
Adapting Distributed Shared Memory
Applications in Diverse Environments

Daniel Potts and Ihor Kuz

danielp@cse.unsw.edu.au

University of New South Wales, Sydney, Australia

and

National ICT Australia

Home Index – p. 1

Overview

• Motivation
• Related work
• View model
• Experiments and Results

Home Index – p. 2

Motivation: An Application

Application:

A Matrix Multiply implemented using Lazy Release
Consistency (LRC) for a cluster of Linux nodes
with Ethernet interconnect.

Home Index – p. 3

Motivation: Diverse Environments

Problem: Computation environments are diverse.
cluster

Home Index – p. 4

Motivation: Diverse Environments

Problem: Computation environments are diverse.
ccNUMA

• Poor resource utilisation

Home Index – p. 4

Motivation: Diverse Environments

Problem: Computation environments are diverse.

cluster

cluster

• Poor resource utilisation
• Environment structure ignored

Home Index – p. 4

Motivation: Diverse Environments

Problem: Computation environments are diverse.

ccNUMA

cluster

• Poor resource utilisation
• Environment structure ignored
• Heterogeneous environments poorly supported

Home Index – p. 4

Motivation: Diverse Environments

Problem: Computation environments are diverse.

internet

ccNUMA

cluster

home of data set
• Poor resource utilisation
• Environment structure ignored
• Heterogeneous environments poorly supported
• Wide-area poorly supported

Home Index – p. 4

Goals

• Run-time adaption to different homogeneous
environments

• Optimise for environment structure

• Utilise resources of heterogeneous environments

Home Index – p. 5

Related Work (Existing Solutions)

• Run-time adaption to different homogeneous
environments:
⇒ Protocol selection in DSM-PM2

• Optimise for environment structure:

• Utilise resources of heterogeneous environments:

Home Index – p. 5

Related Work (Existing Solutions)

• Run-time adaption to different homogeneous
environments:
⇒ Protocol selection in DSM-PM2

• Optimise for environment structure:
⇒ Home-based protocols eg. Home-based LRC
⇒ Hybrid protocols eg. Albatross

• Utilise resources of heterogeneous environments:

Home Index – p. 5

Related Work (Existing Solutions)

• Run-time adaption to different homogeneous
environments:
⇒ Protocol selection in DSM-PM2

• Optimise for environment structure:
⇒ Home-based protocols eg. Home-based LRC
⇒ Hybrid protocols eg. Albatross

• Utilise resources of heterogeneous environments:
⇒ Poor performing generic software protocols

Home Index – p. 5

Related Work (Existing Solutions)

• Run-time adaption to different homogeneous
environments:
⇒ Protocol selection in DSM-PM2

• Optimise for environment structure:
⇒ Home-based protocols eg. Home-based LRC
⇒ Hybrid protocols eg. Albatross

• Utilise resources of heterogeneous environments:
⇒ Poor performing generic software protocols

✗ No overall solution
Can we develop a flexible model to meet goals?

Home Index – p. 5

View Model

Views: An abstraction for protocol encapsulation

• The view model separates:

• programming model,
• consistency protocol,
• communication protocol,
• sharing interactions,
• execution environments,

to give us flexibility.

Home Index – p. 6

Approach using Views

internet

ccNUMA

cluster

home of data set

TCP/IP
Bulk data transfer

• Green view: single protocol, identical to traditional approach

Home Index – p. 7

Approach using Views

internet

ccNUMA

cluster

home of data set

Strict consistency

TCP/IP

TCP/IP
Bulk data transfer

• Green view: single protocol, identical to traditional approach
• Purple view: data access localised to clusters

Home Index – p. 7

Approach using Views

internet

ccNUMA

cluster

home of data set
ccNUMA

(hardware)

Lazy Release
Consistency

TCP/IP

Strict consistency

TCP/IP

TCP/IP
Bulk data transfer

• Green view: single protocol, identical to traditional approach
• Purple view: data access localised to clusters
• Pink/Blue view: use optimised protocols

Home Index – p. 7

Views: Non-Overlapping

View 1 View 2

Address
space

C2C1 C4C3

• View clients (e.g. C1) represent data sharers such as
threads.

• An application may utilise many views.
• Can use different data sharing semantics for different

data regions.

Home Index – p. 8

Views: Overlapping

View 1 View 2

CX C3 C4C2C1

space
Address

• Each view may have a different consistency behaviour
• Views interact to represent the same data element
• Conceptual client CX proxies operations
• CX provided for free by view model
• Can use different data sharing semantics for same

region

XGreat for heterogeneous environments!

Home Index – p. 9

Views: Mapped Views

Tuple Space

{100,"fred"}

{200,"sam"}

space
Address

View 2

CX C3 C4

View 1

C2C1

• Extension to overlapping views.
• Mapping client implements a mapping function that

translates view operations

Home Index – p. 10

Experiment: DSM Matrix Multiply

• 1200 x 1200 matrix multiply
• Cluster 1: Itanium 4-way SMP
• Cluster 2: Itanium 4-way ccNUMA + six Itanium 2-way SMP
• Cluster 2 has 1000Mbit internal switch
• Cluster 1 and 2 are connected via 100Mbit link
• Three view configurations: traditional, two domain,

multi-protocol two domain.

Home Index – p. 11

Experiment: View Configurations

Environment:

• Multi-cluster of 20 CPUs.

Home Index – p. 12

Experiment: View Configurations

Traditional/single domain:

• Strict consistency over all nodes.

