
PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

A Gaming Framework for a
transactional DSM System

• Multiplayer Gaming Framework
• A Sample Game ‘Teletennis’
• Performance Evaluation

• Conclusions & Future Work

Speaker: Michael Schoettner

• Distributed Heap Storage
• Transactional Consistency

Ulm University
Germany

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

The Plurix Project

• The Plurix project:
- PC-cluster Operating System with special Java compiler,
- Single System Image by storing everything in the DSM (including the kernel).

• Major Goal: simplified development of distributed applications, by:
- DSM-communication.
- Transactional consistency.
- Persistence & fault tolerance.
- Distributed garbage collection.
- Unified name service & cluster perspective.

• Applications:
- Virtual worlds,
- Telecooperation,
- Multi-player games & edutainment,
- (Number crunching & parallel processing).

1 / 15

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Distributed Heap Storage

2 / 15

• Currently 4 Gbytes of distributed shared virtual memory.

• Garbage collection using a backchain:
- Cluster-wide & incremental GC,
- object references are linked together,
- Garbage blocks have empty backchain.

• Relocation of objects in the Heap:
- Reallocate object,
- Adjust all references,
- avoid fragmentation,
- control False Sharing ...

• Persistent heap:
- stations leave and join,
- persistence by checkpointing,
- PageServer(s) used for recovery.

DSM Heap

MMUs

 Object
References

 Object

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Transactional Consistency

3 / 15

• Single memory accesses are not of interest, but only a set of
operations performed within a transaction.

• Transactions within Plurix:
- Follow the well-known ACID properties.
- Implicitly defined by the command loop.
- Are aborted in case of a collision.
- May automatically restart.

• Transactional Consistency(Wende):
- Sequential consistency always preserved.
- Strict consistency at commit points.

�
Reduced complexity,
but number crunching applications
may need additional weaker models.

T1

T2

W(x)=1

R(x)=0 R(x)=1

time

T1

T2

W(x)=1

R(x)=1 R(x)=1

time

serialization

sequential consistency

strict consistency

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Restartable Transactions

4 / 15

• Optimistic synchronization between concurrent Transactions:
- Writes will initially be on local copies only, shadow copies are preserved
- Separate Read-Sets and Write-Sets are built during a transaction,
- An ending transaction broadcasts a Commit-Request,
- Reset on collision �

• Collision resolution:
- short TAs preferred,
- Forward-Validation,
- Serializing on a token,
- Currently „First wins“,
- Fairness to be improved.

• Devices & Restartability:
- SmartBuffers,
- “undo”-Function.

Read-Set

Write-Set

Shadow-
copies

Reset

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Activity - Transactions

5 / 15

• Activity in Plurix:
- no Processes and Threads,
- but Transactions.

• Cooperative multitasking (Oberon-style):
- Central transaction loop,
- Garbage collection task,
- Legacy network protocols,
- Mouse & keyboard events,
- User-installed transactions.

• Transactions:
- extend the class “TA”
- implement method “run”.
- “run” is called by the scheduler.
- periodically or as an event listener.
- BOT & EOT inserted by scheduler implicitly.
- Long running TAs need to be split up explicitly by the programmer.

System System

System

Network

Input

System User

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Multiplayer Gaming Framework

6 / 15

• Object-oriented framework in Java:
- provides a shared scene graph with moving objects,
- replication & consistency of scene data managed by DSM,
- application-specific classes inherit, extend, and adapt the framework.

GameViewer

XSprite

XSpriteTA

Sprite

Game

Scene

PaintTA

PicElement

start class

game definition

Application

gamingTK

EventListener

runtime

TA

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Multiplayer Gaming Framework (2)

7 / 15

• Shared scene graph accessible through the cluster-wide name-service.

• Each moveable sprite is registered as a periodically called transaction.

• User input to control avatars handled by Java listeners.

• Challenge: transactional graphic output
- transactions rollbackable and restartable but device I/O not.
- solution 1: implement an undo buffer in display memory
- solution 2: execute device commands at commit time � smart buffers

write-off=1

27
11

write-off=2
read-off=1

0

x

interrupt spacetransaction space

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Update on Demand

8 / 15

• Each node executes periodically a PaintTA refreshing the game scene.

• Thus, changed data is automatically fetched by the underlying DSM.
• And slower nodes automatically skip object movements.

• But old positions must not be stored within the sprite.
�

better stored in the node-local viewer object

Node-1 Node-2

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Update on Demand

8 / 15

• Each node executes periodically a PaintTA refreshing the game scene.

• Thus, changed data is automatically fetched by the underlying DSM.
• And slower nodes automatically skip object movements.

• But old positions must not be stored within the sprite.
�

store with the local viewer object

Node-1 Node-2

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Update on Demand

8 / 15

• Each node executes periodically a PaintTA refreshing the game scene.

• Thus, changed data is automatically fetched by the underlying DSM.
• And slower nodes automatically skip object movements.

• But old positions must not be stored within the sprite.
�

store with the local viewer object

Node-1 Node-2

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Update on Demand

8 / 15

• Each node executes periodically a PaintTA refreshing the game scene.

• Thus, changed data is automatically fetched by the underlying DSM.
• And slower nodes automatically skip object movements.

• But old positions must not be stored within the sprite.
�

store with the local viewer object

Node-1 Node-2

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

A Sample Game ‘Teletennis’

9 / 15

• 256 lines of source code.

• Support up to four players.
• Ball moved by a periodically called TA.

• Each racket is controlled by an interactive user.

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Performance Evaluation

11 / 15

• Measurements with four nodes:
- Node 1: Pentium 4, 2.4 GHz, 256 MB RAM (266 Mhz).
- Node 2: AthlonXP 2.2, 1.8 GHz, 256 MB RAM (333 Mhz).
- Node 3: AthlonXP, 2.0 GHz, 256 MB RAM (333 Mhz).
- Node 4: Celeron, 1.8 GHz, 256 MB RAM (266 Mhz).
- Connected by a FastEthernet Hub.

• Measurements are integrated into the memory consistency protocol.

• Game setup:
- Rackets are moved automatically every 50ms.
- PaintTA is executed on each node every 40ms.
- Ball is moved by a TA running on the first node every 50ms.

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Performance Evaluation – Cluster Latencies

12 / 15

• Average of all page/token requests of all nodes in the cluster.

0

100

200

300

400

500

600

1 2 3 4

#nodes

m
ic

ro
se

co
nd

s

overall page latency page latency

overall token latency token latency

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Performance Evaluation – Cluster Throughput

• Total number of commits and aborts in the cluster.

0
20
40
60
80

100
120

140
160
180

1 2 3 4

#nodes

T
A

s

commits/s

aborts/s

13 / 15

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

Performance Evaluation – Network Traffic

14 / 15

• OS can manage 2´700 page requests per second using Fast Ethernet.

• Number of page requests per second during running game:

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4

#nodes

pa
g
e

 r
e

qu
e

s
ts

 /
s
e

co
nd

node 1

node 2

node 3

total

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

• Multiplayer games over new perspectives for DSM systems.

• Distributed Shared Memory:
- simplifies distribution and replication of data and
- ensures consistency of shared scene graphs.

• More sophisticated games are needed to evaluate scalability …

• Multi-room games and virtual worlds of special interest.

15 / 15

Conclusions

PLURIXPLURIXDepartment of Distributed SystemsDepartment of Distributed Systems

The End

CeBIT 2000 DSM-Demonstrator

http://www.plurix.de

