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Introduction

❖ Increasing usage of ICT devices
❖ 1.43 GtCO2 in 2020 (6%) [1] 

❖ Complexity of modern processors
❖ Limited power-aware interfaces [2, 3] 

❖ Software power estimation, a cornerstone 
❖ Identify the largest power consumers, make informed decisions

❖ Architecture-agnostic solution is needed

[1] The Climate Group. “SMART 2020: Enabling the low carbon economy in the information age”
[2] Marcus Hähnel, et al. “Measuring energy consumption for short code paths using RAPL”
[3] Yan Zhai, et al. “Happy: Hyperthread-aware power profiling dynamically“
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Motivation

❖ In general, performance > energy efficiency

❖ ICT has a huge impact on the world CO2 emissions

❖ Main power consumer: processor (increasingly complex)

❖ Multi-core CPUs are widely used nowadays

❖ On the hardware side (e.g. SMT, DVFS, C-states)

❖ On the software side? 

❖ Software power efficiency: can play a deterministic role! 
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Approaches

❖ Hardware-centric approach 
❖ Coarse-grained

❖ Expensive

❖ Software-centric approach 
❖ Fine-grained

❖ Awkward
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Software-centric approach
❖ Needs 

❖ Efficient and accurate power models
❖ Trade-off between accuracy/overhead 

❖ Existing solutions 
❖ Specific softwares and architectures [1, 2, 3, 4] 
❖ As an example, Intel with RAPL [4, 5] 

❖ Our goal 
❖ Provide an architecture-agnostic solution
❖ Identify green patterns as methodological guidelines

[1] Ramon Bertran, et al. “Decomposable and responsive power models for multicore processors using performance counters”
[2] William Lloyd Bircher, et al. “Complete system power estimation: A trickle-down approach based on performance events“
[3] Vasileios Spiliopoulos, et al. “Power-sleuth: A tool for investigating your program’s power behaviour“
[4] Yan Zhai, et al. “Happy: Hyperthread-aware power profiling dynamically”
[5] Marcus Hähnel, et al. “Measuring energy consumption for short code paths using RAPL”
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Methodology
❖ Power models 

❖ Mostly linear [1], trustfully represent the power consumption 
❖ Component metrics are gathered with power consumption 

❖ CPU metrics 
❖ CPU load [2] 
❖ Hardware Performance Counters (HPC) [3, 4, 5, 6, 7] 

❖ HPCs 
❖ Architecture-dependent
❖ Considered by state-of-the-art as the most accurate metrics

[1] John McCullough, et al. “Evaluating the effectiveness of model-based power characterization”
[2] Daniel Versick, et al. “Power consumption estimation of CPU and peripheral components in virtual machines“
[3] Ramon Bertran, et al. “Decomposable and responsive power models for multicore processors using performance counters”
[4] William Lloyd Bircher, et al. “Complete system power estimation: A trickle-down approach based on performance events“
[5] Min Yeol Lim, et al. “Softpower: Fine-grain power estimations using performance counters“
[6] Vasileios Spiliopoulos, et al. “Power-sleuth: A tool for investigating your program’s power behaviour“
[7] Yan Zhai, et al. “Happy: Hyperthread-aware power profiling dynamically”
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Statements

❖ Problems 
❖ Most of power models are architecture and software dependents

❖ Lack of information, difficult to adapt and to reproduce 

❖ Solutions 
❖ Criteria selection for HPCs: Availability, exploitation overhead, 

evolution

❖ Architecture-agnostic power models 
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Contribution

❖ PowerAPI, under AGPL v3 license
❖ Toolkit for Software-defined power meter

❖ Scala / Akka

❖ Actor model

❖ Modular

❖ Available on GitHub (http://powerapi.org)
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PowerAPI: Architecture
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PowerAPI: Basics

❖ 1st step: Learning the CPU power model

❖ 2nd step: Software power estimations at runtime
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1) Learning the CPU power model
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Figure 7. Decreasing load of stress on i3 in the host, com-
pared to RAPL.

runtime per active process identifier pid and per core 1..N .
The power consumption of the CPU, P

cpu

, is defined as the
sum of the power consumption per frequency, P

f

, for each
core n:

P

cpu

(f, uc1
pid

...uc

N

pid

) =
NX

n=1

P

f

(ucn
pid

).

We finally obtain a power model per frequency, including
TB-specific frequencies. One of the resulting formulae is
described below for the TB frequency of a Xeon processor
(2.90 GHz):

P2.90(ucpid) =
8.64 · uc

pid

109
�

6.10 · uc2
pid

1018
.

The resulting formula is a polynomial of degree 2 (de-
picted in Figure 6), which is conform to results published in
the literature and the impact of the HT feature on the power
models [32]. Figure 6 plots the power estimation according
to the number of unhalted-cycles for each of the power
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Figure 8. Relative error distribution of the PARSEC bench-
marks on the Xeon processor.

models we inferred per frequency. For the sake of clarity, only
the frequencies above 2.30 GHz are reported in the figure.
The idle consumption (P

idle

(f) when x = 0) is computed by
the regression and is impacted by the current frequency of the
processor. One can observe that the 2.50 GHz line is above
the 2.40 GHz line, which is mainly due to the inaccuracy
of cpufreq-utils: it keeps track of the average frequency
and might not report exact values at any given time, notably
ignoring the turbo frequencies.

Power model assessment. First, to demonstrate that BIT-
WATTS is able to handle applications with diverse load, we
start with a baseline experiment on the i3. We run the stress
tool on a single core in combination with cpulimit. Every
30 seconds, the stress load is decreased by 10 %. In this ex-
periment, we compare the results not only to PowerSpy, but
also to running average power limit (RAPL) counters, which
report CPU-package power consumption and are available
on recent Intel processors (since the Sandy Bridge processor
generations and hence on the i3). Furthermore, for this exper-
iment, we set the CPU frequency to a fixed ratio of 1.6 GHz
to avoid peaks in the power measurements of PowerSpy.

Figure 7 shows the results of the workload executed on the
host. We see that the RAPL counters follow the trend of the
workload, but tend to overestimate the power consumption
of a single CPU. Compared to RAPL, BITWATTS provides
power estimation that is much closer to PowerSpy that we
consider as the ground truth. This indicates that BITWATTS
performs accurate sub-system estimation in various load
scenarios, which is a prerequisite to be able to monitor virtual
machines using a subset of the resources of a physical host.

In the next scenario, we assess our power model for multi-
threaded applications in comparison to PowerSpy. This com-
parison uses the well-known PARSEC [4] v2.1 benchmark
suite, which includes many CPU-intensive workloads. This
suite was designed to stress all the resources available on
multi-core architectures. In particular, we report the power
consumption of all the benchmarks available on two different
configurations used in our tests. Figures 8 and 9 report the
relative error between the measured and estimated power con-
sumption (by aggregating the power consumption per process
using P

host

).
Even though PARSEC was not included as a workload dur-

ing the sampling phase, one can observe that the estimation
produced by our power models is close to the power mea-
surements collected for the two different processor models
considered. The closest method to ours, described in [30],
adopts an iterative approach to minimize the error rate to at
most 5 %. However, the key limitations of their approach are
i) they only consider full usage of the cores, and ii) they rely
on an application-specific model. Our solution is application-
agnostic, supporting both CPU- and memory-intensive work-
loads, and are processor-aware, considering different models
of CPUs including multi-cores, hyper-threading, dynamic
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Figure 5. Power model learning process.

Using the options provided by the stress utility, we gen-
erate different workloads. First, we stress the processor core
by core under full load in order to capture its maximum fre-
quency and to observe the effect of the Hyper-Threading
feature on the the power consumption. Then, we dynamically
change the CPU load to characterize the effect of the Speed-
Step feature on the power consumption. This workload is
applied for each frequency made available by the processor,
using cpufreq-utils. Finally, by stressing an increasing
number of cores, we are able to identify the frequencies used
by the TurboBoost feature and and the associated power mod-
els.

To learn the power model, we then need to collect runtime
measurements that faithfully capture the specificity of a large
set of CPU workloads. As reported by the authors of [11], the
CPU load does not reflect the variety of the processor’s ac-
tivities. We therefore decided to base our model on hardware
performance counters to collect low level and accurate met-
rics reflecting the types of operations that are truly executed
by the processor. Specifically, we use the libpfm4 library
for accessing hardware performance counters available on
modern processor architectures, regardless of the OS. The
hardware performance counters used to estimate the power
consumption of processors have to be carefully selected ac-
cording to two criteria: their availability on a large family of
architectures and the overhead imposed by their exploitation.

Our objective is to build a lightweight model that imposes
very limited overhead to our middleware solution. We there-
fore chose as in [18, 31, 32] the unhalted-cycles (uc)10

and reference-cycles (rc)11 counters to accurately char-
acterize the power model of multi-core architectures. While
the first counter represents the number of cycles executed and
thus the activity of the cores, the second one represents the
number of cycles counted at a reference frequency that might
differ from the actual speed of the processor; it is therefore
very useful to approximate the core frequency, even when the
processor triggers the turbo mode.