Home Index – p. 12

Experiment: View Configurations

Two locality domains:

• Two views of strict consistency.

Home Index – p. 12

Experiment: View Configurations

Two locality domains, multi-protocol:

• Two views of strict consistency.
• Internal multi-reader/multi-writer (MRMW) views on

each multi-processor.

Home Index – p. 12

Matrix Multiply Results

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 5 10 15 20

T
ra

ffi
c

(M
by

te
s)

Number of client processes

 Traditional
 2 cluster domains

 2 cluster & protocol selection

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 5 10 15 20

S
pe

ed
up

Number of client processes

 Traditional
 2 cluster domains

 2 cluster & protocol selection

• Poor traditional performance due to false-sharing
• Two domain improves performance by reducing inter-cluster

communication
• Two domain with protocol selection improves performance

further by utilising ccNUMA/SMP resources

Home Index – p. 13

View Architecture

Node 1

view interface operations

client client

LRC pager

• Clients on same node communicate using view interface

operations
• Separation of client and protocol pager

Home Index – p. 14

View Architecture

TCP/IP packets

view

Node 1

view interface operations

client client

LRC pager

TCP commsTCP comms

Node 2

client

LRC pager

• Pagers communicate with remote clients just like other

clients

Home Index – p. 14

View Architecture

TCP/IP packets

view

Node 1

view interface operations

client client

TCP commsTCP comms

Node 2

client

Strict pager Strict pager

• Protocol selection requires only change of view specification
• No change to clients necessary

Home Index – p. 14

View Architecture

TCP/IP packets

view
view

TCP comms

client client

view interface operations

Node 1

LRC pager

pager
MRMW

client

TCP comms

Node 2

LRC pager

• Pagers communicate with different views just like other

clients
• Views encapsulate a group of data sharers

Home Index – p. 14

How do Views work?
Views Operations

update request requests updates for given region

update propagate propagate updates for given region

protection request request access for given region

protection propagate indication of new region access

token request request a synchronisation token

token response receive a synchronisation token

view create create a new view

view select select a view for use

view unselect release a view

Home Index – p. 15

Creating and Using Views

Combination of three methods:

1. direct application use,
2. middleware or library,
3. system and administrative domains.

Example application use

view_select (view1);

Strict);view1 = view_create (0, base, end,

ccNUMA

cluster

Home Index – p. 16

Creating and Using Views

Combination of three methods:

1. direct application use,
2. middleware or library,
3. system and administrative domains.

Example application use

view_select (view2);

MRMW);view2 = view_create (view1, base, end,

Strict);view1 = view_create (0, base, end,

ccNUMA

cluster

Home Index – p. 16

Conclusions

Summary:
• Resource utilisation and performance improvements
• Protocol inter-operability avoids new hybrid protocols

Future work:

• Other programming models such as MPI.

• Already examined single-sided MPI.
• Programming model interoperability
• Views for bulk data transfer, check-pointing etc.
• Comprehensive benchmarking: SPLASH, NAS, etc.
• Views in a wide area, single-system-image environment.

Home Index – p. 17

Adapting Distributed Shared Memory
Applications in Diverse Environments

University of New South Wales, Sydney, Australia

danielp@cse.unsw.edu.au

Questions?

Home Index – p. 18

Application Interoperability

MPI operations

view
view

clientclient

LRC pager

Node 1

view interface operations

client

MPI pager

client

• Different view pagers communicate using view
interface operations

• Mechanism for visualisation, multi-model applications,
..

Home Index – p. 19

Index

• Overview (page 2)
• Motivation: Application (page 3)
• Motivation: Diverse Environments (page 4)
• Goals and Related Work (page 5)
• The View Model (page 6)
• Approach using Views (page 7)
• Views: Non-Overlapping (page 8)
• Views: Overlapping (page 9)
• Views: Mapped (page 10)
• Experiment: Matrix Multiply (page 11)
• Experiment: View Configurations (page 12)
• Experiment: Results (page 13)
• View Architecture (page 14)
• View Operations (page 15)
• Creating an Using Views (page 16)
• Conclusion (page 17)
• Application Inter-operability (MPI) (page 19)

Home Index – p. 20

	Overview
	Motivation: An Application
	Motivation: Diverse Environments
	Motivation: Diverse Environments
	Motivation: Diverse Environments
	Motivation: Diverse Environments
	Motivation: Diverse Environments

	onlySlide *{1}{Goals}�romSlide *{2}{Related Work (Existing Solutions)}
	onlySlide *{1}{Goals}�romSlide *{2}{Related Work (Existing Solutions)}
	onlySlide *{1}{Goals}�romSlide *{2}{Related Work (Existing Solutions)}
	onlySlide *{1}{Goals}�romSlide *{2}{Related Work (Existing Solutions)}
	onlySlide *{1}{Goals}�romSlide *{2}{Related Work (Existing Solutions)}

	View Model
	Approach using Views
	Approach using Views
	Approach using Views

	Views: Non-Overlapping
	Views: Overlapping
	Views: Mapped Views
	Experiment: DSM Matrix Multiply
	Experiment: View Configurations
	Experiment: View Configurations
	Experiment: View Configurations
	Experiment: View Configurations

	Matrix Multiply Results
	View Architecture
	View Architecture
	View Architecture
	View Architecture

	How do Views work?\Views Operations
	Creating and Using Views
	Creating and Using Views

	Conclusions
	Adapting Distributed Shared Memory Applications in Diverse Environments
	Application Interoperability
	Index

