Applications Offloading in Mobile Cloud Computing Environment

Amal ELLOUZE, Ph.D. Candidate
Prof. Maurice GAGNAIRE

29 November 2013
Motivation

CPU / Battery Limitations of mobile terminals

Mobile Cloud Computing (MCC)

Mobile Application Offloading (MAO)

MCC “a new paradigm for mobile applications whereby the data processing and storage are moved from the mobile device to powerful and centralized computing platforms located in clouds” Aepona [1]

Infrastructure Deployment

- WDM-PON-based Mobile Backhaul
MAO Mobile Applications Offloading is a decision algorithm that enables to offload judiciously certain applications under I/O energy consumption constraints.

Today:
- **Microsoft**: MAUI
 - decides at Runtime what methods should be remotely executed
- **Intel**: CloneCloud
 - clone the execution environment
Considered Applications

- A single M located at the foot of the pole supporting the antenna
- A single active user was considered in the cell
- Six main applications were considered to evaluate the decision algorithm
Assumptions

- LTE Environment
- Samsung Galaxy S2 at a speed of 1.2 GHz.
- Tx / Rx Capacity=4 Mbit/s.
- The server on which is activated a new VM for each application offloading is equipped with a X86 CPU operating 4 times faster than the CPU of the Mobile Terminal.
MAO Algorithm

Start → Input Execution_Time App

D1: Execution_Time App > Critical Delay → No offload

D2: Energy Efficiency

D3: T_Tot (sejourn, tr) < Critical Delay → Reject

D4: Update Energy=> Energy Efficiency

Offload
Rejection Causes

- Network Conditions: 26%
- Server load: 74%
We offload the code of an eligible job with its input associated data onto a remote server.

Once this job has been computed, we download its result back to the mobile terminal.

Evaluation Metrics: Battery lifetime and Rejection Ratio.
Results

Battery lifetime %
Taux de rejets %

λ = Application/seconde

GreenDays@Lille
63% of Battery energy gain over an offered load of 0.1 applications per second
Conclusion

- MAO enables to decide under which conditions it is worth to offload an application from a mobile terminal to a remote VM located in the mobile backhaul

- This operation may drive to a gain in available energy on the mobile terminal up to 60%

Future Works
- The PMs on which are activated the applications are not systematically located at the BS’s site but higher in the mobile backhaul infrastructure
- Ideally, the VM farms should be co-located with the BBU farms
- A cross-optimization tool for that purpose.
Thank you

Motivation

Results

63% of Battery energy gain over an offered load of 0.1 applications per second

MAO Algorithm

1. Start
 - Download, Time App
 - Check Delay
2. Execute App
 - Check Delay
3. If delay is acceptable, go to
 - Energy Efficiency
4. Update Energy
 - Energy Efficiency
 - Delay

Conclusion

- MAO enables to decide under which conditions it is worth to offload an application from a mobile terminal to a remote VM located in the mobile backhaul.
- This operation may drive to a gain in available energy on the mobile terminal up to 63%.
- Coming studies will consider the case where the PMs on which are activated the applications are not systematically located at the BS's site but higher in the mobile backhaul infrastructure.
- Ideally, the VM farms should be co-located with the BBU farms.
- We shall design a cross-optimization tool for that purpose.