
DSM 2006

Dynamic list scheduling of threads
on clusters

Universidade do Vale do Rio dos Sinos
Programa Interdisciplinar de Pós Graduação em Computação Aplicada

G. G. H. Cavalheiro, E. D. Benitez,

D. S. Peranconi, E. Moschetta

DSM 2006

Overview

• Introduction

• Anahy

– Task and synchronizations

– Programming interface

– Scheduling strategy

• Handling a Graph of Tasks

– Visualizing an execution

• Some Performances

• The Future of Anahy

DSM 2006

Introduction

Program

Sequential SMP Cluster NOW

• Performance portability

– The concurrency of an application can be described regardless
of hardware resources

DSM 2006

Introduction

• Performance portability

• Concurrency

– Depends on application characteristics

– Can be identified by a specialist on the application

• Parallelism

– Depends on hardware

– A specialist on applications is not necessarily an
specialist in parallel programming

Concurrency >> Parallelism

DSM 2006

Introduction

• Performance portability

• Our approach:

– Dissociate programming of execution

• Our proposal:

–

• Our mechanisms:

– Scheduling and dataflow control achieved at run time

DSM 2006

Anahy

API
Programming interface

Applicative scheduling
Performance

portability

multithreading

Operating System

Hardware

Generic

architecture

HW/OS

dependent

modules

Execution pool
Active Messages

Communication

• Environment

DSM 2006

Anahy

Task and Synchronization

– A task defines a sequence of

instructions and two set of data: input

and output data;

– The synchronization between tasks are

guaranteed by accesses to the data

DSM 2006

Anahy

Task and Synchronization

– A task defines a sequence of

instructions and two set of data: input

and output data;

– The synchronization between tasks are

guaranteed by accesses to the data

Large amount of concurrency

large amount of synchronizations

...

DSM 2006

Anahy

Task and Synchronization

– A task defines a sequence of

instructions and two set of data: input

and output data;

– The synchronization between tasks are

guaranteed by accesses to the data

Large amount of concurrency

large amount of synchronizations

...

Coarse scheduling unity: athread

DSM 2006

• Execution pool

– A set of system threads is

responsible for executing the

athreads

– Each system thread is called VP

– Strategy:

• A VP can chose a specific athread

to execute

Anahy

. . .

List of ready athreads

getAnyReadyWork()

DSM 2006

Anahy

• Execution pool

– A set of system threads is
responsible for executing the
athreads

– Each system thread is called VP

– Strategy:

• A VP can chose a specific athread
to execute

• The list of ready works is
organized as a graph of
dependencies

getTheWork(id)

Graph of ready athreads

getAnyReadyWork()
. . .

DSM 2006

Anahy

• Programming Interface

• Creation
int athread_create(athread_t *th,

athread_attr_t *attrib,

void *(*func) (void *),

void *in);

• Synchronization
int athread_join(athread_t th, void **res);

• Athread code
void *foo(void *in) {

...

return out;

}

DSM 2006

Anahy

• Programming Interface

void* foo(void* x) {

...

}

void* bar(void* p) {

Task_A

t1 = create(foo,a);

Task_B

t2 = create(fuu,b);

...

join(t1,r1)

Task_C

join(t2,r2)

Task_D

return &something;

}

A

Athread
(executing bar)

B ... D

Athread
(Executing foo)

create(foo,a)
...

C

join(t1,r1)

Task
(code executed between two synchronizations)

DSM 2006

Anahy

• Scheduling

• List scheduling

– Blind strategy

• Explosion on concurrency or memory

• Scheduling heuristics

– Different searches on the graph

• Applied:

– When a VP becomes idle and request for work

– When is executed a join operation

DSM 2006

Handling graph of tasks

• Search an athread on the graph:

– athread_t* SearchFrom(from, direction, orientation, axis)

a

b

a

b

a.Join(b)

DSM 2006

Handling graph of tasks

• Search an athread on the graph:

– athread_t* SearchFrom(from, direction, orientation, axis)

a

b

a

b

a

b

a

b

Starts a new

independent flow

Helps the execution

a.Join(b)

DSM 2006

Handling graph of tasks

• Examples

– SearchFrom(current, ROOT, LEFT, VERT)

• returns the next athread ready in the sub-graph having
current as root (left-to-right, high priority on deep nodes)

– SearchFrom(NULL, TOP, RIGHT, HORIZ)

• returns the next athread ready in the graph from the first
node of the graph (right-to-left, high priority on high nodes).

– SearchFrom(jid, ROOT, RIGHT, HORIZ)

• returns the next athread ready in the sub-graph having jid as
root (right-to-left, high priority on the higest athread in the
sub-graph).

DSM 2006

Handling graph of tasks

• Visual example

– Recursive program:

– VP idle:

• searches the last created in the highest level

SearchFrom(NULL, TOP, RIGHT, HORIZ)

– athread blocked in a join:

• searches a ready athread from jid

SearchFrom(jid, HERE, RIGHT, HORIZ)

void* tree(void* n) {

if(n > 2) {

t1 = create(tree, *n-1);

t2 = create(tree, *n-2);

doSomething(...);

join(t1,&r1);

join(t2,&r2);

}

else doSomething(...);

return &something;

}

DSM 2006

Performance

High Parallel Application

Ratio: Cilk / Anahy on a dual-processor

Depth

Concurrency level on the program

VPs

Parallel execution support

DSM 2006

Performance

High Parallel Application

Execution times: Athapascan-1 x Anahy on a cluster

VPs

Parallel execution support per node

T
im

e
(s

ec
o

n
d

s)

DSM 2006

The future of Anahy

• Current work

– Distributed version

– Real applications

• Dynamic programming

• Metabolic cellular network

• Crowd simulation

• Next

– Scheduling strategies

• Next++

– Other Pthreads synchronization mechanisms

• Mutex, condition variables

DSM 2006

Dynamic list scheduling of threads
on clusters

.org

G. G. H. Cavalheiro, E. D. Benitez,

D. S. Peranconi, E. Moschetta

gersonc@anahy.org, anahy@anahy.org