The average frequency (f ) is computed by dividing the
number of unhalted-cycles by the number of reference-

10 CPU-CLK-UNHALTED:THREAD, event=0x003c
11 CPU-CLK-UNHALTED:REF, event=0x013c

Figure 6. Power models for the highest frequencies on the
Xeon processor.

-cycles (f = uc/rc). The average frequency f is used
to build the power models and to choose at runtime which
counter to apply.

To monitor the power consumption during the learning
phase, we consider a power meter that reports on the consump-
tion of the whole machine as “ground truth”. Specifically, we
used the PowerSpy12 Bluetooth power meter. Depending on
the country, the PowerSpy power meter samples the power
consumption between 45 and 65 Hz. As part of this paper,
we normalize this frequency by requesting a monitoring win-
dow of 250 ms (4 Hz), which is computed as the average
consumption monitored by the PowerSpy. To improve the
accuracy of the power model, we run the identified work-
loads several times to reduce the variance introduced by the
physical measures.

Power model inference. The hardware performance coun-
ters and power information collected during the execution of
the workloads are then correlated using a polynomial regres-
sion to connect the evolution of the power consumption with
the variation of the number of unhalted-cycles. We build
a model for different processor frequencies that represents
the power consumption for a single core, covering the HT fea-
ture [32], and we assume that the power consumption grows
linearly with the number of active cores. Figure 5 depicts
this process, applied on the processor configuration listed in
Table 1.

In practice, the power model we obtained for a core on an
Intel Xeon processor (host) running at a given frequency (f )
for a short period of time can be represented by the equation

P
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(f) = P

idle

(f) +
X

pid2PIDs

P

cpu

(f, uc1
pid

...uc
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pid

)

where P

idle

(f) corresponds to the static power consumption
(i.e., the idle power consumption) of the machine for the
frequency f that we inferred from the regression step, and
uc

1
pid

...uc

N

pid

is a vector of unhalted-cycles collected at

12 http://www.alciom.com/en/products/powerspy2.html
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Using the options provided by the stress utility, we gen-
erate different workloads. First, we stress the processor core
by core under full load in order to capture its maximum fre-
quency and to observe the effect of the Hyper-Threading
feature on the the power consumption. Then, we dynamically
change the CPU load to characterize the effect of the Speed-
Step feature on the power consumption. This workload is
applied for each frequency made available by the processor,
using cpufreq-utils. Finally, by stressing an increasing
number of cores, we are able to identify the frequencies used
by the TurboBoost feature and and the associated power mod-
els.

To learn the power model, we then need to collect runtime
measurements that faithfully capture the specificity of a large
set of CPU workloads. As reported by the authors of [11], the
CPU load does not reflect the variety of the processor’s ac-
tivities. We therefore decided to base our model on hardware
performance counters to collect low level and accurate met-
rics reflecting the types of operations that are truly executed
by the processor. Specifically, we use the libpfm4 library
for accessing hardware performance counters available on
modern processor architectures, regardless of the OS. The
hardware performance counters used to estimate the power
consumption of processors have to be carefully selected ac-
cording to two criteria: their availability on a large family of
architectures and the overhead imposed by their exploitation.

Our objective is to build a lightweight model that imposes
very limited overhead to our middleware solution. We there-
fore chose as in [18, 31, 32] the unhalted-cycles (uc)10

and reference-cycles (rc)11 counters to accurately char-
acterize the power model of multi-core architectures. While
the first counter represents the number of cycles executed and
thus the activity of the cores, the second one represents the
number of cycles counted at a reference frequency that might
differ from the actual speed of the processor; it is therefore
very useful to approximate the core frequency, even when the
processor triggers the turbo mode.

The average frequency (f ) is computed by dividing the
number of unhalted-cycles by the number of reference-

10 CPU-CLK-UNHALTED:THREAD, event=0x003c
11 CPU-CLK-UNHALTED:REF, event=0x013c
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-cycles (f = uc/rc). The average frequency f is used
to build the power models and to choose at runtime which
counter to apply.

To monitor the power consumption during the learning
phase, we consider a power meter that reports on the consump-
tion of the whole machine as “ground truth”. Specifically, we
used the PowerSpy12 Bluetooth power meter. Depending on
the country, the PowerSpy power meter samples the power
consumption between 45 and 65 Hz. As part of this paper,
we normalize this frequency by requesting a monitoring win-
dow of 250 ms (4 Hz), which is computed as the average
consumption monitored by the PowerSpy. To improve the
accuracy of the power model, we run the identified work-
loads several times to reduce the variance introduced by the
physical measures.

Power model inference. The hardware performance coun-
ters and power information collected during the execution of
the workloads are then correlated using a polynomial regres-
sion to connect the evolution of the power consumption with
the variation of the number of unhalted-cycles. We build
a model for different processor frequencies that represents
the power consumption for a single core, covering the HT fea-
ture [32], and we assume that the power consumption grows
linearly with the number of active cores. Figure 5 depicts
this process, applied on the processor configuration listed in
Table 1.

In practice, the power model we obtained for a core on an
Intel Xeon processor (host) running at a given frequency (f )
for a short period of time can be represented by the equation
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Why an external power meter?
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Figure 7. Decreasing load of stress on i3 in the host, com-
pared to RAPL.
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We finally obtain a power model per frequency, including
TB-specific frequencies. One of the resulting formulae is
described below for the TB frequency of a Xeon processor
(2.90 GHz):

P2.90(ucpid) =
8.64 · uc

pid
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The resulting formula is a polynomial of degree 2 (de-
picted in Figure 6), which is conform to results published in
the literature and the impact of the HT feature on the power
models [32]. Figure 6 plots the power estimation according
to the number of unhalted-cycles for each of the power
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Figure 8. Relative error distribution of the PARSEC bench-
marks on the Xeon processor.

models we inferred per frequency. For the sake of clarity, only
the frequencies above 2.30 GHz are reported in the figure.
The idle consumption (P

idle

(f) when x = 0) is computed by
the regression and is impacted by the current frequency of the
processor. One can observe that the 2.50 GHz line is above
the 2.40 GHz line, which is mainly due to the inaccuracy
of cpufreq-utils: it keeps track of the average frequency
and might not report exact values at any given time, notably
ignoring the turbo frequencies.

Power model assessment. First, to demonstrate that BIT-
WATTS is able to handle applications with diverse load, we
start with a baseline experiment on the i3. We run the stress
tool on a single core in combination with cpulimit. Every
30 seconds, the stress load is decreased by 10 %. In this ex-
periment, we compare the results not only to PowerSpy, but
also to running average power limit (RAPL) counters, which
report CPU-package power consumption and are available
on recent Intel processors (since the Sandy Bridge processor
generations and hence on the i3). Furthermore, for this exper-
iment, we set the CPU frequency to a fixed ratio of 1.6 GHz
to avoid peaks in the power measurements of PowerSpy.

Figure 7 shows the results of the workload executed on the
host. We see that the RAPL counters follow the trend of the
workload, but tend to overestimate the power consumption
of a single CPU. Compared to RAPL, BITWATTS provides
power estimation that is much closer to PowerSpy that we
consider as the ground truth. This indicates that BITWATTS
performs accurate sub-system estimation in various load
scenarios, which is a prerequisite to be able to monitor virtual
machines using a subset of the resources of a physical host.

In the next scenario, we assess our power model for multi-
threaded applications in comparison to PowerSpy. This com-
parison uses the well-known PARSEC [4] v2.1 benchmark
suite, which includes many CPU-intensive workloads. This
suite was designed to stress all the resources available on
multi-core architectures. In particular, we report the power
consumption of all the benchmarks available on two different
configurations used in our tests. Figures 8 and 9 report the
relative error between the measured and estimated power con-
sumption (by aggregating the power consumption per process
using P

host

).
Even though PARSEC was not included as a workload dur-

ing the sampling phase, one can observe that the estimation
produced by our power models is close to the power mea-
surements collected for the two different processor models
considered. The closest method to ours, described in [30],
adopts an iterative approach to minimize the error rate to at
most 5 %. However, the key limitations of their approach are
i) they only consider full usage of the cores, and ii) they rely
on an application-specific model. Our solution is application-
agnostic, supporting both CPU- and memory-intensive work-
loads, and are processor-aware, considering different models
of CPUs including multi-cores, hyper-threading, dynamic
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Evaluation: Setup (2)
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Evaluation: Setup (3)

PARSEC SpecJBB

Intel Xeon 
W3520

Intel i3 2120
(x 3)

15



Evaluation: Setup (4)
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❖ Designed for multi-core architectures

❖ Multi-threaded

❖ CPU & memory intense



Evaluation: Setup (5)
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❖ Real world

❖ Multi-threaded

❖ Distributed



Evaluation: Multi-processes monitoring
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PARSEC benchmarks (multi-threaded, CPU & memory intense)
voltage/frequency scaling, and dynamic overclocking fea-
tures.

