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What is Distributed Synchronization |

e Resource sharing problem

— Restrict access to resources for economic and/or
safety reasons
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Why Distributed Synchronization? |

e Scientific computing
- Divide computation space for efficiency
- Nodes require synchronization
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Why Semaphores? |

e Alternatives (i.e. MPI)
- Complex
- Require more programming knowledge
- Error-prone
e Semaphores are a classic method for enforcing
synchronization
- Introduced in 1960s by Dijkstra
- Simple programming paradigm
- Proberen and Verhogen operations
‘® Need synchronization without shared memory
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MPI vs. Shared Mem/Semaphores Implementation
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Why Semaphore Sets? |
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* Atomically acquire/release multiple resource
* Less prone to deadlock

|
* Simpler, more elegant code

* Could increase performance
due to locality
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Outline |

e System V IPC API

e KDIPC System Overview

e |mplementation details

e Providing Consistency

e Conclusion and Future Work
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System V IPC API |

e System V IPC APl is a useful, popular model
- Simple semantics for shared objects
- Designed for tightly coupled systems
- Relies on hardware for maintaining consistency
- Linux kernel implementation for single and multi-
processor machines

e Shared semaphores

® Semget: register a shared semaphore set

e Semop: perform an atomic operation on one or more
semaphores in the shared semaphore set

e Semctl: “control” operations on the shared semaphore set
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KDIPC System Overview |

e When generalizing to distributed IPC, semantics
must be preserved

- Distributed environments can't rely on hardware
support for maintaining consistency

- Software support for reliable data distribution
- Only minimal changes to application’s source code

® Programs expect sequential consistency

e Total order communication protocol
- Obvious choice
- Usually expensive
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KDIPC System Overview |

e Kernel level implementation (2.4.1 kernel)

- Pros
® Speed
® |ntegration with existing System V IPC API
® Possibly becoming part of the Kernel distribution

- Challenges
e Hard to debug
e No documentation for the Linux kernel
e Continuosly changing environment
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Implementation Details |

e Listener for incoming requests
® Supervisor manages Server and Client Threads

e Server Thread

KDIPC remole
Client threads

- “serves” requests from
remote Clients

e Client Thread .
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Semantics of the access operation |

e Accesses are blocked until semaphore set state
can satisfy the operation
- Semaphore: (1,0,5,3,2,4)
- Operation: (-1,0,0,-1,-1,0) => (0,0,5,2,2,4) SUCCESS
- Operation:(-1,0,0,-1,-3,0) => (0,0,5,2,-1,4) BLOCKED

e Each semaphore set has a “sleeping”
processes queue associated with it: (pid,op)

e When operations in the queue can be
performed, the semaphore set is updated
accordingly and the process is woken up
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Updates and consistency |

Application:
P(S) or V(S)

e Keep one active copy of a
semaphore set (S)

e |f S is not local request if from LW
remote location
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Experimental Setup

e Heat propagation application
e |Linux cluster (dual 750Mhz PIIl) using KDIPC

e |mplementation used
- Distributed shared memory

- Distributed semaphores
e Performance

- ~5% faster than MPI

implementation

e Simpler Code
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Conclusion and Future Work |

e Kernel level inter-process communication library
- Provides synchronization mechanisms
- Based on semaphore sets (System V IPC API)
- Is independent of shared memory constructs

e Upgrade code to latest kernel version
- Make it more robust and more modular

® |nvestigate other protocols for consistency
- Efficient group communication

e Use replication for increased parallelism
P Collaboration with Kerrighed team
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