
DSM2004

Involving Memory Resource
Consideration into Workload

Distribution for Software DSM Systems

Presented by Yen-Tso Liu

Department of Electrical Engineering,
National Chung Kung University,

Tainan, Taiwan

2

DSM2004

Outline

Introduction
Related Works
Analysis
Implementation
Performance
Conclusions and Future Work

3

DSM2004

Introduction

Distributed Shared Memory System (DSM)
a run time system that emulates a virtual
shared memory abstract on computer network
via. software technology

4

DSM2004

Network

P VM PMSD P VMPM SDP VM PM SD

P : Processor
VM: Virtual Memory
PM: Physical Memory

Distributed Shared Virtual Memory

T
TT T

T
T

T

Node

Introduction (Conti.)

V V

V

V

T : Thread of a DSM AP

V : Shared Variable

: Swap DeviceSD

5

DSM2004

Related Works

Past Methods
adapted the number of threads assigned on
each processor to make load balance
never cared about whether processors have
enough memory capability to meet thread
memory demand

Phy.
Mem Phy.

MemPhy.
Mem

Phy.
Mem

CPU CPU CPU CPU= = =

≠ ≠ ≠

6

DSM2004

Introduction (Conti.)
Insufficient physical memory space

processors need to consecutively execute
page replacement for data caching while
executing the threads
the execution of these threads will be
absolutely delayed by the latency of
executing page replacements

Node 1

Node 2

Node 3

Node 4

Synchronization
Point Execution Time

Waiting time

Synchronization
Point

7

DSM2004

Analysis

is the execution time of node x

… Eq.(1)

is the time that node x executes the
computational work of local threads.

is the time that node x
communicates with other nodes for data
sharing purposes.

is the time spent by node x in
performing page replacements to cache the
data accessed by its local threads.

xT
x

comm
x

mem
x

comp
x TTTT ++=

x
compT

x
commT

x
memT

8

DSM2004

Analysis (Conti.)

Let

be the set of threads running on node x,

be the computation time of thread j

running on node x

xS

∑
∈

=
xSi

i
comp

x
comp tT

i
compt

9

DSM2004

Let
be the memory access latency of thread i on

node x.

be the maximum memory space which node
x is able to afford for thread memory demand

be the memory space requested by thread i

Analysis (Conti.)

xM

im

⎪
⎪
⎩

⎪
⎪
⎨

⎧

≤

>

=

∈

∈∈
∑

x
Si

i

x
Si

i
Si

i
mem

x
mem

Mmif

Mmift

T

x

xx

U

U

　　　　　　

　　　　　

,0

,

i
memt

10

DSM2004

Analysis (Conti.)

: the number of page replacements that

node x executes in caching the data needed by

thread i

：the average time of swapping in pages

on node x

：the average time of searching LRU data

pages and swapping them out on node x

if

()x
spi

x
spo

Si

ii
mem ttft

x

+×= ∑
∈

x
spot

x
spit

11

DSM2004

Analysis (Conti.)

∑ ∑
≠= =

=
N

xyy

P

k
xyk

x
comm CT

,1 1
where packet

packet

Si
ik

xyk t
Size

diff
C x ×

⎥
⎥
⎥
⎥
⎥

⎥

⎤

⎢
⎢
⎢
⎢
⎢

⎢

⎡
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

=
∈
Uφ

if node x and node y share page k, and otherwise. 0=xykC

N is the number of execution nodes

P is the number of total data pages

means the network packet size

is the average time of transferring one

message packet in network

packetSize

packett

12

DSM2004

Workload Distribution Algorithm

1. Identify the node with the longest finish time and the node
with the shortest finish time, and designate these as the
source node and the destination node, respectively. Specify
the length of the program’s critical path to be the same as
the finish time of the source node.

2. Migrate a thread from the source node to the destination
node.

a. Use Eq.(1) to predict the length of the program’s critical
path, and determine if the length of the critical path is
reduced. If this is the case, repeat Step (2) until the
critical path can not be reduced any more. Then the
process will go to Step (1).

b. If no thread can be migrated between this pair of
execution nodes, the system will try to designate other
nodes as the destination node and repeat Step (2).

c. If no thread can be migrated between any pair of
execution nodes, the process of adapting the workload
distribution will come to a halt.

13

DSM2004

Algorithm (Conti.)

0 1 2 3 4 5 6

ReceiverSender

Predicted
execution

time

of thread Sender→Receiver

Ns

Ns-1

Ns-2

Nr Nr+1
Nr+2

program
critical path

14

DSM2004

Performance

Test bed (Teamster)
Teamster is a DSM system built on a
cluster of Intelx86 PCs connected with
Ethernet network

Three iterative DSM applications
SOR, Matrix Multiplication (MM), Gaussian

Elimination (GE), Jacobi, N-Body, MPEG4
Encoder (MPEG4) and Vector Quantization
(VQ)

15

DSM2004

Performance (Conti.)

Environment
4 Nodes

Intel-Pentium III Xeon 500 MHz processor
512MB DRAM
Sun Solaris 8 operating system

Connected by 100-Mbps Ethernet
Auxiliary tool to control available free
physical memory

16

DSM2004

Performance (Conti.)

The organization of computer clusters used for executing the
test applications

17

DSM2004

Performance (Conti.)

Parameters of test applications

18

DSM2004

Performance (Group1)

19

DSM2004

Performance (Group2)

20

DSM2004

Performance (Group3)

21

DSM2004

Conclusions
This paper has confirmed the importance of taking
memory resource considerations into account when
specifying a suitable workload distribution to
optimize the performance of DSM applications.
The impact of memory resource to the performance
of DSM programs has been analyzed, and the
analysis results have been successfully added into
the workload distribution mechanism on the
Teamster test bed.
The results of the present study have shown that a
workload distribution method with including
memory resource is more effective in minimizing
the execution time of DSM programs than the
previously proposed methods without including
memory resource.

22

DSM2004

In the future, we will develop an advanced
workload distribution method for DSM systems
which is clustered with SMP (symmetric multiple
processors) machines. Moreover, we also study
the problem of workload distribution for multiple
applications simultaneously running on DSM
systems.

Future Work