Figure 10 illustrates the capability of estimating and isolat-
ing the power consumption of concurrent processes running
on the same CPU. In particular, it shows how the power
consumption of the Intel Xeon configuration is distributed
between the idle power consumption and two benchmarks
taken from the PARSEC suite (x264 and freqmine). Com-
pared to physical measurements, when running at a frequency
of 4 Hz (every 250 ms), our solution achieves a median error
of 0.30 % with a maximal error of 9.73 %, thus competing
with post-mortem analysis like [10].

Regarding the monitoring frequency, BITWATTS is mostly
limited by the frequency of the hardware and software sensors
used to collect runtime metrics. In particular, BITWATTS can
report on the power consumption of software processes up
to 40 Hz when connected to the PowerSpy, and up to 10 Hz
when using the libpfm4 library. However, by increasing
the monitoring frequency one can observe that the stability
of power consumption is affected, which does not help to
properly identify the power consumption of the processes.
Therefore, in the rest of the paper, we configure BITWATTS
to report on the power consumption with a frequency of 1 Hz
in order to smooth the reported values.

Additionally, Figure 10 reports on the power consumption
of BITWATTS during execution. The power consumption of
5.4W on average demonstrates that our implementation of
the power model has a reasonable footprint and is weakly
impacted by the number of processes being monitored. This
footprint acknowledges the design and the implementation
of BITWATTS as a scalable actor toolkit to build software-
defined power meters.

Generality of the model. While the multi-core CPU power
model proposed in this paper is only assessed on Intel
processors (see Table 1), the solution that we describe does
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Figure 9. Relative error distribution of the PARSEC bench-
marks on the i3 processor.
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Figure 11. Core i3 and Xeon VM topologies.

not rely on any Intel-specific extensions. Indeed, our model
considers processor features (HT, SS, TB) that are also
available from other vendors. In particular, AMD processors
also represent a target CPU architecture for our power model,
but a limitation of the libpfm4 library currently prevents
BITWATTS to access the reference-cycles to compute
the current frequency. Once this barrier is lifted, we expect
to be able to also demonstrate the validity of our model on
AMD processors with results similar to those reported for
Intel.

4.2 Virtual CPU Power Model
Unlike the architectures observed at the host level (see
Figure 4), virtual CPUs tend to be simpler: they map physical
cores to logical processors (sockets) and typically do not
support any SS/HT/TB features, as illustrated in Figure 11.
Hence, when pinning a single-core VM on a physical core of
the host, the power consumption of a process running in the
VM is proportional to the CPU utilization of the VM on the
host.

To estimate the power consumption of an application
running in the VM P

vm

(app), we need therefore to know
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Figure 7. Decreasing load of stress on i3 in the host, com-
pared to RAPL.
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models we inferred per frequency. For the sake of clarity, only
the frequencies above 2.30 GHz are reported in the figure.
The idle consumption (P

idle

(f) when x = 0) is computed by
the regression and is impacted by the current frequency of the
processor. One can observe that the 2.50 GHz line is above
the 2.40 GHz line, which is mainly due to the inaccuracy
of cpufreq-utils: it keeps track of the average frequency
and might not report exact values at any given time, notably
ignoring the turbo frequencies.

Power model assessment. First, to demonstrate that BIT-
WATTS is able to handle applications with diverse load, we
start with a baseline experiment on the i3. We run the stress
tool on a single core in combination with cpulimit. Every
30 seconds, the stress load is decreased by 10 %. In this ex-
periment, we compare the results not only to PowerSpy, but
also to running average power limit (RAPL) counters, which
report CPU-package power consumption and are available
on recent Intel processors (since the Sandy Bridge processor
generations and hence on the i3). Furthermore, for this exper-
iment, we set the CPU frequency to a fixed ratio of 1.6 GHz
to avoid peaks in the power measurements of PowerSpy.

Figure 7 shows the results of the workload executed on the
host. We see that the RAPL counters follow the trend of the
workload, but tend to overestimate the power consumption
of a single CPU. Compared to RAPL, BITWATTS provides
power estimation that is much closer to PowerSpy that we
consider as the ground truth. This indicates that BITWATTS
performs accurate sub-system estimation in various load
scenarios, which is a prerequisite to be able to monitor virtual
machines using a subset of the resources of a physical host.

In the next scenario, we assess our power model for multi-
threaded applications in comparison to PowerSpy. This com-
parison uses the well-known PARSEC [4] v2.1 benchmark
suite, which includes many CPU-intensive workloads. This
suite was designed to stress all the resources available on
multi-core architectures. In particular, we report the power
consumption of all the benchmarks available on two different
configurations used in our tests. Figures 8 and 9 report the
relative error between the measured and estimated power con-
sumption (by aggregating the power consumption per process
using P

host

).
Even though PARSEC was not included as a workload dur-

ing the sampling phase, one can observe that the estimation
produced by our power models is close to the power mea-
surements collected for the two different processor models
considered. The closest method to ours, described in [30],
adopts an iterative approach to minimize the error rate to at
most 5 %. However, the key limitations of their approach are
i) they only consider full usage of the cores, and ii) they rely
on an application-specific model. Our solution is application-
agnostic, supporting both CPU- and memory-intensive work-
loads, and are processor-aware, considering different models
of CPUs including multi-cores, hyper-threading, dynamic



Evaluation: SPECjbb2013

❖ Supermarket company
❖ Distributed warehouses

❖ Online purchases

❖ Management operations (data mining)

20



Evaluation: SPECjbb2013 on the i3 2120

21

Real world application: load variations
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Figure 15. Power consumption during the execution of
SPECjbb on the i3 with 2 threads.

threads) to see the difference in resource utilization. Two
dedicated threads are assigned to each VM.

The workload characteristics can be seen in Figure 15,
which plots the power estimation of one backend running
on one host. One can clearly observe that the estimation of
BITWATTS follows the same trend as PowerSpy.

Single node setup. In the literature, applications are usually
evaluated in isolated runs. Due to resource sharing, however,
process-level estimation becomes more difficult. We further
investigate the impact of virtualization as well as interference
of concurrently running applications, first on the host and then
in virtual machines. In Figure 16, we report on the median
power consumption of the overall SPECJBB run and the
median relative error compared to PowerSpy.

On the host, we run once a backend with all available
threads and once pinned to 2 threads to ensure that only some
of the CPU cores are used. We can see that the accuracy is not
influenced if only a part of the CPU is dedicated to a process.
In this experiment, we further show that we can monitor two
processes at the same time, when running on the host as well
as within the VM. Note that we are monitoring both processes
separately and only sum up the process power consumption
to compare to PowerSpy. As performance counters interfere
when more than one process is running, the isolation of the
power consumption for each of the process is harder. This is
also reflected in the increasing median error if we monitor
more than one process at the same time, e.g., when we run 2
backends on the host or within one or two VMs.

In the case of the host running only a single backend,
we are underestimating the high-load phases (as can be
seen in Figure 15). In general, however, the estimation
error is below 10 %. BITWATTS can therefore also estimate
real-world applications with load variations and sub-system
scenarios when only parts of the CPU are used. We can further
observe that virtualization does not cause power consumption
overhead, as can be seen in the single VM run with two
backends and the two VMs run with one backend each. KVM
is hence very power efficient. We can finally see that the

Figure 16. Median power consumption for SPECjbb on i3
with different resources assigned to a single or multiple VMs
on one host.

Figure 17. Median power consumption for SPECjbb on i3
for a distributed setup, virtualized and non-virtualized.

backend can use the available resources more efficiently when
it has all threads available (see 1BE.4t vs. 1BE.2t) as the
highest possible throughput in the workload is reached faster
than when the backend has limited resources.

Distributed setup. Placing application components in dif-
ferent VMs allow us to execute across multiple hosts. We
therefore extend our experiments to a distributed setup, show-
ing that BITWATTS can be applied in realistic data center
settings. Experiments were executed on 3 identical servers of
type i3 as shown in Figure 13.

We first run 1 backend on each host, once with 4 available
threads, using BITWATTS. We also execute 1 backend on 2
hosts, each with a VM and 2 threads. The reporting interval to
the broker is 1 s. Based on our observations, the contribution
of the network interface to the power consumption is very
low and is mainly bound to the CPU activity for sending
data. Furthermore, the impact of disk access is not covered
by the SPECJBB benchmark. At the broker, the values are
aggregated and forwarded to the logger, which sums the
results and writes them to a file.



Author(s) Processor(s) Feature(s) Regression(s) Benchmarks Error(s)

A.Aroca
et al. [2]

Xeon E5606 & W3530,
Opteron 6276

HW sensors
polynomial,

multiple linear
eval.: Hadoop App.

