A Gaming Framework for a
transactional DSM System

e Distributed Heap Storage
e Transactional Consistency

A = * Multiplayer Gaming Framework
o A Sample Game ‘Teletennis’
Bl » Performance Evaluation

Ulm University :
Germany e Conclusions & Future Work

Speaker: Michael Schoettner

Department of Distributed Systems NN PLURIX 4

The Plurix Project

e The Plurix project:

- PC-cluster Operating System with special Java compiler,
- Single System Image by storing everything in the DSM (includuegkernel).

* Major Goal:simplified development of distributed applications, by:
- DSM-communication.

Transactional consistency.

Persistence & fault tolerance.

Distributed garbage collection. M

Unified name service & cluster perspective. 7 -

-
o
.
o
.
-
.
.
.
o
.
o
-
o
.
-
o
.
.
.
.

« Applications:
- Virtual worlds,
- Telecooperation,
- Multi-player games & edutainment,
- (Number crunching & parallel processing).

Department of Distributed Systems NNV PLURIX 4

Distributed Heap Storage

» Currently 4 Gbytes of distributed shared virtual memory.

» Garbage collection using a backchain:
- Cluster-wide & incremental GC,
- object references are linked together,
- Garbage blocks have empty backchain.

* Relocation of objects in the Heap:
- Reallocate object,
- Adjust all references,
- avoid fragmentation,
- control False Sharing ...

* Persistent heap:
- stations leave and join,
- persistence by checkpointing,
- PageServer(s) used for recovery

PLURIX &

Department of Distributed Systems || IIEGzGEG

Transactional Consistency

e Single memory accesses are not of interest, but only a set of
operations performed withinteansaction.

e Transactions within Plurix:
- Follow the well-known ACD properties.
- Implicitly defined by the command loop. sequential consistency
- Are aborted in case of a collision.

- May automatically restart. 1 W=t time
: : T2 R(X)=0 R(x)=1
o Transactional Consistency(Wende):
- Sequential consistency always preserved. l
- Strict consistency at commit points. serialization
- Reduced complexity, | | '
but number crunching applications ~ S"'¢teonsistency
may need additional weaker models. T1 W(x)=1 time
T2 R(X)=1 R(x)=1

Department of Distributed Systems | IEGNG 3/15 PLURIX fg};

Restartable Transactions

o Optimistic synchronization between concurrent Transactions:

- Writes will initially be on local copies only, shadow copage preserved
- Separate Read-Sets and Write-Sets are built during adtmmsa
- An ending transaction broadcasts a Commit-Request,

- Reset on collisiom>
(Re_set\
|I|= Shadow
@ copies

‘0
Read-Set=—

» Collision resolution:

- short TAs preferred,
Forward-Validation,
Serializing on a token,
Currently ,First wins*,
Fairness to be improved.

e Devices & Restartability
- SmartBuffers,
- “undo”-Function.

«

ﬂ/f

Activity - Transactions

 Activity in Plurix:
- no Processes and Threads,
- but Transactions.

« Cooperative multitasking (Oberon-style):
- Central transaction loop,
Garbage collection task,
Legacy network protocols,
Mouse & keyboard events,
User-installed transactions.

* Transactions:
- extend the class “TA”
- implement method “run”.
- “run” is called by the scheduler.

- periodically or as an event listener.

- BOT & EOT inserted by scheduler implicitly.

- Long running TAs need to be split up explicitly by the programmer.

Department of Distributed Systems NNV PLURIX 4

Multiplayer Gaming Framework

* Object-oriented framework in Java:
- provides a shared scene graph with moving objects,
- replication & consistency of scene data managed by DSM,
- application-specific classes inherit, extend, and adapt thetvark.

~N

runtime gamingTK

EventListener - =

game definition

Application start class

XSpriteTA

PaintTA

Department of Distributed Systems [NV PLURIX ¢

Multiplayer Gaming Framework (2)

» Shared scene graph accessible through the cluster-wide name:service
« Each moveable sprite is registered as a periodically called tramsacti
e User input to control avatars handled by Java listeners.

e Challenge: transactional graphic output
- transactions rollbackable and restartable but device I/O not.
- solution 1: implement an undo buffer in display memory
- solution 2: execute device commands at commit tnemart buffers

transaction space interrupt space

write-off=1 -
write-off=2 e \ read-off=1

0

Department of Distributed Systems [N PLURIX 4

Update on Demand

» Each node executes periodicallyyaintTA refreshing the game scene.
* Thus, changed data is automatically fetched by the underlying DSM.
» And slower nodes automatically skip object movements.

