
Using a DSM
Application to Locally
Align DNA Sequences

R. Batista, D. N. Silva, A. Melo, L. Weigang

University of Brasilia (UnB), Brazil

WSDSM 2004 - CCGrid 2004 - April 21st - Chicago, US

Outline

! Introduction
! Algorithm for Local Sequence Alignment
! Scope-consistent DSM systems
! Parallel Algorithm to Compare Biological

Sequences
! Experimental Results
! Conclusions and Future Work

WSDSM 2004 - CCGrid 2004 - April 21st - Chicago, US

Introduction

! The comparison of two genomic sequences
is one of the most basic operations in
Computational Biology.

! Its goal is to define how similar two
sequences are.
"Local alignment: similarity between two portions

of two sequences
! Global alignment: similarity between the whole

sequences.

Introduction

! Smith-Waterman´s Algorithm: one of the
most widely used algorithm to compute local
alignments.
#Quadratic time and space complexity

• For long sequences, it is a very compute
intesive task.
#Parallel processing

Introduction

! Distributed Shared Memory (DSM) allows the
use of the shared memory programming
paradigm in distributed architectures.

! To overcome the coherence overhead of
DSM systems, relaxed memory models were
proposed.

! JIAJIA is a DSM system that implements the
scope consistency memory model (relaxed
model)

Goal of the present work

! To propose and evaluate a parallelisation
strategy to implement the Smith-Waterman
algorithm in a scope-consistent DSM System.

! To compare the results obtained with DSM
and MPI implementations

! The space complexity was reduced by the
use of an heuristic.

Biological Sequence
Alignment

! To find the best alignment between two
sequences, one sequence is placed above
the other and a score is computed.

G A C G G A T T A G G A T C G G A A T A Gs1 s2

G

G

s1

s2

+1

A

A

+1

match

-

T

-2

gap

C

C

+1

G

G

+1

G

G

+1

A

A

+1

match

T

A

-1

mismatch

T

T

+1

A

A

+1

G

G

+1

match

+6

score

Smith-Waterman´s Algorithm
Local Sequence Alignment

! Based on dynamic programming with quadratic time
and space complexity.

! Given two sequences s and t, where |s|=m and |t|=n,
an array Am+1,n+1 is built using the following equation:

−−
+−−

−−

=

.0

2])..1[],1..1[(

),(])1..1[],1..1[(

2])1..1[],..1[(

max])..1[],..1[(
jtissim

jipjtissim

jtissim

jtissim
p(i,j) = 1, if s[i] = t[j]
 -1, otherwise

To compute each value A[i][j], we need to access
A[i-1][j], A[i-1][j-1] and A[i][j-1]

Smith-Waterman´s Algorithm
 Local Sequence Alignment

0

A[i][j-1]

0

A[i-1][j-1]

0

A[i-1][j]

A[i][j]

T

T max
A[i-1][j] – 2,
A[j][i-1] - 2,
A[i-1][j-1] + p(i,j)
0

p(i,j) = 1, s[i] = t[j]
-1, s[i] ≠ t[j]

-2

-2

1

1

Smith-Waterman´s Algorithm
Example

300

020

001

001

0

0

0

0

0000

CGA

C

G

A

A

local
alignment

A G C
A G C

Local Sequence Alignment x
Global Sequence Alignment

ATG.................... A A A C T A.................AACT........................TTTCC......AT (400K)

T
C

G
...

...
...

...
...

..C
C

G
T

...
...

...
...

...
...

..A
A

A
T

T
A

...
...

...
...

...
...

...
...

...
...

T
T

T
C

C
...

...
T

T
 (

40
0k

)

s

t

similarity
region

Scope Consistent DSM
Systems

! Scope consistency is a relaxed memory
model proposed by Iftode in 1996.

! Synchronisation mechanisms are locks,
barriers and condition variables.

! The execution is divided in scopes, which are
created in a per-lock basis.
! Only data inside scope i are kept consistent for

processors that access that scope.

! Barriers define a global synchronisation point.

Scope Consistent DSM
Systems (Example)

a b c

0 0 0

lock (l);
a=1;
unlock(l);
lock(v);
b=1;
unlock(v);
cv_signal(cv1);
barrier();

P1...

...

a b c

0 0 0

cv_wait(cv1);
lock (v);
c=b;
unlock(v);
barrier();

P2...

