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Overview

 Introduction
 Anahy

— Task and synchronizations
— Programming interface
— Scheduling strategy

 Handling a Graph of Tasks

— Visualizing an execution
* Some Performances
 The Future of Anahy
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Introduction

e Performance portability

e
.
3
T
.

A ._E Ir{{/-'llll g%f B
Sequential SMP Cluster

— The concurrency of an application can be described regardless
of hardware resources ‘z‘
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Introduction

e Performance portability

e Concurrency

— Depends on application characteristics

— Can be 1dentified by a specialist on the application
e Parallelism

— Depends on hardware

— A specialist on applications 1s not necessarily an
specialist in parallel programming

Concurrency >> Parallelism

&
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Introduction

 Performance portability
e Our approach:
— Dissociate programming of execution
* Our proposal:
~ AR
* Our mechanisms:

— Scheduling and dataflow control achieved at run time

— y
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Anahy

e Environment

Performance
portability

HW/OS
dependent
modules
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Anahy

Task and Synchronization

— A task defines a sequence of [
instructions and two set of data: input C)
and output data;

—
— The synchronization between tasks are
guaranteed by accesses to the data

— y
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Anahy

Task and Synchronization

— A task defines a sequence of [
instructions and two set of data: input C)
and output data;

— The synchronization between tasks are
guaranteed by accesses to the data

Large amount of concurrency e ==
l-)large amount of synchronizations O
\4

DSM 2006  unisinos



Anahy

Task and Synchronization

— A task defines a sequence of
instructions and two set of data: input
and output data;

— The synchronization between tasks are
guaranteed by accesses to the data

Large amount of concurrency

I-}large amount of synchronizations

Coarse scheduling unity: athread
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Anahy

e Execution pool

— A set of system threads 1s List of ready athreads
responsible for executing the - - o
athreads

— Each system thread 1s called VP
— Strategy:

* A VP can chose a specific athread
to execute getAnyReadyWork()

338

— ¢
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Anahy

e Execution pool

— A set Of. system thread§ 1S Graph of ready athreads
responsible for executing the - = ~
athreads

— Each system thread 1s called VP H

— Strategy: HJ

* A VP can chose a specific athread L

to execute A
. . . getAnyReadyWork()

The 11.st of ready works 1s o cetTheWork(id)

organized as a graph of

dependencies g g g g
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Anahy

* Programming Interface

e Creation
int athread create( athread t *th,
athread attr t *attrib,
void * (*func) (void *),
void *in );

e Synchronization

int athread_join( athread t th, void **res );

e Athread code

void *foo( void *in ) {

return out;
}
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Anahy

 Programming Interface Athread

4 & > - (executing bar)
void* foo (void* x) {
LA//IBI I/ICIDJ

}
void* bar (void* p) { join(tl,rl)
Task A

tl = create(foo,a);
Task B

t2 = create(fuu,b);

> o ¢ / Athread
join(tl, rl)

(Executing foo)
Task C .

join(t2,r2) Task
Task_D (code executed between two synchronizations) z

return &something; ‘
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Anahy

* Scheduling

e List scheduling
— Blind strategy

e Explosion on concurrency or memory
e Scheduling heuristics
— Different searches on the graph
e Applied:

— When a VP becomes 1dle and request for work

— When 1s executed a join operation z‘

DSM 2006 t unisiNos d




Handling graph of tasks

e Search an athread on the graph:

— athread_t* SearchFrom(from, direction, orientation, axis)

OO, OO

a.Join( b )
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Handling graph of tasks

e Search an athread on the graph:

— athread_t* SearchFrom(from, direction, orientation, axis)

Starts a new
independent flow

OO, OO

a.Join( b )

Helps the execution

g
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Handling graph of tasks

e Examples
— SearchFrom( current, ROOT, LEFT, VERT )

e returns the next athread ready in the sub-graph having
current as root (left-to-right, high priority on deep nodes)

— SearchFrom( NULL, TOP, RIGHT, HORIZ )

e returns the next athread ready in the graph from the first
node of the graph (right-to-left, high priority on high nodes).

— SearchFrom( jid, ROOT, RIGHT, HORIZ )

* returns the next athread ready 1n the sub-graph having jid as
root (right-to-left, high priority on the higest athread 1n the
sub-graph).

y
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Handling graph of tasks

void* tree( void* n ) {
if(n>2) {
tl = create( tree, *n-1 );
t2 = create( tree, *n-2 );
doSomething( ... );
join(tl, &rl);
join(t2, &r2);
}
else doSomething( ... );
return &something;

— VP dle: }

» searches the last created in the highest level
SearchFrom( NULL, TOP, RIGHT, HORIZ )

— athread blocked 1n a join:

e Visual example

— Recursive program:

» searches a ready athread from jid
SearchFrom( jid, HERE, RIGHT, HORIZ )
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Performance

High Parallel Application
Ratio: Cilk / Anahy on a dual-processor
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Performance

Execution times: Athapascan-1 x Anahy on a cluster
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The future of Anahy

e Current work
— Distributed version

— Real applications
e Dynamic programming
e Metabolic cellular network

e Crowd simulation

e Next

— Scheduling strategies

e Next++

— Other Pthreads synchronization mechanisms

4
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