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* Today, clusters are widely used as alternative of
small parallel computer

* Targeted applications
* Sequential applications
* Message Passing applications
* Shared Memory applications using a DSM

* An approach : Single System Image (SSI)
(federation of all resources)
* Failures of cluster nodes (due to the hardware): Fault

Tolerance mechanisms
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* Kerrighed OS (INRIA - PARIS reseach team) Is
an OpenSource project (http://www.kerrighed.org)

* The current Kerrighed OS

® Linux kernel +

* Process Management Module (Aragorn)

* Memory Management Module (Gandalf)

* |PC object Management Module (Elrond)

* Communication Management Module (Gimli/Gloin)



Background

To support fault tolerance in a SSI
* distributed system / cluster support DSM and MP
* we use checkpointing and recovery to do this

We have many options
* coordinated checkpointing
* uncoordinated checkpointing

* partly coordinated checkpointing
* ... and corresponding recovery strategies too!

We wish to implement common mechanisms
We wish to try out several strategies
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* Support checkpointing and recovery of parallel
applications using both shared memory and
message passing in a cluster.

* Support through some set of basic common
mechanisms.

* Support to experiment with a variety of
checkpoint / recovery protocols.




e Basic common mechanisms

* Dependency tracking => memory

* |Implementation of checkpoint policy: the case of
coordinated checkpoint




Basic Common Mechanisms: Recovery
lines

* Checkpointing must be such that we can
compute recovery lines and rollback to them.

* What is a recovery line?

Py

A recovery line
IS a consistent set

P

of checkpoints
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Consistent wrt send-
receive relation.




Basic Common Mechanisms:
Dependencies

* To compute a recovery line requires to track
dependencies caused by interactions.

* For a DSM, Interactions include:
e DSM Read
e DSM Write

* We will treat shared memory as entities!




Basic Commom Mechanisms: The Theory
Says...

* Many things...
* We need to

* Track direct dependencies between entities
* Create the dependence graph

* Compute the latest recovery line by reachability
analysis

* |In Practice
* ... we need to support optimisations




Basic Common Mechanisms: The Theory
to Track Dependencies
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Basic Common Mechanisms:
Dependency tracking

* Add data items
* A sequence number (sn)
* ADDV

* Update actions on interactions
* Sn
* DDV

* On checkpoint
* Save timestamp, update sn

* Onrecovery

* Re-initialise timestamps, sn
11




Basic Common Mechanisms: Entity states

* Task private states
* process management module

* Shared memory states
* |n cooperation with memory manager module

* |PC states:

* Locks, barriers states (native support of checkpointing
In Kerrighed)
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Policies - Checkpoint/Restart Protocols

* Have threads to run the protocol for each entity.

* Threads participate in:
+ Checkpointing
+ Restart / Rollback

* This would be an implementation of the policy.

* We will initially focus on coordinated checkpointing
and recovery.
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Policy: How checkpointing works

Coordinator
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Policy: Coordinated Checkpointing

* |nteraction phase - Nothing special

* Checkpoint phase -

* Checkpoint coordinator
* Maybe the checkpoint initiator application process
* Maybe an application call from one of the tasks themsel

* Protocol thread on behalf of each entity
* Kernel mode of a task
* Page manager thread

* Optimisations may require a more ela ocol.
* Ex. Not all entities need to be coordinated
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Policy: Coordinated Recovery

* Recovery phase -
* Recovery initiator/coordinator

* Recovery protocol handler for each entity
* We may use kernel mode threads for tasks
* Page managers for pages

* Optimisations make use of the dependency tracking
mechanism.
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* We have a simple coordinator
e System initiated coordinated checkpoint.
* Protocol aborts if tasks not in « good » state.
* Incremental Checkpointing of DSM states.
* Recovery not yet complete.

* Checkpointing performance results say that the
checkpointing protocol is not a bottleneck.

* Checkpoint saving time is the bottleneck

* Motivation for a high speed reliable storage..
(containers for checkpoints?)
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Effect of Checkpointing on Execution Time
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Common mechanisms can support dependency
tracking involving different IPC forms.

Important to design tasks/memory/barriers in a
way as to support « checkpointing » and
« recovery » of their states.

Coordinated checkpointing has been
demonstrated on Kerrighed.... and motivates
work on storage systems.

Implement new checkpoint protocols

Integrate to the Kerrighed's version available on

the web
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Thanks!
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