...

1 111 11

Scope Consistent DSM
Systems - JIAJIA

! JIAJIA implements scope consistency with an
optimised coherence protocol.

! Lock primitives: jia_lock, jia_unlock
! Condition variable primitives: jia_setcv,

jia_waitcv
! Barrier primitive: jia_barrier

Parallel Algorithm to Compare
sequences

! As our goal is to compare long sequences in
clusters, quadratic space complexity is
prohibitive.
! For instance, to compare two 400KB sequences,

we would need 1.6 TB.

! For this reason, we used an heuristic that
works only with two rows, reducing space
complexity to O(n).

Parallel Algorithm to Compare
sequences

0 0 0 0 0 0 0 0 0 0 0 Reading row

0 1 1 0 0 0 1 0 1 1 0 Writing row

 A A G C C A T A A T

0 1 1 0 0 0 1 0 1 1 0

! A data structure is used to keep the following information:
! Current score,
! Initial and final alignment coordinates,
! Maximal and minimal score,
! Gaps, matches and mismatches counters

! Thus, information of A[i-1][j], A[i-1][j-1] and A[i][j-1] is passed
to A[i][j]

Parallel Algorithm to Compare
DNA sequences

! The access pattern presented by the algorithm
leads to a non-uniform amount of parallelism.

300

020

001

001

0

0

0

0

0000

CGA

C
G
A
A

Parallel Algorithm to Compare
sequences

! Each processor p acts on two rows, a reading
row and a writing row

! Work is assigned in a column basis.
! Synchronisation is achieved by locks and

condition variables
! Barriers are only used at the beginning and at

the end of computation.

Parallel Algorithm to Obtain
Local Alignments

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

2

3

4

5

6

7

8

P0

P1

P2

P3

P0

P1
P2

P3

16x8 blocking factor for 4 processors

Experimental Results

! The algorithm was implemented in C, using
JIAJIA v2.1 and mpich 1.2.4 on top of Debian
Linux 2.1.

! Experiments were run on a dedicated cluster
of 8 Pentium II 350MHz, 160MB RAM
connected by a 100Mbps Ethernet switch.

! We used real DNA sequences obtained from
www.ncbi.nlm.nih.gov/PMGifs/Genomes.

Experimental Results
Defining the block factor

! Execution times to align 50K sequences with 8
processors, with JIAJIA

Blocking Time(s) Performance gain
(relative to 1x1)

1 x 1 732.79 0%

2 x 2 459.80 59%

3 x 3 394.59 85%

4 x 4 368.15 99%

5 x 5 363.13 101%

Experimental Results
Execution Times(s) / Speedups
(40bandsx40blocks)

363.13/7.28701.95/3.731352.76/1.932620.6450K x 50K

36.51/6.2067.42/3.35130.22/1.73226.5115K x 15K

12.55/4.5521.18/2.6938.59/1.4857.188K x 8K

8 proc
Exec /Speedup

4 proc
Exec /Speedup

2 proc
Exec /Speedup

Serial
Exec

Size

Execution times (8 processors)
- current and previous

0

500

1000

1500

2000

2500

3000

15k x 15k 50k x 50k

serial

previous [12]
(8 processors)

current
(8 processors)

E
xe

cu
tio

n
tim

es
 (

s)

JIAJIA and MPICH
(5x5 blocking factor)

Processors

1 238.58/1 239.10/1

2 120.57/1.97 119.01/2.00

4 62.67/3.80 64.54/3.70

8 36.51/6.53 36.26/6.59

58.23/1 58.01/1

32.06/1.81 30.62/1.89

18.16/3.20 18.78/3.08

12.56/4.63 8.64/6.71

JIAJIA
Time(s)/speedup

MPICH
Time(s)/speedup

15Kx15K

JIAJIA
Time(s)/speedup

MPICH
Time(s)/speedup

8Kx8K

Conclusions

! We proposed and evaluated a DSM
implementation of a variant of the Smith-
Waterman algorithm for biological sequence
alignment.

! The results obtained in an 8-machine cluster
presented very good speedups.

! For 15K DNA sequences, results obtained
with JIAJIA and mpich were very similar

Future work

! We intend to evaluate na alternative
approach that uses variable block size.

! The mpi strategy will be ported to mpich-g in
order to compare very long DNA sequences
(3M sequences) in a grid system.

