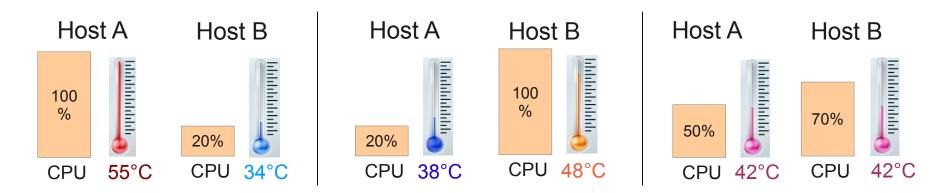
GreenDays@Lille

Energy efficient mapping of virtual machines

Thursday 28th November 2013

Violaine Villebonnet

Supervisor : Georges DA COSTA


Current approaches for energy savings in cloud

Several actions at different levels:

- Infrastructure Localization, Architecture, Cooling System
- Machines Power off / Suspend unused machines
- Processor DVFS Dynamic Voltage and Frequency Scaling
- Middleware Virtual machines mapping
- Applications Optimizations inside the code

Different approach

- Current approaches are limited Decisions only made with data from the system: CPU, Network, Memory utilizations
- → New approach Taking into account the hardware by monitoring the temperatures

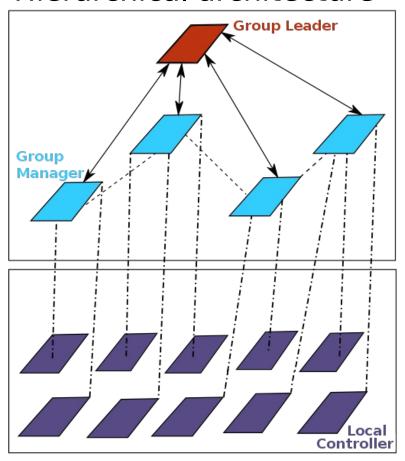
Basic consolidation

Consolidation + some thermal awareness

Thermal management: temperature threshold

- Energy efficient mapping of virtual machines
- + Thermal aware

Add thermal aware features to a cloud manager



- Implement new reconfiguration algorithms
- Tests in real conditions on Grid'5000 platform
- Study the behaviour and then be able to propose algorithms that best fit with reality

Snooze

Cloud manager developped by Eugen Feller during his PhD at INRIA Rennes

Hierarchical architecture

Particular features

Self Configuration

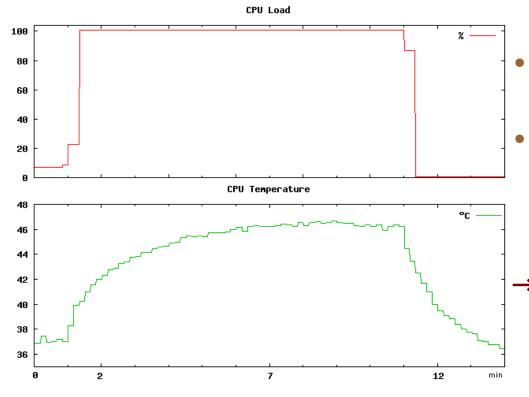
Self Healing

Overload and Underload Detection

Relocation and Consolidation

Power Management

Live Migration



Open Source

Temperature monitoring

Motivations

Link between temperature and CPU load

Avoid heat points

- Avoid peak consumption due to the cooling system : Fans and Air Conditioning
- → Reduce the energy consumption of the whole datacenter

Problematic

Integration in Snooze

Problematic

• Package | | m-sensors | to get temperatures from sensors

Distributed monitoring system Ganglia

- Module Python which gets temperature each second
- Each Local Controller in Snooze gets its own values, and send them to the Group Manager
- Group Manager receives monitoring data from all the Local Controller it supervises

Relocation algorithm modifications

- Java project, many packages, 450 classes
- Deployment, testing and bug corrections in collaboration with Matthieu Simonin, Research engineer at INRIA Rennes
- Features useful for my project :
 - Anomaly detection
 - Live migrations
 - Power On / Off of the nodes

Problematic

Relocation algorithm

Goals

- Reduced energy consumption
- No crossing of a maximal temperature threshold

Implementation

- Minimal number of used hosts
- Minimal number of migrations
- → Problem: Paradoxal goals

