Dynamic list scheduling of threads
on clusters

G. G. H. Cavalheiro, E. D. Benitez,
D. S. Peranconi, E. Moschetta

v

UNISINOS

Universidade do Vale do Rio dos Sinos
Programa Interdisciplinar de P6s Graduacao em Computacao Aplicada

&
DSM 2006 QCNPq YAFrsrERGs q:i)) tf unisiNDs d

caPEs imvent

Overview

 Introduction
 Anahy

— Task and synchronizations
— Programming interface
— Scheduling strategy

 Handling a Graph of Tasks

— Visualizing an execution
* Some Performances
 The Future of Anahy

&
DSM 2006 tf unisiNDs d

Introduction

e Performance portability

e
.
3
T
.

A ._E Ir{{/-'llll g%f B
Sequential SMP Cluster

— The concurrency of an application can be described regardless
of hardware resources ‘z‘

DSM 2006 tf unisiNDs d

Introduction

e Performance portability

e Concurrency

— Depends on application characteristics

— Can be 1dentified by a specialist on the application
e Parallelism

— Depends on hardware

— A specialist on applications 1s not necessarily an
specialist in parallel programming

Concurrency >> Parallelism

&
DSM 2006 J unisiNos d

Introduction

 Performance portability
e Our approach:
— Dissociate programming of execution
* Our proposal:
~ AR
* Our mechanisms:

— Scheduling and dataflow control achieved at run time

— y

DSM 2006 U unisinos

Anahy

e Environment

Performance
portability

HW/OS
dependent
modules

DSM 2006

API ANAHE

Applicative scheduling

Execution pool

multithreading

Programming interface

Fommunicatior*
Active Messages

Operating System

Hardware

Generic
architecture

Anahy

Task and Synchronization

— A task defines a sequence of [
instructions and two set of data: input C)
and output data;

—
— The synchronization between tasks are
guaranteed by accesses to the data

— y

DSM 2006 unisinos

Anahy

Task and Synchronization

— A task defines a sequence of [
instructions and two set of data: input C)
and output data;

— The synchronization between tasks are
guaranteed by accesses to the data

Large amount of concurrency e ==
l-)large amount of synchronizations O
\4

DSM 2006 unisinos

Anahy

Task and Synchronization

— A task defines a sequence of
instructions and two set of data: input
and output data;

— The synchronization between tasks are
guaranteed by accesses to the data

Large amount of concurrency

I-}large amount of synchronizations

Coarse scheduling unity: athread

DSM 2006 unisinos

Anahy

e Execution pool

— A set of system threads 1s List of ready athreads
responsible for executing the - - o
athreads

— Each system thread 1s called VP
— Strategy:

* A VP can chose a specific athread
to execute getAnyReadyWork()

338

— ¢

DSM 2006 o unisiNes

Anahy

e Execution pool

— A set Of. system thread§ 1S Graph of ready athreads
responsible for executing the - = ~
athreads

— Each system thread 1s called VP H

— Strategy: HJ

* A VP can chose a specific athread L

to execute A
. . . getAnyReadyWork()

The 11.st of ready works 1s o cetTheWork(id)

organized as a graph of

dependencies g g g g

&
DSM 2006 U unisinos d

Anahy

* Programming Interface

e Creation
int athread create(athread t *th,
athread attr t *attrib,
void * (*func) (void *),
void *in);

e Synchronization

int athread_join(athread t th, void **res);

e Athread code

void *foo(void *in) {

return out;
}

DSM 2006 tf unisiNDs

Anahy

 Programming Interface Athread

4 & > - (executing bar)
void* foo (void* x) {
LA//IBI I/ICIDJ

}
void* bar (void* p) { join(tl,rl)
Task A

tl = create(foo,a);
Task B

t2 = create(fuu,b);

> o ¢ / Athread
join(tl, rl)

(Executing foo)
Task C .

join(t2,r2) Task
Task_D (code executed between two synchronizations) z

return &something; ‘
DSM 2006 S tf unisiNDs d

é Y

create(foo,a)

