Homo-Cluster (chunk_size:

/

There is no
overhead with
profiled

2 4

Number of Nodes

19

EP Class S Performance

N

L

Time [sec]

Execution Time of EP Class S on Hetero-Cluster (chunk_size: none)
60

1
-—g—static (Cel x1 + Pen lll)
50 == dynamic (Cel x1 + Pen Ill)
guided (Cel x1 + Pen lll)
40 =>e=profiled (Cel x 1 + Pen IlI)
e s tatic (Pentium Il x 4)
30
20
10
0

1 2 4
Number of Nodes

20

CG Class A Performance

g
\J
Execution Time of CG Class Aon Hetero-Cluster (chunk_size:
none)
90 :
20 —g—static (Cel x1 + Pen lll)
guided (Cel x1 + Pen lll)
70 F —>=profiled (Cel x1 + Pen Ill)
60
(=}
b 50
e 40
~ 30 |
20 L Performance drops due to
the overhead of profiled
10
0

1 2 £

Number of Nodes 21

Breakdown of CG Class A

N

Static |Profiled
L2 miss ratio 29.6%| 31.1%
Page Fault at SCASH Level | 16456| 27201
Barrier 5088 8006

#® More page faults with profiled, because the data
access range may change on each iteration

#® More barriers with profiled, because it will repeat
unnecessary profiling loops (see next figure)

22

Overview of Loop Re-partitioning

N

Algorithm (again)

LR:

_ompc_profiled _sched next()

B — LR enabled?

No

Y

Assign iters based
on chunk_vect

Calc exec. speec

Predict exec. speed

Exc. speer data

]

~—___ Barrier

S v

\

then LR is performe

Perf gain?

loop re-partitioning

d

Perform LR :
in

Store division ratio

chunk_vect

Disable LR

,| Assign iters based

on chunk_vect

23

Conclusion

N

® We extended Omni/SCASH to support
profiled scheduling for dynamic load
balancing

#® \We made sure that profiled scheduling is
more effective than static/dynamic/guided
one on hetero-cluster with EP which are
not influenced by data placement

#® Profiled scheduling reveals its overhead
due to changes In data access ranges

\We showed the plan of page migration
extension to SCASH

24

N

Future Work

#Complete the implementation of page
migration

@ Integrate loop re-partitioning with

page migration
#Evaluate this system with more
applications

25

	Preliminary Evaluation of Dynamic Load Balancing Using Loop Re-partitioning on Omni/SCASH
	Background
	An Example of Performance Degradation on Hetero-Cluster
	In This Work
	Omni/SCASH [Sato et al. ’00](http://www.pccluster.org/)
	Target Problems
	OpenMP Schedulings
	Our Proposal: Profiled Scheduling
	The Syntax of Profiled Scheduling
	Examples of Profiled
	Code Translation when Profiled Scheduling is Specified
	Overview of Loop Re-partitioning Algorithm
	Dynamic/Guided v.s. Profiled
	Dynamic Page Migration Idea (1/2)
	Dynamic Page Migration Idea (2/2)
	Coordinate Profiled Scheduling with Page Migration
	Preliminary Evaluation
	Evaluation Environment
	EP Class S Performance(Homogeneous Settings)
	EP Class S Performance
	CG Class A Performance
	Breakdown of CG Class A
	Overview of Loop Re-partitioning Algorithm (again)
	Conclusion
	Future Work