< 7% of
total energy

Bertran
et al. [7]

Core 2 Duo
14 HPC regrouped

by component
multiple linear
by component

sampl.: µ-benchs
eval.: SPEC CPU 06

5%

Bircher
et al. [10]

Pentium 4
µ-ops trace-cache,
micro-code ROM

multiple linear sampl.: SPEC CPU 00
eval.: SPEC CPU 00

2.5%

Colmant
et al. [11]

Xeon
W3520 & i3 2120

non-halted cycles
reference cycles polynomial sampl.: stress

eval.: PARSEC, SPEC JBB
3%

Contreras
et al. [12]

XScale
PXA255

5 HPCs multiple linear eval.: SPEC CPU 00,
Java CDC/CLDC

4%

Dolz
et al. [13]

Xeon
E3-1275

3 HPCs
HW sensors

linear sampl.: linpack, stream, iperf, IOR
eval.: Quantum Espresso

3 W
70 W max.

Economou
et al. [14]

Turion,
Itanium 2

HW sensors multiple linear sampl.: Gamut
eval.: SPECs, Matrix, Stream

5%

Isci
et al. [18]

Pentium 4 15 HPC multiple linear eval.: µ-benchs, AbiWord,
Mozilla, Gnumeric

3 W

Li
et al. [24]

8-way issue
superscalar

IPC linear sampl./eval.: DB, email,
SPEC JVM 98, SPEC INT 95

1% o↵.
6% run.

Rivoire
et al. [35]

Core 2 Duo & Xeon,
Itanium 2, Turion

HW sensors
HPCs

multiple linear sampl.: calibration suite
eval.: SPECs, Stream, ClamAV

< 5%

Yang
et al. [42]

Xeon
E5620 & E7530

7 components
91 preselected

support vector sampl.: NPB, IOzone, CacheBench
eval.: SPEC CPU 06, IOzone

4.7%

Zamani
et al. [43]

Opteron 3 to 5 HPCs ARMAX sampl./eval.: BT.C, CG.C,
LU.C, SP.C

0.1% – 0.5%
o✏ine

Zhai
et al. [44]

Sandy Bridge non-halted cycles linear eval.: Google, SPEC CPU 06 7.5%

Table 1: Summary of existing CPU power models.

reflect the diversity of the CPU activities. In particular,
to faithfully capture the power model of a CPU, the types
of tasks that are executed by the CPU have to be clearly
identified. We therefore decided to base our power models
on hardware performance counters (HPCs) to collect raw,
yet accurate, metrics reflecting the types of operations that
are truly executed by the CPU. Nevertheless, the number
and the nature of HPC events provided by the CPU strongly
vary according to the processor type.

More specifically, a CPU can expose several performance
monitoring units (PMUs) depending on its architecture and
model. For example, 2 PMUs are detected on an Intel Xeon
W3520: nehalem and nehalem uncore, each providing two
types of HPCs that cover either fixed or generic HPC events.
A fixed HPC event can only be used for one predefined
event, usually cycles, bus cycles, or instructions retired, while a
generic HPC can monitor any event. If there are more events
monitored than available counters for a PMU, the kernel
applies multiplexing to alter the frequency and to provide
a fair access to each HPC event. When multiplexing is
triggered, the events cannot be monitored accurately anymore
and an estimation is returned instead.

As shown in Table 2, the number of generic counters sup-
ported and the number of available events varies considerably
across architectures and even among models of the same man-
ufacturer.
The approach we propose consists of two phases: a su-

pervised learning phase and an online exploitation phase, as
depicted in Figure 1. The supervised learning phase analyses
the power consumption and triggered HPC events of the

Manuf. CPU PMU #Gen. #Ev.

Intel

Xeon nhm 4 338
W3520 nhm_unc 8 176

i3 2120
snb 4 336
snb_unc_cbo� 2 19
snb_unc_cbo� 2 18

AMD
Opteron fam��h_barcelona 3 421
8354

ARM
Cortex arm_ac�� 6 67
A15

Table 2: Examples of PMUs detected for 4 proces-
sors from 3 manufacturers, including numbers of
generic counters and available events.

target CPU, in order to identify the key events that impact
the power consumption. The combination of these events
is then used during the online exploitation phase to deliver
real-time power estimations by feeding a software-defined
power meter that embeds the inferred CPU power model.

3.1 Learning Phase
In the learning phase, our goal is to automatically classify

the HPC events in order to identify those that are best
characterizing the CPU activity and are correlated with its
power consumption. In the following paragraphs, we describe
each of the steps illustrated in Figure 1.
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multiple linear
eval.: Hadoop App.

< 7% of
total energy

Bertran
et al. [7]

Core 2 Duo
14 HPC regrouped

by component
multiple linear
by component

sampl.: µ-benchs
eval.: SPEC CPU 06

5%

Bircher
et al. [10]

Pentium 4
µ-ops trace-cache,
micro-code ROM

multiple linear sampl.: SPEC CPU 00
eval.: SPEC CPU 00

2.5%

Colmant
et al. [11]

Xeon
W3520 & i3 2120

non-halted cycles
reference cycles polynomial sampl.: stress

eval.: PARSEC, SPEC JBB
3%

Contreras
et al. [12]

XScale
PXA255

5 HPCs multiple linear eval.: SPEC CPU 00,
Java CDC/CLDC

4%

Dolz
et al. [13]

Xeon
E3-1275

3 HPCs
HW sensors

linear sampl.: linpack, stream, iperf, IOR
eval.: Quantum Espresso

3 W
70 W max.

Economou
et al. [14]

Turion,
Itanium 2

HW sensors multiple linear sampl.: Gamut
eval.: SPECs, Matrix, Stream

5%

Isci
et al. [18]

Pentium 4 15 HPC multiple linear eval.: µ-benchs, AbiWord,
Mozilla, Gnumeric

3 W

Li
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8-way issue
superscalar

IPC linear sampl./eval.: DB, email,
SPEC JVM 98, SPEC INT 95

1% o↵.
6% run.

Rivoire
et al. [35]

Core 2 Duo & Xeon,
Itanium 2, Turion

HW sensors
HPCs

multiple linear sampl.: calibration suite
eval.: SPECs, Stream, ClamAV

< 5%

Yang
et al. [42]

Xeon
E5620 & E7530

7 components
91 preselected

support vector sampl.: NPB, IOzone, CacheBench
eval.: SPEC CPU 06, IOzone

4.7%

Zamani
et al. [43]

Opteron 3 to 5 HPCs ARMAX sampl./eval.: BT.C, CG.C,
LU.C, SP.C

0.1% – 0.5%
o✏ine

Zhai
et al. [44]

Sandy Bridge non-halted cycles linear eval.: Google, SPEC CPU 06 7.5%

Table 1: Summary of existing CPU power models.

reflect the diversity of the CPU activities. In particular,
to faithfully capture the power model of a CPU, the types
of tasks that are executed by the CPU have to be clearly
identified. We therefore decided to base our power models
on hardware performance counters (HPCs) to collect raw,
yet accurate, metrics reflecting the types of operations that
are truly executed by the CPU. Nevertheless, the number
and the nature of HPC events provided by the CPU strongly
vary according to the processor type.

More specifically, a CPU can expose several performance
monitoring units (PMUs) depending on its architecture and
model. For example, 2 PMUs are detected on an Intel Xeon
W3520: nehalem and nehalem uncore, each providing two
types of HPCs that cover either fixed or generic HPC events.
A fixed HPC event can only be used for one predefined
event, usually cycles, bus cycles, or instructions retired, while a
generic HPC can monitor any event. If there are more events
monitored than available counters for a PMU, the kernel
applies multiplexing to alter the frequency and to provide
a fair access to each HPC event. When multiplexing is
triggered, the events cannot be monitored accurately anymore
and an estimation is returned instead.

As shown in Table 2, the number of generic counters sup-
ported and the number of available events varies considerably
across architectures and even among models of the same man-
ufacturer.
The approach we propose consists of two phases: a su-

pervised learning phase and an online exploitation phase, as
depicted in Figure 1. The supervised learning phase analyses
the power consumption and triggered HPC events of the

Manuf. CPU PMU #Gen. #Ev.

Intel

Xeon nhm 4 338
W3520 nhm_unc 8 176

i3 2120
snb 4 336
snb_unc_cbo� 2 19
snb_unc_cbo� 2 18

AMD
Opteron fam��h_barcelona 3 421
8354

ARM
Cortex arm_ac�� 6 67
A15

Table 2: Examples of PMUs detected for 4 proces-
sors from 3 manufacturers, including numbers of
generic counters and available events.

target CPU, in order to identify the key events that impact
the power consumption. The combination of these events
is then used during the online exploitation phase to deliver
real-time power estimations by feeding a software-defined
power meter that embeds the inferred CPU power model.

3.1 Learning Phase
In the learning phase, our goal is to automatically classify

the HPC events in order to identify those that are best
characterizing the CPU activity and are correlated with its
power consumption. In the following paragraphs, we describe
each of the steps illustrated in Figure 1.
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Figure 1: Overview of the proposed approach.

Input workload injection

For exploring the activity of a CPU, we consider a set of
representative benchmark applications covering the features
provided by a CPU. In particular, to promote the repro-
ducibility of our results, we favor freely available and widely
used benchmark suites, such as PARSEC [8]. However, this
choice does not prevent us from including additional bench-
mark suites or any other sample workloads. All workloads
are then launched several times and in isolation to reduce
the noise that can be experienced during the learning phase.