Anahy

* Scheduling

e List scheduling
— Blind strategy

e Explosion on concurrency or memory
e Scheduling heuristics
— Different searches on the graph
e Applied:

— When a VP becomes 1dle and request for work

— When 1s executed a join operation z‘

DSM 2006 t unisiNos d

Handling graph of tasks

e Search an athread on the graph:

— athread_t* SearchFrom(from, direction, orientation, axis)

OO, OO

a.Join(b)

DSM 2006 unisinos

Handling graph of tasks

e Search an athread on the graph:

— athread_t* SearchFrom(from, direction, orientation, axis)

Starts a new
independent flow

OO, OO

a.Join(b)

Helps the execution

g

DSM 2006 unisinos

Handling graph of tasks

e Examples
— SearchFrom(current, ROOT, LEFT, VERT)

e returns the next athread ready in the sub-graph having
current as root (left-to-right, high priority on deep nodes)

— SearchFrom(NULL, TOP, RIGHT, HORIZ)

e returns the next athread ready in the graph from the first
node of the graph (right-to-left, high priority on high nodes).

— SearchFrom(jid, ROOT, RIGHT, HORIZ)

* returns the next athread ready 1n the sub-graph having jid as
root (right-to-left, high priority on the higest athread 1n the
sub-graph).

y

DSM 2006 o unisiNes

Handling graph of tasks

void* tree(void* n) {
if(n>2) {
tl = create(tree, *n-1);
t2 = create(tree, *n-2);
doSomething(...);
join(tl, &rl);
join(t2, &r2);
}
else doSomething(...);
return &something;

— VP dle: }

» searches the last created in the highest level
SearchFrom(NULL, TOP, RIGHT, HORIZ)

— athread blocked 1n a join:

e Visual example

— Recursive program:

» searches a ready athread from jid
SearchFrom(jid, HERE, RIGHT, HORIZ)

DSM 2006 o unisiNes

Performance

High Parallel Application
Ratio: Cilk / Anahy on a dual-processor

1.2 p E—— —= 12 ¥
11} S - 11 - 1
I.- e —tf— o —tum— - e T = -*
s ! "““‘”,v P
; A | o I e~ S
0.9 e 0.9
A
J
08 08
i} d=15 ——
0.7 0.7 d=16 -
2 VPs d=211 —=a
0.6 3VPs wome 0.6 d=25 ——m—
4VPs o d=18 --a--
iVPs --om d=729 -
0.5 L 1 05 1 T
16 18 20 22 24 26 28 1 1.5 2 23 3 i3 4 43

Depth VPs
Concurrency level on the program Parallel execution support

)
| -
DSM 2006 tf unisiNDs d

Performance

Execution times: Athapascan-1 x Anahy on a cluster

DSM 2006

Time (seconds)

50.0

550 r
500 F
450 +
400 +
SR
300 r
250 F
200 +
150 F

100

High Parallel Application

3 Nodes (Anahy) -+ @

e S R qﬂn&e{ﬁnahyjﬁ+. -
2 Nodes (Anahy) --—w- o |

1 Node (Ath-1) 0@

2 Nodes (Ath-1) = @
3 Nodes (Ath-1) - o-@ |
.L.
!:-.-N""'_"'-ﬂ- : '-'.‘ i Weeew
T R — — el -l———a__,_|____.,__...q..-"'"_ﬂ_;
*
11!-
N,
"-'-:_ 9
I e S
0 2 4 5 L

VPs
Parallel execution support per node

tf unisiNDs

g

The future of Anahy

e Current work
— Distributed version

— Real applications
e Dynamic programming
e Metabolic cellular network

e Crowd simulation

e Next

— Scheduling strategies

e Next++

— Other Pthreads synchronization mechanisms

4

DSM 2006 unisinos d

* Mutex, condition variables z

Dynamic list scheduling of threads
on clusters

G. G. H. Cavalheiro, E. D. Benitez,
D. S. Peranconi, E. Moschetta

gersonc(@anahy.org, anahy(@anahy.org

é

.org

v

UNISINOS

DSM 2006 QCNPq YArsrerGs (0)) tf unisiNDs

caPES invent