 But old positions must not be stored within the sprite.
—> better stored in the node-local viewer object

Node-1 Node-2

Department of Distributed Systems [NV PLURIX 4

Update on Demand

* Each node executes periodically a PaintTA refreshing the game scene
* Thus, changed data is automatically fetched by the underlying DSM.
» And slower nodes automatically skip object movements.

 But old positions must not be stored within the sprite.
—> store with the local viewer object

Node-1 Node-2

Department of Distributed Systems [NV PLURIX 4

Update on Demand

* Each node executes periodically a PaintTA refreshing the game scene
* Thus, changed data is automatically fetched by the underlying DSM.
» And slower nodes automatically skip object movements.

 But old positions must not be stored within the sprite.
—> store with the local viewer object

Node-1 Node-2

Department of Distributed Systems [NV PLURIX 4

Update on Demand

* Each node executes periodically a PaintTA refreshing the game scene
* Thus, changed data is automatically fetched by the underlying DSM.
» And slower nodes automatically skip object movements.

 But old positions must not be stored within the sprite.
—> store with the local viewer object

Node-1 Node-2

® .Q‘J/JF

Department of Distributed Systems | INIGzNGEG 8/15 PLURI. ‘fﬁé}-

A Sample Game ‘Teletennis’

» 256 lines of source code.

e Support up to four players.

 Ball moved by a periodically called TA.

» Each racket is controlled by an interactive user.

==

Department of Distributed Systems [NI PLURIX ¢

Performance Evaluation

 Measurements with four nodes:

- Node 1: Pentium 4, 2.4 GHz, 256 MB RAM (266 Mhz).
Node 2: AthlonXP 2.2, 1.8 GHz, 256 MB RAM (333 Mhz).
Node 3: AthlonXP, 2.0 GHz, 256 MB RAM (333 Mhz).
Node 4: Celeron, 1.8 GHz, 256 MB RAM (266 Mhz).
Connected by a FastEthernet Hub.

 Measurements are integrated into the memory consistency protocol.

« Game setup:
- Rackets are moved automatically every 50ms.
- PaintTA is executed on each node every 40ms.
- Ballis moved by a TA running on the first node every 50ms.

Department of Distributed Systems [NV PLURIX ¢

Performance Evaluation — Cluster Latencies

» Average of all page/token requests of all nodes in the cluster.

600

500
400 A /./.
300

200

microseconds

100

0
1 2 3 4

#nodes

—a— overall page latency —a— page latency
—m— overal token latency —e—token latency

Department of Distributed Systems [N PLURIX 4

Performance Evaluation — Cluster Throughput

e Total number of commits and aborts in the cluster.

180 — —— COMMItS/S
160 4~ aborts/ P

140
120
100

80 -

60

- /
20

ol —"

1 2 3 4
#nodes

TAs

Department of Distributed Systems [N PLURIX 4

Performance Evaluation — Network Traffic

* OS can manage 2700 page requests per second using Fast Ethernet.
 Number of page requests per second during running game:

500 —e—node 1
450 —A— node 2
400 —=—node 3 N
350 —=—total /
300 - //-///

250

200 ’//

150 -
100 -
50 -

page requests / second

Department of Distributed Systems (NN PLURIX 4

Conclusions

Multiplayer games over new perspectives for DSM systems.
Distributed Shared Memory:

- simplifies distribution and replication of data and
- ensures consistency of shared scene graphs.

More sophisticated games are needed to evaluate scalability ...
Multi-room games and virtual worlds of special interest.

Department of Distributed Systems [N PLURIX 4

The End

CeBIT 2000 DSM-Demonstrator

Plurix Highspeed OS
o m Lestanes bun Soea sassars

i) ke
H jE]\’]f?,“:'.:. 15
1 AR RUARSE tH i 20 1

g uf,JJA;:.J iz e

(& http://www.plurix.de

Department of Distributed Systems NN PLURIX ¢

