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Overview

• Introduction

• Anahy

– Task and synchronizations

– Programming interface

– Scheduling strategy

• Handling a Graph of Tasks

– Visualizing an execution

• Some Performances

• The Future of Anahy
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Introduction

Program

Sequential      SMP          Cluster                           NOW

• Performance portability

– The concurrency of an application can be described regardless 
of hardware resources
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Introduction

• Performance portability

• Concurrency

– Depends on application characteristics

– Can be identified by a specialist on the application

• Parallelism

– Depends on hardware

– A specialist on applications is not necessarily an 
specialist in parallel programming

Concurrency >> Parallelism
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Introduction

• Performance portability

• Our approach:

– Dissociate programming of execution

• Our proposal:

–

• Our mechanisms:

– Scheduling and dataflow control achieved at run time
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Anahy

API
Programming interface

Applicative scheduling
Performance

portability

multithreading

Operating System

Hardware

Generic

architecture

HW/OS

dependent

modules

Execution pool
Active Messages

Communication

• Environment
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Anahy

Task and Synchronization

– A task defines a sequence of 

instructions and two set of data: input 

and output data;

– The synchronization between tasks are 

guaranteed by accesses to the data
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Anahy

Task and Synchronization

– A task defines a sequence of 

instructions and two set of data: input 

and output data;

– The synchronization between tasks are 

guaranteed by accesses to the data

Large amount of concurrency

large amount of synchronizations

...
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Anahy

Task and Synchronization

– A task defines a sequence of 

instructions and two set of data: input 

and output data;

– The synchronization between tasks are 

guaranteed by accesses to the data

Large amount of concurrency

large amount of synchronizations

...

Coarse scheduling unity: athread
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• Execution pool

– A set of system threads is 

responsible for executing the 

athreads

– Each system thread is called VP

– Strategy:

• A VP can chose a specific athread

to execute

Anahy

. . .

List of ready athreads

getAnyReadyWork()
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Anahy

• Execution pool

– A set of system threads is 
responsible for executing the 
athreads

– Each system thread is called VP

– Strategy:

• A VP can chose a specific athread
to execute

• The list of ready works is 
organized as a graph of 
dependencies

getTheWork(id)

Graph of ready athreads

getAnyReadyWork()
. . .
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Anahy

• Programming Interface

• Creation
int athread_create( athread_t *th,

athread_attr_t *attrib,

void *(*func) (void *),

void *in );

• Synchronization
int athread_join( athread_t th, void **res );

• Athread code
void *foo( void *in ) {

...

return out;

}
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Anahy

• Programming Interface

void* foo(void* x) {

...

}

void* bar(void* p) {

Task_A

t1 = create(foo,a);

Task_B

t2 = create(fuu,b);

...

join(t1,r1)

Task_C

join(t2,r2)

Task_D

return &something;

}

A

Athread
(executing bar)

B ... D

Athread
(Executing foo)

create(foo,a)
...

C

join(t1,r1)

Task
(code executed between two synchronizations)
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Anahy

• Scheduling

• List scheduling

– Blind strategy

• Explosion on concurrency or memory

• Scheduling heuristics

– Different searches on the graph

• Applied:

– When a VP becomes idle and request for work

– When is executed a join operation
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Handling graph of tasks

• Search an athread on the graph:

– athread_t* SearchFrom(from, direction, orientation, axis)

a

b

a

b

a.Join( b )
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Handling graph of tasks

• Search an athread on the graph:

– athread_t* SearchFrom(from, direction, orientation, axis)

a

b

a

b

a

b

a

b

Starts a new 

independent flow

Helps the execution

a.Join( b )
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Handling graph of tasks

• Examples

– SearchFrom( current, ROOT, LEFT, VERT )

• returns the next athread ready in the sub-graph having 
current as root (left-to-right, high priority on deep nodes)

– SearchFrom( NULL, TOP, RIGHT, HORIZ )

• returns the next athread ready in the graph from the first 
node of the graph (right-to-left, high priority on high nodes).

– SearchFrom( jid, ROOT, RIGHT, HORIZ )

• returns the next athread ready in the sub-graph having jid as 
root (right-to-left, high priority on the higest athread in the 
sub-graph).



DSM 2006

Handling graph of tasks

• Visual example

– Recursive program:

– VP idle:

• searches the last created in the highest level

SearchFrom( NULL, TOP, RIGHT, HORIZ )

– athread blocked in a join:

• searches a ready athread from jid

SearchFrom( jid, HERE, RIGHT, HORIZ )

void* tree( void* n ) {

if( n > 2 ) {

t1 = create( tree, *n-1 );

t2 = create( tree, *n-2 );

doSomething( ... );

join(t1,&r1);

join(t2,&r2);

}

else doSomething( ... );

return &something;

}
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Performance

High Parallel Application

Ratio: Cilk / Anahy on a dual-processor

Depth

Concurrency level on the program

VPs

Parallel execution support
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Performance

High Parallel Application

Execution times: Athapascan-1 x Anahy on a cluster

VPs

Parallel execution support per node
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The future of Anahy

• Current work

– Distributed version

– Real applications

• Dynamic programming

• Metabolic cellular network

• Crowd simulation

• Next

– Scheduling strategies

• Next++

– Other Pthreads synchronization mechanisms

• Mutex, condition variables
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