Distributed Synchronization with Shared
Semaphore Sets

Cristian Tapus

Jason Hickey

Mojave

What is Distributed Synchronization |

e Resource sharing problem

— Restrict access to resources for economic and/or
safety reasons

Resources

i %

Allow users to access resources
in groups of exactly k-users

Why Distributed Synchronization? |

e Scientific computing
- Divide computation space for efficiency
- Nodes require synchronization

Node 0 P Node 1
p)
(\
- _ Y.
: Node 2 S - /
ode Node 3

\V\s‘ﬂ u TE\O;»/(\“ ®
</"¥'(¥ DSMO05 (CCGRIDO5) http://mojave.caltech.edu O a‘ e

Why Semaphores? |

e Alternatives (i.e. MPI)
- Complex
- Require more programming knowledge
- Error-prone
e Semaphores are a classic method for enforcing
synchronization
- Introduced in 1960s by Dijkstra
- Simple programming paradigm
- Proberen and Verhogen operations
‘® Need synchronization without shared memory

4 Mojav
¥ DSMO05 (CCGRIDO05) http://mojave.caltech.edu O a‘ e

MPI vs. Shared Mem/Semaphores Implementation

Process 0

Process 1

Process 2

Process 3

mll

Perform Perform Perform Perform
Computation Computation Computation Computation
R o -
Update Update Update
Boundary Boundary Boundary
Values Values Values

- == == - .
e - | mp
5

DSMO05 (CCGRIDO05)

Node 1
Node 0 ode

Node 2 Node 3
Process 0 Process 1

Node 0

Node 2

Process 2

Node 1

~

Semaphore

Node 3

Process 3

L SE.

Perform
Computation

Perform
Computation

Perform
Computation

Perform
Computation

[]
http://mojave.caltech.edu M O aVe

Why Semaphore Sets? |

PL P2 RL R2 P1 P2 RI R2
P(R1) P(R2) PI% P2 P(R1,R2) P(R1,R2) P2 % P2 &
P(R2) P(R1) comp comp

comp comp

* Atomically acquire/release multiple resource
* Less prone to deadlock

|
* Simpler, more elegant code

* Could increase performance
due to locality

J
Resources

'n

SN 6
¥ DSMO05 (CCGRIDO05)

[]
http://mojave.caltech.edu M O aVe

Outline |

e System V IPC API

e KDIPC System Overview

e |mplementation details

e Providing Consistency

e Conclusion and Future Work

\v\s‘\f\o’«g °
¥'(*" DSM05 (CCGRIDO5) http://mojave.caltech.edu O a‘ e

System V IPC API |

e System V IPC APl is a useful, popular model
- Simple semantics for shared objects
- Designed for tightly coupled systems
- Relies on hardware for maintaining consistency
- Linux kernel implementation for single and multi-
processor machines

e Shared semaphores

® Semget: register a shared semaphore set

e Semop: perform an atomic operation on one or more
semaphores in the shared semaphore set

e Semctl: “control” operations on the shared semaphore set

x\TUTEOp%‘ °
s Moijav
¥ DSMO05 (CCGRIDO05) http://mojave.caltech.edu O a‘ e

KDIPC System Overview |

e When generalizing to distributed IPC, semantics
must be preserved

- Distributed environments can't rely on hardware
support for maintaining consistency

- Software support for reliable data distribution
- Only minimal changes to application’s source code

® Programs expect sequential consistency

e Total order communication protocol
- Obvious choice
- Usually expensive

\V\s‘ﬂ u TE\O;»%‘ ®
</"¥'(¥ DSMO05 (CCGRIDO5) http://mojave.caltech.edu O a‘ e

KDIPC System Overview |

e Kernel level implementation (2.4.1 kernel)

- Pros
® Speed
® |ntegration with existing System V IPC API
® Possibly becoming part of the Kernel distribution

- Challenges
e Hard to debug
e No documentation for the Linux kernel
e Continuosly changing environment

&“‘TE\O’@ ™
10 M V
¥'(*" DSM05 (CCGRIDO5) http://mojave.caltech.edu O a‘ e

Implementation Details |

e Listener for incoming requests
® Supervisor manages Server and Client Threads

e Server Thread

KDIPC remole
Client threads

- “serves” requests from
remote Clients

e Client Thread .

Kerne/

Listener

Supervisor

~ Server
? 7'/7reads§

_ Client
i Threads s

- “retrieves” required data
from remote locations

KDIPC narme
servers

Kernel Virtual Mermory System

11

¥ DSMO5 (CCGRIDO5)

remole KDIPC™
Server threads

[]
http://mojave.caltech.edu M O aVe

Semantics of the access operation |

e Accesses are blocked until semaphore set state
can satisfy the operation
- Semaphore: (1,0,5,3,2,4)
- Operation: (-1,0,0,-1,-1,0) => (0,0,5,2,2,4) SUCCESS
- Operation:(-1,0,0,-1,-3,0) => (0,0,5,2,-1,4) BLOCKED

e Each semaphore set has a “sleeping”
processes queue associated with it: (pid,op)

e When operations in the queue can be
performed, the semaphore set is updated
accordingly and the process is woken up

\V\s‘ﬂ u TE\O’» ®
5 2
S ¥ DSMO05 (CCGRIDO5) http://mojave.caltech.edu O a‘ e

Updates and consistency |

Application:
P(S) or V(S)

e Keep one active copy of a
semaphore set (S)

e |f S is not local request if from LW
remote location

_— .
< ounen>>-00{ o rar
yes|=< l
‘ RQ'(nodeO)\ ‘ RQ (nodeO)\ @en‘o m oper atc@

MH Node 0 Node 2 e

qut“‘ﬂ

_—isu
N eu efu rSempty?_ —
\\\ —
Tro

node=dequeue request

send still_need_S to node

wait for reply

Node 3

'RQ: nodeO)\ Ves’sen—ds“w
no
S\ sx\f\op% °
¥'(*" DSM05 (CCGRIDO5) http://mojave.caltech.edu O a‘ e

Experimental Setup

e Heat propagation application
e |Linux cluster (dual 750Mhz PIIl) using KDIPC

e |mplementation used
- Distributed shared memory

- Distributed semaphores
e Performance

- ~5% faster than MPI

implementation

e Simpler Code

% ¢ DSM05 (CCGRIDO5) http://mojave.caltech.edu O a e

Conclusion and Future Work |

e Kernel level inter-process communication library
- Provides synchronization mechanisms
- Based on semaphore sets (System V IPC API)
- Is independent of shared memory constructs

e Upgrade code to latest kernel version
- Make it more robust and more modular

® |nvestigate other protocols for consistency
- Efficient group communication

e Use replication for increased parallelism
P Collaboration with Kerrighed team

</"¥'(¥ DSMO05 (CCGRIDO5) http://mojave.caltech.edu O a‘ e