Acquisition of raw HPC counters

Unfortunately, the CPU cannot monitor hundreds of HPC
events simultaneously [17]. Thus, we have to split the list of
available events into subsets of events to avoid multiplexing
that might cause inaccuracies. Based on the information
gathered in Table 2, we compute the number of events that
can be read in parallel. For a given CPU, the number of
workload executions w to be considered is therefore defined
as:

w =

&
X

p2PMUs

|Ep|
|Cp|

'
⇥ |W |⇥ i (1)

where E is the set of events made available by the processor
for a given PMU, C is the set of generic counters available
for a PMU, W is the set of input workloads, and i is the
number of sampling iterations to execute.

Combining HPC events and sample applications may quickly
lead to the comparison of thousands of candidate metrics.
Hence, a filtering step is required to guarantee an acceptable
duration for the learning phase. Our approach proposes an
automated way to focus on the most relevant events. In the
first step, each workload is only executed for a few seconds
while collecting values from HPC events and from a power
meter. We then select relevant HPC events by applying the
Pearson correlation coe�cient. We compute the Pearson
correlation coe�cient re,p for each workload between the
n values reported by each monitored HPC event e and the
collected power consumption p:

re,p =

nP
i=1

(ei � e) (pi � p)

s
nP

i=1
(ei � e)2

s
nP

i=1
(pi � p)2

(2)

Selection of relevant HPC events

As next step, we eliminate the HPC events that have a
median correlation coe�cient (r̃) below a given threshold.
In particular, we consider that any coe�cient below 0.5
clearly indicates a lack of correlation between the considered
event (e) and power consumption (p). With this step, we
quickly filter out hundreds of uncorrelated—and therefore
irrelevant—events, resulting for instance in 253 left out of
514 events on an Intel Xeon W3520. The reduced set of
HPC events is then used to relaunch all the workloads, but
this time with the default runtime. At the end of the full
execution, we rank the remaining HPC events for all the
workloads based on their newly calculated median correlation
with the power consumption, as depicted in Figure 2. The
distribution of Pearson coe�cients for the 30 best events
varies for each of the workloads (W ) taken from the PARSEC
benchmark suite on the Intel Xeon W3520 processor. One
can clearly distinguish the benchmarks that stimulate all
selected HPC events (e.g., x264, vips) from the ones whose
power consumptions match only some specific events (e.g.,
freqmine, fluidanimate). Deriving a CPU power model
that is capable of covering all kinds of workloads accurately
is a challenging task.

Power model inference by regression

We finally apply a regression analysis to derive the CPU
power model from the previously selected HPC events. In
particular, in this paper, we use the robust ridge regres-
sion [25, 37], which belongs to the family of multivariate
linear regressions. This technique has been chosen to elimi-
nate outliers and to limit the e↵ect of collinearity between
variables.

The computation of the multiple linear regression should
balance the gain in terms of estimation error with the cost
of including an additional event into the CPU power model.

To design the CPU power model as accurately as possible,
we consider a subset Rn of n benchmarks (8n < |W | , Rn ✓
W ), composed from those exhibiting the lowest median Pear-
son coe�cients, as input for our regression process. From
Rn, we compute a CPU power model for each combination
of HPC events, by taking into account the limited number of
events that can be monitored concurrently. For each train-
ing set Rn, from all the computed power models, we only
keep the one with the smallest regression error. Finally, we
compare the CPU power model obtained for each Rn and
we pick the one that minimizes the absolute error between
the regression and the remaining benchmarks, which have
not been included in the training set (En = W \Rn).

As an illustration, Figure 3 depicts the distribution of the
average error per CPU power model built for R3 (freqmine,
fluidanimate, and facesim) depending on the number of
HPC events included in the model. A larger circle means a
larger error. One can clearly see that a CPU power model
that combines several HPC events may exhibit a larger error
than one that uses a lower number of events. As an example,
on the Intel Xeon W3520, the CPU power model composed
of 2 events taken from the PMU nhm (see Table 2) emerges
from this analysis and reports an average error of 1.35%,
which corresponds to 1.60 W .

All the above steps allow PowerAPI to compute an ef-
fective CPU power model. As a matter of comparison, this
approach takes 34 hours approximately on an Intel i3 2120
CPU (373 events available) whereas it takes 16 hours approx-
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Figure 9: Absolute error distribution of the NPB
benchmarks on the A15 processor by using the PAR-
SEC and NPB power models (Pidle = 3.5 W ).

plicative scenarios and, in this process, attempt to answer
specific questions regarding the e↵ectiveness of our approach.
We use PowerAPI to build di↵erent software-defined power
meters based on the CPU power models presented in this
paper.

5.1 Domain-specific CPU Power Models
Can we build CPU power models that better fit specific

domains of applications?
In Section 4, we identified applications from the PARSEC

benchmark suite as representative workloads for characteriz-
ing the power consumption of our processors. In particular,
we focused on delivering generic CPU power models that can
estimate the power consumptions of a wide diversity of ap-
plications. However, if one knows beforehand that a specific
type of workload will run on a node, we can also use our
approach to derive domain-specific CPU power models.As
an example, we use a set of benchmarks from the well-known
NAS parallel benchmark (NPB) suite [3] on the ARM Cortex
A15, and derive a new power model specifically for this set
of applications using our approach described in Section 3.1.
NPB was designed to take advantage of highly parallel super-
computers and thus the implemented benchmarks represent
CPU-intense workloads.
The resulting CPU power model with the lowest average

error is composed of 3 HPC events from the PMU arm_ac��:
(e1 = bus_read_access, e2 = cpu_cycles, e3 = bus_access):

Pidle = 3.5 W ; PCPU =
�1.72 · e1

108
+

1.52 · e2� 5.08 · e3
109

In Figure 9, we depict the results and compare them
with the original model derived in Section 4. We can see
that a domain-specific model can improve the original one
(PARSEC power model) with an average relative error of 4%
(corresponding to 0.41 W ).

In comparison, the PARSEC power model has an average
relative error of 20% (2.34 W ), which shows the benefits
of building domain-specific CPU power models. We are
thus able to derive accurate CPU power models with our
approach despite the diversity of benchmarks. To the best
of our knowledge, our solution is the first to be open-source,
configurable, and directly usable to build CPU power models.
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Figure 10: Power estimation delivered by PowerAPI
in real-time (4 Hz) for SPECjbb 2013 (Pidle = 30 W ).

5.2 Real-time Power Monitoring
Can we use the derived CPU power models to estimate the

power consumption of any workload in real-time?
To further evaluate the applicability of PowerAPI in

a real-world and multi-threaded environment, we run the
SPECjbb 2013 benchmark [1]. This benchmark implements
a supermarket company that handles distributed warehouses,
online purchases, as well as high level management operations
(data mining). The benchmark is implemented in Java and
consists of controller components for managing the applica-
tion and backends that perform the actual work. A run takes
approximately 45 minutes; it has varying CPU utilization
levels and requires at least 2GB memory per backend to
finish properly.

We use the Intel i3 2120 processor for this experiment with
the CPU power model introduced in Section 4.2. Figure 10
illustrates the per-process power consumption, focused on the
SPECjbb process, compared to physical power measurements.
We can see that our system is capable of monitoring varying
workloads with an average error of 1.6% (1.70 W ).

Regarding the monitoring frequency, PowerAPI is mostly
limited by the frequency of hardware and software sensors
used to collect runtime metrics. In particular, PowerAPI
can report the power consumption of software processes up
to 40 Hz when connected to the PowerSpy, and up to 10 Hz
when using the libpfm4 library (i.e., HPC). However, by
increasing the monitoring frequency, one can observe that
the stability of power estimations is a↵ected, which does not
help to properly identify the power consumption of processes.

5.3 Process-level Power Monitoring
Can we use the derived CPU power models to estimate the

power consumptions of concurrent processes?
PowerAPI is an e�cient toolkit that allows building

software-defined power meters in order to perform fine-grained
power estimation. We now show that our solution is not only
able to automatically learn a CPU power model, but also
to use it to estimate the power consumption of concurrent
processes running on the same CPU. We use the Intel Xeon
W3520 processor for this experiment with the power model
derived in Section 4.1.

Figure 11 illustrates the ability to estimate with accuracy
the power consumption of several processes running concur-
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Figure 13: Average power consumption of the Xeon
processor on Ubuntu, CentOS (Pidle = 92) and
CentOS with performance profile enabled (Pidle =
125 W ).

The second model represents the default CPU settings of
CentOS (C.def). The CPU power model is composed of 4
HPC events from the PMU nhm (e1 = uops_retired:active_cycles,
e2 = uops_issued:any, e3 = ssex_uops_retired:scalar_single, e4 =
uops_retired:retire_slots):

Pidle = 92 W

PCPU =
2.02 · e1

108
+

7.76 · e2 + 4.43 · e3 + 2.70 · e4
109

The third model covers the performance optimizations
provided by CentOS (C.perf). We use the tuned-adm tool
for improving performance in specific use cases and for inter-
acting with the power saving mechanisms. This command
comes with di↵erent tuning server profiles depending to the
use of the underlying system and hardware. We use the
latency-performance profile, which allows the OS to lower
the latency of the system and thus to increase performance
of a virtual guest; it is thus well suited to reduce swapping
when CentOS is installed in a VM.

