Checkpointing and Recovery of Shared
Memory Parallel Applications in a Cluster

R. Badrinath — INRIA / IIT Kharagpur
(India)
C. Morin — INRIA (France)
G. Vallee — EDF R&D (France)

1

* Today, clusters are widely used as alternative of
small parallel computer

* Targeted applications
* Sequential applications
* Message Passing applications
* Shared Memory applications using a DSM

* An approach : Single System Image (SSI)
(federation of all resources)
* Failures of cluster nodes (due to the hardware): Fault

Tolerance mechanisms
2

* Kerrighed OS (INRIA - PARIS reseach team) Is
an OpenSource project (http://www.kerrighed.org)

* The current Kerrighed OS

® Linux kernel +

* Process Management Module (Aragorn)

* Memory Management Module (Gandalf)

* |PC object Management Module (Elrond)

* Communication Management Module (Gimli/Gloin)

Background

To support fault tolerance in a SSI
* distributed system / cluster support DSM and MP
* we use checkpointing and recovery to do this

We have many options
* coordinated checkpointing
* uncoordinated checkpointing

* partly coordinated checkpointing
* ... and corresponding recovery strategies too!

We wish to implement common mechanisms
We wish to try out several strategies
4

* Support checkpointing and recovery of parallel
applications using both shared memory and
message passing in a cluster.

* Support through some set of basic common
mechanisms.

* Support to experiment with a variety of
checkpoint / recovery protocols.

e Basic common mechanisms

* Dependency tracking => memory

* |Implementation of checkpoint policy: the case of
coordinated checkpoint

Basic Common Mechanisms: Recovery
lines

* Checkpointing must be such that we can
compute recovery lines and rollback to them.

* What is a recovery line?

Py

A recovery line
IS a consistent set

P

of checkpoints

Ps Y

Consistent wrt send-
receive relation.

Basic Common Mechanisms:
Dependencies

* To compute a recovery line requires to track
dependencies caused by interactions.

* For a DSM, Interactions include:
e DSM Read
e DSM Write

* We will treat shared memory as entities!

Basic Commom Mechanisms: The Theory
Says...

* Many things...
* We need to

* Track direct dependencies between entities
* Create the dependence graph

* Compute the latest recovery line by reachability
analysis

* |In Practice
* ... we need to support optimisations

Basic Common Mechanisms: The Theory
to Track Dependencies

Sequence number
/‘ Checkpoint Fomred by entity 2
1 0,0,0,0 1,0,0,0 :
[0,0, cm]l (00,00) []..nsr‘“ entity | (task)

L0 M “L1
L Potential MNext C'h:-:kp:-int
[0,0,0,0] 0.LLA2 Y, 1210 entity 2 (task)
€20 w “s9
[ﬂﬂ.ﬂﬂ]l 1 Lo a2 [n.L.z.L]|3 entity 3 (page)
C J.UI I C 31 3 3| l T e
pood]l 1 |2~-_r

. " (0032
“entity 4 (task)
c—t.ﬂl & 4]_l -1 2 t}r
_ Direct Dependency Vector
heckpoint

Timestamp (DDV)
10

Basic Common Mechanisms:
Dependency tracking

* Add data items
* A sequence number (sn)
* ADDV

* Update actions on interactions
* Sn
* DDV

* On checkpoint
* Save timestamp, update sn

* Onrecovery

* Re-initialise timestamps, sn
11

Basic Common Mechanisms: Entity states

* Task private states
* process management module

* Shared memory states
* |n cooperation with memory manager module

* |PC states:

* Locks, barriers states (native support of checkpointing
In Kerrighed)

12

Policies - Checkpoint/Restart Protocols

* Have threads to run the protocol for each entity.

* Threads participate in:
+ Checkpointing
+ Restart / Rollback

* This would be an implementation of the policy.

* We will initially focus on coordinated checkpointing
and recovery.

13

Policy: How checkpointing works

Coordinator

Chkpt_%l nch Chkpt_Synch

- LF

Memory chkpt_srv
Memory chkpt_srv ~

14

Policy: Coordinated Checkpointing

* |nteraction phase - Nothing special

* Checkpoint phase -

* Checkpoint coordinator
* Maybe the checkpoint initiator application process
* Maybe an application call from one of the tasks themsel

* Protocol thread on behalf of each entity
* Kernel mode of a task
* Page manager thread

* Optimisations may require a more ela ocol.
* Ex. Not all entities need to be coordinated

15

Policy: Coordinated Recovery

* Recovery phase -
* Recovery initiator/coordinator

* Recovery protocol handler for each entity
* We may use kernel mode threads for tasks
* Page managers for pages

* Optimisations make use of the dependency tracking
mechanism.

16

* We have a simple coordinator
e System initiated coordinated checkpoint.
* Protocol aborts if tasks not in « good » state.
* Incremental Checkpointing of DSM states.
* Recovery not yet complete.

* Checkpointing performance results say that the
checkpointing protocol is not a bottleneck.

* Checkpoint saving time is the bottleneck

* Motivation for a high speed reliable storage..
(containers for checkpoints?)

17

Effect of Checkpointing on Execution Time

500 W No Checkpoint
e x| 30sec
B 10sec

A Bsec
B 20s5ec
N Ssac

8

:

PF777I 7P

b O e

=

Time to Checkpoint(sec)
8

Sm5%ANRS N

=
"

3542 nodes GB/3nodes GBf4dnodes G &nodes GS/6 nodes
G5, Gram-Schmidt 2048 JC.Jacobi 2048

18

Rem: remote node BEA
NES: an WFES directory

6000 Dslk: local disk Dsk

S0O00 Mem: local node RAMNM Dak

4000

3000

2000
‘“‘E" = Rem Rem
5 1000
H
= 300
=
= 600 Rem
e
= 400
-

200 Dsk
| Mem
1024 3072 4096

Checkpoint Size (4KB pages)

19

Common mechanisms can support dependency
tracking involving different IPC forms.

Important to design tasks/memory/barriers in a
way as to support « checkpointing » and
« recovery » of their states.

Coordinated checkpointing has been
demonstrated on Kerrighed.... and motivates
work on storage systems.

Implement new checkpoint protocols

Integrate to the Kerrighed's version available on

the web
20

Thanks!

21

