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The Plurix Project

• The Plurix project:
- PC-cluster Operating System with special Java compiler,
- Single System Image by storing everything in the DSM (including the kernel).

• Major Goal: simplified development of distributed applications, by:
- DSM-communication.
- Transactional consistency. 
- Persistence & fault tolerance.
- Distributed garbage collection.
- Unified name service & cluster perspective. 

• Applications:
- Virtual worlds,
- Telecooperation,
- Multi-player games & edutainment,
- (Number crunching & parallel processing).
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Distributed Heap Storage
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• Currently 4 Gbytes of distributed shared virtual memory.

• Garbage collection using a backchain:
- Cluster-wide & incremental GC,
- object references are linked together,
- Garbage blocks have empty backchain.

• Relocation of objects in the Heap:
- Reallocate object,
- Adjust all references,
- avoid fragmentation,
- control False Sharing ...

• Persistent heap:
- stations leave and join,
- persistence by checkpointing,
- PageServer(s) used for recovery.
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Transactional Consistency
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• Single memory accesses are not of interest, but only a set of
operations performed within a transaction.

• Transactions within Plurix:
- Follow the well-known ACID properties.
- Implicitly defined by the command loop.
- Are aborted in case of a collision.
- May automatically restart.

• Transactional Consistency(Wende):
- Sequential consistency always preserved.
- Strict consistency at commit points.

�
Reduced complexity,
but number crunching applications
may need additional weaker models.
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Restartable Transactions
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• Optimistic synchronization between concurrent Transactions:
- Writes will initially be on local copies only, shadow copies are preserved
- Separate Read-Sets and Write-Sets are built during a transaction,
- An ending transaction broadcasts a Commit-Request,
- Reset on collision �

• Collision resolution:
- short TAs preferred,
- Forward-Validation,
- Serializing on a token,
- Currently „First wins“,
- Fairness to be improved.

• Devices & Restartability:
- SmartBuffers,
- “undo”-Function.
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Activity - Transactions
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• Activity in Plurix: 
- no Processes and Threads,
- but Transactions.

• Cooperative multitasking (Oberon-style):
- Central transaction loop,
- Garbage collection task,
- Legacy network protocols,
- Mouse & keyboard events,
- User-installed transactions.

• Transactions:
- extend the class “TA”
- implement method “run”.
- “run” is called by the scheduler.
- periodically or as an event listener. 
- BOT & EOT inserted by scheduler implicitly.
- Long running TAs need to be split up explicitly by the programmer.
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Multiplayer Gaming Framework
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• Object-oriented framework in Java:
- provides a shared scene graph with moving objects,
- replication & consistency of scene data managed by DSM,
- application-specific classes inherit, extend, and adapt the framework.
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Multiplayer Gaming Framework (2)
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• Shared scene graph accessible through the cluster-wide name-service.

• Each moveable sprite is registered as a periodically called transaction.

• User input to control avatars handled by Java listeners.

• Challenge: transactional graphic output
- transactions rollbackable and restartable but device I/O not.
- solution 1: implement an undo buffer in display memory
- solution 2: execute device commands at commit time � smart buffers
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Update on Demand
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• Each node executes periodically a PaintTA refreshing the game scene.

• Thus, changed data is automatically fetched by the underlying DSM.
• And slower nodes automatically skip object movements.

• But old positions must not be stored within the sprite.
�

better stored in the node-local viewer object

Node-1 Node-2
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A Sample Game ‘Teletennis’
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• 256 lines of source code.

• Support up to four players.
• Ball moved by a periodically called TA.

• Each racket is controlled by an interactive user.
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Performance Evaluation
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• Measurements with four nodes:
- Node 1: Pentium 4, 2.4 GHz, 256 MB RAM (266 Mhz).
- Node 2: AthlonXP 2.2, 1.8 GHz, 256 MB RAM (333 Mhz).
- Node 3: AthlonXP, 2.0 GHz, 256 MB RAM (333 Mhz).
- Node 4: Celeron, 1.8 GHz, 256 MB RAM (266 Mhz).
- Connected by a FastEthernet Hub.

• Measurements are integrated into the memory consistency protocol.

• Game setup:
- Rackets are moved automatically every 50ms.
- PaintTA is executed on each node every 40ms.
- Ball is moved by a TA running on the first node every 50ms.
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Performance Evaluation – Cluster Latencies
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• Average of all page/token requests of all nodes in the cluster.
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Performance Evaluation – Cluster Throughput

• Total number of commits and aborts in the cluster.
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Performance Evaluation – Network Traffic
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• OS can manage 2´700 page requests per second using Fast Ethernet.

• Number of page requests per second during running game:
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• Multiplayer games over new perspectives for DSM systems.

• Distributed Shared Memory:
- simplifies distribution and replication of data and 
- ensures consistency of shared scene graphs.

• More sophisticated games are needed to evaluate scalability …

• Multi-room games and virtual worlds of special interest.
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Conclusions
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The End

CeBIT 2000 DSM-Demonstrator

http://www.plurix.de