The CPU power model computed for CentOS with the
latency-performance profile is composed of 4 HPC events
from the PMU nhm (e1 = l�d_prefetch:triggers, e2 = uops_decoded-
_dec�, e3 = fp_comp_ops_exe:sse_fp_scalar, e4 = l�i:reads):

Pidle = 125 W

PCPU =
8.86 · e1

108
+

7.93 · e2 + 6.33 · e3 + 5.38 · e4
109

The average power consumption values reported by the
CPU power models are depicted in Figure 13.
In particular, we compare the duration and the power

consumption of each profile while changing the utilization
ratio of a core and increasing the number of allocated cores.
With default settings, the choice between Ubuntu and Cen-
tOS does not impact the power consumption and none of
them pulls out of the game in terms of execution duration.
However, more interesting reports are delivered when the
latency-performance profile is enabled. Indeed, when one
process stresses a full core, the power di↵erence between the
default settings and this profile can be greater than 20 W .
This di↵erence is due to the idle power that represents a
non-negligible part of the power drawn by this profile. Ac-

tually, the latency-performance profile turns all cores of the
processor in the C0 state, which means that the cores are
always turned on for minimizing the latency to wake up.
Moreover, one can see that the activation of the perfor-

mance profile does not decrease the execution duration of the
benchmark. Hence, we can clearly target Ubuntu or CentOS
with default settings to get the best compromise between
performance and power consumption.
These experiments show that the optimizations made by

the OS can be a source of power loss if used inappropriately.
PowerAPI can thus be used as a power profiler to study the
e�ciency of the optimizations made available at the hardware
or OS levels. PowerAPI being modular, the formula actor
could be easily extended to handle such hybrid power models
at runtime.

6. CONCLUSION
Since the publication of the first analytical power mod-

els [20], the research community has been intensively inves-
tigating the design of CPU power models by considering
di↵erent architectures, power-aware features, workloads, and
modeling techniques. Nevertheless, the state of the art in this
area demonstrates that the designed CPU power models are
mostly handcrafted and based on assumptions that prevent
their reuse in other execution contexts and their deployment
at scale.

In this paper, we therefore propose a novel approach, sup-
ported by a middleware toolkit, to automatically learn the
power model of a CPU without requiring a deep expertise
of the considered CPU architecture. Our solution exploits
freely available benchmark suites to discover the hardware
performance counters that accurately reflect the power con-
sumption of the CPU under a wide diversity of input work-
loads. The selected hardware performance counters are then
exploited by a combination of regression analysis techniques
to identify the most accurate power model that fits the tar-
geted CPU. In particular, we demonstrate that our solution
can support software-defined power meters that can monitor
the power consumption of any application with less than
1.5% of error, on average.

Furthermore, our implementation of the toolkit, Power-
API, is published as open source software5 under AGPLv3
license to foster the wide adoption of CPU power models.
Beyond these deployment issues, we also aim at providing
an open testbed to leverage the research on power models.
In particular, we plan to extend this approach to consider
other power-consuming components, such as GPU [19] and
disk, in order to incrementally learn their power model and
thus provide wider cartography of the power consumption
of a software system. In the future, PowerAPI can be a
cornerstone to new energy-aware scheduling [4, 6, 23, 28, 34],
to energy-proportional computing [5, 22, 27, 33], to new kind
of optimizations [38], and to a better understanding of the
power consumption drawn by software [29, 30, 39].
Beyond the open source availability of PowerAPI, the

hardware and software settings, installation steps, and the
experimental protocols are available online for the reader
interested in reproducing the results reported in this paper.6

5Available from: http://powerapi.org.
6
http://bit.ly/PowerAPI--A-Middleware-Toolkit-to-Learn-and-

Monitor-the-CPU-Power-Consumption
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BitWatts: PowerMeter-as-a-Service

subsequently computed by summing the VMs’ consumption
with the power consumed by the infrastructure.

Janacek et al. [10] use a linear power model to compute the
server consumption with postmortem analysis. The computed
power consumption is then mapped to VMs depending on
their load. This technique is not effective when runtime
information is required.

In Stoess et al. [27] the authors argue that, in virtualized
environments, energy monitoring has to be integrated within
the VM as well as the hypervisor. They assume that each
device driver is able to expose the power consumption of
the corresponding device as well as an energy-aware guest
operating system and is limited to integer applications.

2.3 Synthesis
As a summary of the current state of practice, the existing
CPU power models found in the literature cannot be repro-
duced because i) the details of the selected counters are not
provided [31] or sufficiently documented [32], ii) they are tai-
lored to a specific processor architecture (including a limited
set of power-aware features) [18], or iii) they build on private
workloads that cannot be reused to assess alternative power
models [32]. BITWATTS differs from the state-of-the-art by
providing an open source implementation of the proposed
toolkit and builds on standard counters and benchmarks (e.g.,
stress, PARSEC, SPECJBB) to provide an open testbed for
CPU power models.

More specifically speaking, one could note that the liter-
ature has been mostly focusing on the definition of power
models for physical machines by trying to cover some of the
power-aware features of multi-core processors. Nevertheless,
the existing approaches consider each feature separately and,
to the best of our knowledge, none of them provide a CPU
power model that accounts for all of these features in the
context of multi-core systems that run several applications
concurrently.

With regard to the power consumption of VMs, state-of-
the-art solutions provide no or limited support for fine-grained
monitoring of applications running within a VM. The few
existing approaches either consider the VM as a black-box
running a single application, or they require extensions to
the hypervisor or to the host and guest operating systems for
being operational.

In this paper, we therefore propose to tackle both chal-
lenges by reporting on the design of software-defined power
meters that can run both on the host and in a VM. In particular,
on the host, we propose a first configuration of a software-
defined power meter that builds on a new CPU power model
that accounts for common power-aware features of multi-
core processors to deliver accurate power estimations at the
granularity of a software process. In the VM, we introduce a
second configuration of a software-defined power meter that
connects to the host configuration in order to distribute the
power consumption of VM instances between the hosted ap-
plications. The proposed configuration can even be extended

HostC

HostA

VM1
BitWattsApp

BitWatts

VM2
BitWattsApp

HostB

VM1
BitWattsApp

BitWatts

Monitoring console

Publish/subscribe broker

publish publish publish

subscribe

forward

Figure 2. BITWATTS middleware architecture.

to consider distributed power monitoring scenarios involving
application components spread across several host machines.

Unlike existing approaches found in the literature, the
CPU power models we describe i) are application-agnostic,
ii) are processor-aware, and iii) scale with the number of
software processes to be monitored concurrently. We assess
these properties by reporting on the errors observed for both
CPU-intensive and memory-intensive applications provided
by acknowledged benchmarks.

3. Software-defined Power Meters
Power estimation of processes running in virtualized envi-
ronments is not a trivial task, since several factors have to be
considered. In particular assumption, such as the presence
of a single application running in a single VM on a single
core, do not hold anymore. One has to deal with complex
scenarios with a number of VMs that may exceed the number
of physical cores and several applications that run within
each VM. To cope with these different dimensions of scaling,
we designed and implemented the BITWATTS middleware
framework as a modular solution to build software-defined
power meters. In the rest of this section, we give a high-level
overview of its architecture and implementation.

3.1 Architecture Overview
BITWATTS relies on a multi-tier architecture, depicted in
Figure 2, that shares the power consumption of the VMs run-
ning on the host to the application processes running within
the VM. Since the VM does not have direct access to the
hardware, we use a fast communication interface to connect
instances of BITWATTS running on the host and in the VMs.
Similarly, BITWATTS also supports communication across
machines using publish/subscribe communication channels
to report consolidated power estimations of distributed appli-
cations spanning multiple nodes (e.g., in a cluster).

3.2 Power Meter Middleware Toolkit
We built BITWATTS as a modular middleware solution to
assemble software-defined power meters. Software-defined
power meters are customizable solutions that can deliver
power consumption reports at various frequencies and gran-
ularity, depending on the power monitoring requirements.



CPU Architectures
In a distributed setup, we need to communicate across

machines, typically to aggregate the power measurements
from distributed application components running on different
VMs and hosts. Our distributed communication channel there-
fore consists of a publish/subscribe system using ZeroMQ.
ZeroMQ is a networking API that supports complex messag-
ing patterns and provides bindings for various programming
languages while being lightweight. The key component of
the publish/subscribe system is the broker. It forwards mes-
sages received from the distributed BITWATTS instances to
interested subscribers, for example loggers or the monitoring
console (see Figure 2). Messages exchanged between BIT-
WATTS, the broker, and the subscribers are serialized using
Apache Thrift,7 an efficient interface definition language and
binary serialization protocol.

4. Process-level Power Models
BITWATTS relies on specific power models to estimate power
consumption of individual processes. Per-process power
estimation is a cornerstone to identifying the largest power
consumers and to take informed decisions. In particular,
we discuss in this section how these models support multi-
core architectures including power-aware features as well as
how such power models can be connected to support power
estimations within a VM.

