

Dynamic Memory Management on
Mome DSM

Yvon Jégou
IRISA/INRIA, FRANCE

● Introduction
● Goals
● Basic implementation
● Current work

Why ?

● Few DSM implementations provide a global
shared memory management

● Must be provided by applications

● Problem:
● portability of sequential codes (libraries)
● needed for OpenMP

OpenMP on clusters

● Everything is implicitly shared
● Stacks are shared
● Dynamically allocated memory is potentially
shared

● Load balancing through worker migration:
private data need to be shared

Key goals

● No penalty for private (local) memory
management
● Symmetry
● Balanced / Unbalanced loads
● Scalability (hundreds of nodes)
● Efficiency

Basic implementation

● Two levels
● Top level: shared management of large blocks
● Low level: local management of small blocks

Top level

●Global management protected by global mutex
lock
●Top-level metadata in a shared DSM segment
●Current 32 bit implementation: blocks >4Mbytes
handled at top level

Low level

● Arena: a list of top-level blocks (heaps)
● Memory allocation inside arenas

– glibc malloc/free in our implementation

● Each arena managed by a single node
– can have multiple arenas/node to reduce contention

inside the node

● All consistency models

Arena/heap creation

● Initialization: empty arena list
● First malloc:

– request heap from top level

– create first arena in heap

● On malloc, if free space exhausted in arena
– request extra heaps from top level and extend arena

● Contention on access to arena (SMP)
– switch to another arena (if possible), or

– create a new arena and switch allocations to this arena

Symmetry: free

● free can be requested from all nodes
● free (addr)

– addr belongs to a local arena: handled
locally

– addr is not local: send addr to its manager
node

● We need efficient handling of block ownership

Lock-free implementation of
ownership

● Heap: fixed size 2^h

● Heap addresses: (ha) aligned on 2^h boundary

● Heap Id: ha>>h. All addresses from same heap have same Id.

● Ownership vector

– owner[Id]==valid node number node management

– owner[Id]==GLOBAL global management

– owner vector located in DSM shared space

● updated during heap allocation (and deallocation): atomic

● read during free request: atomic

Efficiency considerations

● Need for global lock: reduced to big block and
heap management
● Symmetrical management
● Efficient private memory management

● Efficiency measure: #page faults during memory
management

Page faults

● Top level (32 bits implementation):
– 256 big blocks (max): top-level metadata in one single DSM

page

– owner vector: one DSM page

– big block alloc/free: one page-fault (max)

– heap alloc/free: two page-faults (max), more expensive

● Low-level
– heap allocation (not frequent)

– free operation: ownership test (few page faults)

– false-sharing between glibc metadata and user data
(frequent on small blocks)

Global performance

● Highly dependent on metadata/data false sharing

● OpenMP on HPC numerical codes: performance is OK

● High stress (frequent small malloc/free + data
sharing): performance limited by false-sharing.

● False-sharing reduction
– highly dependent on the DSM

– current work

– separate metadata from data ?

Current work

● On the DSM
– move to full 64 bits support

– support for hundreds of nodes (hierarchical)

– improve support for
● multiple memory consistency models
● multiple views of shared space

Current work on the memory
allocator

● Use multiple views of the shared space
– metadata and data in different views of the shared

space

● Consistency of metadata view: (very) weak
– modifying metadata does not invalidate the page on

other nodes

– modifying user data does not invalidate metadata
view

Conclusion

● Still a lot of work...