4.1 Multi-core CPU Power Model
Power-aware processors. To control energy consumption,
CPUs rely on frequency scaling and power saving modes to
adjust their performance according to computation require-
ments. In particular, the multi-core processors designed by
Intel integrate the following features:

Hyper-Threading (HT) is used on some processor genera-
tions (e.g., Pentium IV, Xeon) to separate each core into
two threads. The technology is based on the simultaneous
multi-threading (SMT) principle, which allows the proces-
sor to seamlessly support thread-level parallelism (TLP)
in hardware and share more effectively the available re-
sources. Performance gains strongly depend on software

7 http://thrift.apache.org

Vendor Intel Intel
Processor i3 Xeon

Model 2120 W3520
Design 4 threads 8 threads

Frequency 3.10 GHz 2.66 GHz
TDP 65 W 130 W

SS 3 3
HT 3 3
TB 7 3

Table 1. Intel processor specifications.

 i3 2120
Socket P#0

L3 (3072 KB)

 L2 (256 KB)

 Core P#0
PU P#0

PU P#2

 L1 (64 KB)

 L2 (256 KB)

 L1 (64 KB)

 Core P#1
PU P#1

PU P#3

 Xeon 3520
Socket P#0

L3 (8192 KB)

 L2 (256 KB)

 Core P#0
PU P#0

PU P#4

 L1 (64 KB)

 L2 (256 KB)

 L1 (64 KB)

 Core P#1
PU P#1

PU P#5

 L2 (256 KB)

 Core P#2
PU P#2

PU P#6

 L1 (64 KB)

 L2 (256 KB)

 Core P#3
PU P#3

PU P#7

 L1 (64 KB)

Figure 4. Core i3 and Xeon topologies.

parallelism, and for a single-threaded application it may
be more effective to actually disable this technology.

SpeedStep (SS) is Intel’s implementation of dynamic volt-
age/frequency scaling (DVFS), which allows a processor
to adjust its clock speed and run at different frequencies
or voltages upon need. The OS can increase the frequency
to quickly execute operations or reduce it to minimize
dissipated power when the processor is under-utilized.

TurboBoost (TB) can dynamically increase the processor
frequency beyond the maximum bound, which can be
greater than the thermal design power (TDP), for a limited
period of time. It therefore allows the processor cores to
execute more instructions by running faster. TurboBoost
is however only activated when some specific conditions
are met, notably related to the number of active cores and
the current CPU temperature. It also depends on the OS,
which may request to trigger it when some applications
require additional performance.

As an illustration, Table 1 reports on the configuration of
two families of Intel processors that exhibit different features
and are used in our evaluation of BITWATTS. Their internal
complexities are reported by the portable hardware locality
(hwloc)8 software package and detailed in Figure 4. These
two configurations differ by the number of cores and threads
available as well as the CPU features (TurboBoost) that can
be exploited by the operating system.

Power model learning. Learning the power model of multi-
core processors requires the definition of a workload that
carefully stresses the various features it supports. Thereby, it
is important to isolate the noise induced by other hardware
components to properly capture the consumption of the CPU
under evaluation. We therefore choose the stress

9 utility,
which is available on most of UNIX systems, to perform
specific workload scenarios. It allows us to incrementally
stress the different hardware components, such as the CPU,
the memory, and the disk.

8 http://www.open-mpi.org/projects/hwloc
9 http://linux.die.net/man/1/stress

voltage/frequency scaling, and dynamic overclocking fea-
tures.

Figure 10 illustrates the capability of estimating and isolat-
ing the power consumption of concurrent processes running
on the same CPU. In particular, it shows how the power
consumption of the Intel Xeon configuration is distributed
between the idle power consumption and two benchmarks
taken from the PARSEC suite (x264 and freqmine). Com-
pared to physical measurements, when running at a frequency
of 4 Hz (every 250 ms), our solution achieves a median error
of 0.30 % with a maximal error of 9.73 %, thus competing
with post-mortem analysis like [10].

Regarding the monitoring frequency, BITWATTS is mostly
limited by the frequency of the hardware and software sensors
used to collect runtime metrics. In particular, BITWATTS can
report on the power consumption of software processes up
to 40 Hz when connected to the PowerSpy, and up to 10 Hz
when using the libpfm4 library. However, by increasing
the monitoring frequency one can observe that the stability
of power consumption is affected, which does not help to
properly identify the power consumption of the processes.
Therefore, in the rest of the paper, we configure BITWATTS
to report on the power consumption with a frequency of 1 Hz
in order to smooth the reported values.

Additionally, Figure 10 reports on the power consumption
of BITWATTS during execution. The power consumption of
5.4W on average demonstrates that our implementation of
the power model has a reasonable footprint and is weakly
impacted by the number of processes being monitored. This
footprint acknowledges the design and the implementation
of BITWATTS as a scalable actor toolkit to build software-
defined power meters.

Generality of the model. While the multi-core CPU power
model proposed in this paper is only assessed on Intel
processors (see Table 1), the solution that we describe does
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Figure 9. Relative error distribution of the PARSEC bench-
marks on the i3 processor.
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x264, and freqmine on the Xeon processor.
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Figure 11. Core i3 and Xeon VM topologies.

not rely on any Intel-specific extensions. Indeed, our model
considers processor features (HT, SS, TB) that are also
available from other vendors. In particular, AMD processors
also represent a target CPU architecture for our power model,
but a limitation of the libpfm4 library currently prevents
BITWATTS to access the reference-cycles to compute
the current frequency. Once this barrier is lifted, we expect
to be able to also demonstrate the validity of our model on
AMD processors with results similar to those reported for
Intel.

4.2 Virtual CPU Power Model
Unlike the architectures observed at the host level (see
Figure 4), virtual CPUs tend to be simpler: they map physical
cores to logical processors (sockets) and typically do not
support any SS/HT/TB features, as illustrated in Figure 11.
Hence, when pinning a single-core VM on a physical core of
the host, the power consumption of a process running in the
VM is proportional to the CPU utilization of the VM on the
host.

To estimate the power consumption of an application
running in the VM P

vm

(app), we need therefore to know

the consumption of the VM process P
cpu

(vm) on the host
machine, as well as the CPU utilization of the application
U

vm

(app) relatively to the other applications running in the
VM U

vm

(total):

P

vm

(app) = P

cpu

(f, uc1
vm

...uc

N

vm

) · U

vm

(app)

U

vm

(total)
.

BITWATTS uses a sensor in the VM to monitor the utiliza-
tion of the application under observation and of all processes
running in the VM. Another sensor gathers information about
the power consumption of the VM forwarded by the host.
The formula then computes the power consumption based on
the model and forwards the results to a reporter. Note that
this reporter can be used to implement distributed energy
monitoring scenarios using publish/subscribe middleware, as
described in the next section.

5. Evaluation of BITWATTS
In this section, we report on the experimental results we
obtained for BITWATTS. In particular, we show that accurate
host power estimation and efficient communication with the
VM are necessary to support power estimation in realistic
virtualized environments.

5.1 Experimental setup
The experimental setup consists of two types of servers (i3
and Xeon) with different hardware characteristics, as shown
in Table 1. For the distributed setups, we use three identical
servers of type i3.

We rely on KVM [12] for virtualization. KVM turns the
Linux kernel into a hypervisor without need for any additional
software. In addition to the typical process operating modes
(kernel space, user space) of Linux, KVM adds a guest mode
for programs running in a virtualized environment. This
feature helps for measuring the CPU time used by a virtual
process.

As KVM does not perform any emulation to run oper-
ating systems on various architectures, we combine it with
QEMU13 to emulate different CPU and device types. With
QEMU/KVM, the VM runs as a normal user process and
is hence controlled by the Linux scheduler. By default, the
scheduler tries to keep a process on the same CPUs, notably
to maximize cache efficiency. We run KVM/QEMU with
an off-the-shelf Ubuntu 13.11 on both server types (i3 and
Xeon).

We want to investigate in our experiments the accuracy
and applicability of BITWATTS at different scales. Therefore,
we first consider the execution of benchmarks on a single host,
with an increasing number of concurrently running VMs, to
observe the impact of VM scheduling on the host. As a first
benchmark, we use PARSEC [4] v2.1 for our experiments,
as it is multi-threaded and CPU-intensive. PARSEC contains
13 http://www.qemu.org
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Figure 12. Possible setup of SPECJBB (only backends are
part of the evaluation).

a variety of applications implemented in C. We experiment
with all except two (raytrace, ferret) that were not readily
supported by our hosts. We use the PARSEC native workload
as it yields sufficiently long execution times. We allocate 2
threads per VM, thus allowing the execution of 4 concurrent
VMs on the Xeon.

Then, to further evaluate BITWATTS in a real-world,
multi-threaded and distributed environment, we use the
SPECJBB2013 benchmark [1]. This benchmark implements
a supermarket company that handles distributed warehouses,
online purchases, as well as high level management opera-
tions (data mining). The benchmark is implemented in Java
and consists of controller components for managing the ap-
plication and backends that perform the actual work. In our
experiments, we focus on evaluating the power consumption
of the backends, since they can be scaled arbitrarily in virtual-
ized environments. A run takes approximately 45 minutes; it
has varying CPU utilization levels and requires at least 2GB
memory per backend to finish properly.

In order to have more than one backend run on our
instances of i3, we apply the following parameter changes
to specjbb2013.conf: we reduce the number of customers
and products to 50, 000, increase the step-size, and reduce
the maximum and minimum duration for phase 2 of the
benchmark.14

Since we only have several identical servers of type i3, the
SPECJBB experiments are only executed on these machines.
We compare different setups, running one or two backends on
the host or in a VM (Figure 12). The distributed setup consists
of a controller host and two virtualized or non-virtualized
backend hosts (Figure 13). Note that in virtualized scenarios
one BITWATTS instance runs on the host and one in the VM.

5.2 Scaling the Number of VMs
We already assessed the multi-core CPU power model on the
host machine, introduced in Section 4.1, by comparing the
BITWATTS estimation of PARSEC to the values reported by
the PowerSpy. In this section, we first evaluated the virtual
CPU power model, described in Section 4.2, by comparing
the BITWATTS estimation of PARSEC running in the VM
to the values reported by the PowerSpy on the host. In this
experiment, PARSEC is running in a single VM, which has

14 Note that these changes make our runs non-compliant, therefore we do not
use the SPEC-specific metrics in this paper.

Figure 7. Decreasing load of stress on i3 in the host, com-
pared to RAPL.

runtime per active process identifier pid and per core 1..N .
The power consumption of the CPU, P

cpu

, is defined as the
sum of the power consumption per frequency, P

f

, for each
core n:

P

cpu

(f, uc1
pid

...uc

N

pid

) =
NX

n=1

P

f

(ucn
pid

).

We finally obtain a power model per frequency, including
TB-specific frequencies. One of the resulting formulae is
described below for the TB frequency of a Xeon processor
(2.90 GHz):

P2.90(ucpid) =
8.64 · uc

pid

109
�

6.10 · uc2
pid

1018
.

The resulting formula is a polynomial of degree 2 (de-
picted in Figure 6), which is conform to results published in
the literature and the impact of the HT feature on the power
models [32]. Figure 6 plots the power estimation according
to the number of unhalted-cycles for each of the power
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Figure 8. Relative error distribution of the PARSEC bench-
marks on the Xeon processor.

models we inferred per frequency. For the sake of clarity, only
the frequencies above 2.30 GHz are reported in the figure.
The idle consumption (P

idle

(f) when x = 0) is computed by
the regression and is impacted by the current frequency of the
processor. One can observe that the 2.50 GHz line is above
the 2.40 GHz line, which is mainly due to the inaccuracy
of cpufreq-utils: it keeps track of the average frequency
and might not report exact values at any given time, notably
ignoring the turbo frequencies.

Power model assessment. First, to demonstrate that BIT-
WATTS is able to handle applications with diverse load, we
start with a baseline experiment on the i3. We run the stress
tool on a single core in combination with cpulimit. Every
30 seconds, the stress load is decreased by 10 %. In this ex-
periment, we compare the results not only to PowerSpy, but
also to running average power limit (RAPL) counters, which
report CPU-package power consumption and are available
on recent Intel processors (since the Sandy Bridge processor
generations and hence on the i3). Furthermore, for this exper-
iment, we set the CPU frequency to a fixed ratio of 1.6 GHz
to avoid peaks in the power measurements of PowerSpy.

Figure 7 shows the results of the workload executed on the
host. We see that the RAPL counters follow the trend of the
workload, but tend to overestimate the power consumption
of a single CPU. Compared to RAPL, BITWATTS provides
power estimation that is much closer to PowerSpy that we
consider as the ground truth. This indicates that BITWATTS
performs accurate sub-system estimation in various load
scenarios, which is a prerequisite to be able to monitor virtual
machines using a subset of the resources of a physical host.

In the next scenario, we assess our power model for multi-
threaded applications in comparison to PowerSpy. This com-
parison uses the well-known PARSEC [4] v2.1 benchmark
suite, which includes many CPU-intensive workloads. This
suite was designed to stress all the resources available on
multi-core architectures. In particular, we report the power
consumption of all the benchmarks available on two different
configurations used in our tests. Figures 8 and 9 report the
relative error between the measured and estimated power con-
sumption (by aggregating the power consumption per process
using P

host

).
Even though PARSEC was not included as a workload dur-

ing the sampling phase, one can observe that the estimation
produced by our power models is close to the power mea-
surements collected for the two different processor models
considered. The closest method to ours, described in [30],
adopts an iterative approach to minimize the error rate to at
most 5 %. However, the key limitations of their approach are
i) they only consider full usage of the cores, and ii) they rely
on an application-specific model. Our solution is application-
agnostic, supporting both CPU- and memory-intensive work-
loads, and are processor-aware, considering different models
of CPUs including multi-cores, hyper-threading, dynamic
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Figure 3. BITWATTS middleware implementation.

In particular, this paper focuses on per-second process-level
monitoring in order to closely monitor the activity of an ap-
plication running on a system.

Our solution builds on the POWERAPI toolkit [20], which
adopts the actor programming model as a solution that can
scale with the frequency and the number of applications to
be monitored. The software components of BITWATTS are
therefore implemented as actors, which can process millions
of messages per second, a key property for supporting real-
time power estimation. More specifically, the POWERAPI
toolkit identifies four types of actors that are reused and
extended in BITWATTS:

Sensor connects the software-defined power meters to the
underlying system in order to collect raw measurements
of system activity. Raw measurements can be coarse-
grained power consumption reported by third-party power
meters and embedded probes, or CPU activity statistics as
delivered by the process file system (ProcFS). Sensors are
triggered according to the requested monitoring frequency
and forward raw measurements to the appropriate formula.

Formula uses the raw measurements received from the sen-
sor to compute a power estimation. A formula therefore
implements a specific power model [11, 14, 30] to convert
raw measurements into power consumption. The granu-
larity of the power consumption reported by the formula
(machine, core, process) depends on the granularity of the
measurements forwarded by the sensors.

Aggregator is in charge of aggregating power consumption,
according to a specific dimension like the process identi-
fier, to compute the energy consumption, or timestamp, to
group the power consumption of several applications.

Reporter finally formats the power consumption produced
by the formula or the aggregator into a suitable format.
Such reports can be provided for instance via a Web
interfaces or a virtual file system (e.g., based on FUSE).

As the BITWATTS middleware framework supports pro-
cess estimation in VM-based systems, implementations of
the sensor, formula, and reporter actors are assembled in dif-
ferent configurations on the hosts as well as in the VMs (see
Figure 3).

Additionally, to improve the accuracy of state-of-the-
art power estimation, we deliver a new power model that
builds upon a libpfm

4 sensor actor on the host to collect the
hardware performance counters associated to the monitored
VM process. The formula actors consume the measurements
collected on the host by this libpfm sensor to estimate the
power consumption of a given process (see Section 4.1). The
resulting consumption measures are automatically published
by two reporter actors through two different communication
channels: VirtioSerial5 and in a distributed setup also to
ZeroMQ.6 The data forwarded through these channels is
consumed by sensor actors.

The BITWATTS middleware framework therefore provides
an exhaustive toolkit to assemble software-defined power
meters on demand. The results reported in the following
sections are notably based on a variety of software-defined
power meters built with BITWATTS to: monitor coarse-
grained power consumption using a third-party power meter
or RAPL probes, learn the power model of the processor,
deliver process-level power consumption on the host, and
report on fine-grained power consumption within the VMs.

3.3 Power Consumption Communication Channels
Exchanging data between instances of BITWATTS requires
two levels of communication. First, we need to exchange
data between the host and the VM to estimate the power
consumption of a process within the VM. Second, in a
distributed setup, we want BITWATTS to report the power
estimation to another server, e.g., to aggregate the data
monitored on multiple physical or virtual nodes.

For the hierarchical communication between instances of
BITWATTS running on the host and a VM, a lightweight
transport mechanism is required to exchange messages at a
high rate while crossing the VM boundaries.

VirtioSerial is based on the file system and has been
developed for the very purpose of inter-VM communication.
It provides the performance required to reduce likelihood of
synchronization errors of power measurements between host
and virtual machine.

The VirtioSerial hierarchical communication channel is
implemented in BITWATTS as a reporter actor on the host and
a sensor actor in the VM (see Figure 3). Multiple instances
of BITWATTS are running concurrently: one in the host and
one per VM. For the host, the VirtioSerial reporter commu-
nicates the power consumption of the VM process to the
virtio-pci device. In the VM, the VirtioSerial sensor con-
nects to the VirtioSerial port and reads power consumption
reported by the host. The BITWATTS formula uses these val-
ues to compute the process-level power consumption within
the VM.

4 http://perfmon2.sourceforge.net
5 http://www.fedoraproject.org/wiki/Features/VirtioSerial
6 http://www.zeromq.org
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What about code-level power measurements ?

v Energy debugging (hotspots)

v Including third-party components (disks)



Conclusion

❖ PowerAPI: middleware toolkit for process-level power 
estimation

❖ Hardware features agnostic
❖ Turbo, HyperThreading, SpeedStep, ...

❖ Distributed monitoring support

❖ No dedicated hardware



Contact: romain.rouvoy@univ-lille1.fr

Thanks for your attention.
Questions?