 Dispatching not to overheat
 - ≠ Consolidate to optimize the use of resources

Relocation algorithm

Periodic threshold crossing detection

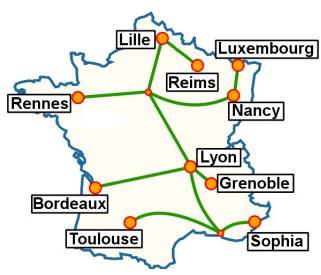
Report anomalies

Implementation

Reactive actions to resolve anomalies

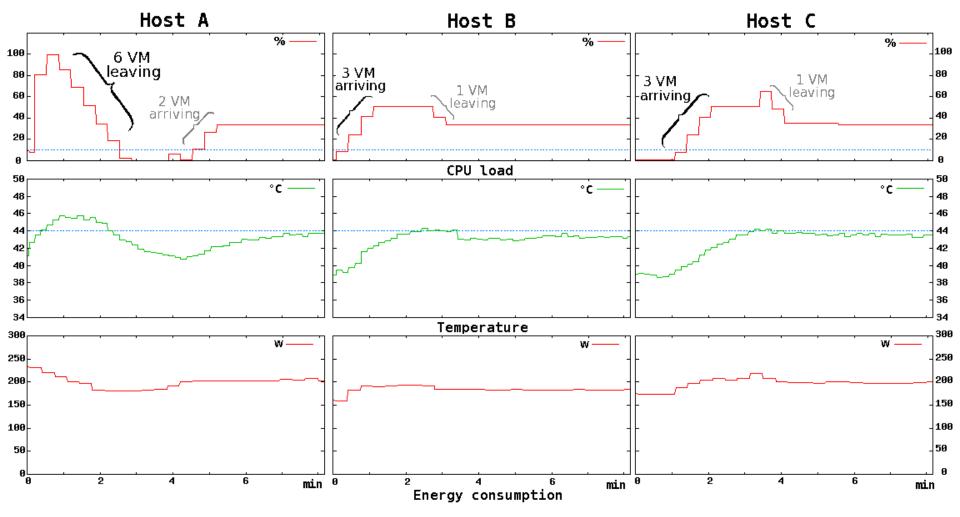
2 states of anomaly:

- <u>OVERHEAT</u> (temperature > max threshold) VM migration to the coldest node
- <u>UNDERLOAD</u> (CPU load < min threshold) VM migrations to the coldest node, that already hosts VM, and not in OVERHEAT state



Priority in anomaly resolution: OVERHEAT first!

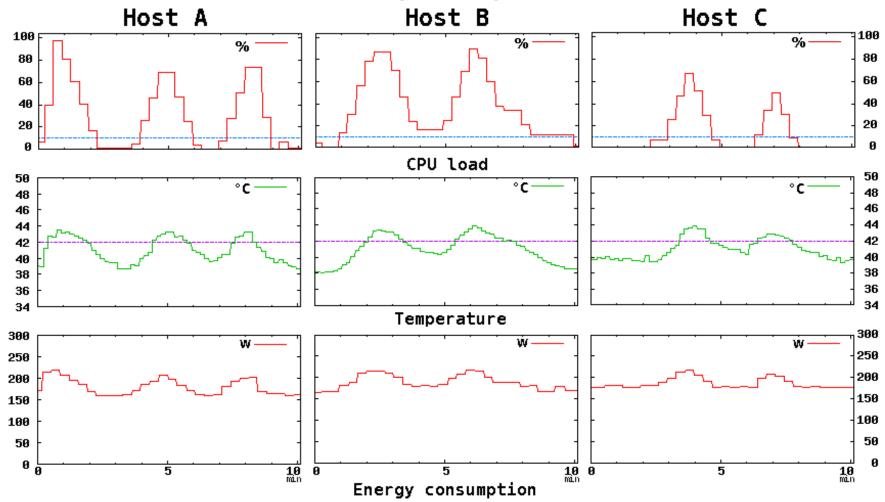
- Different possibilities for :
 - Threshold crossing detection
 - Choose the destination host of a migration
- Historic list of the last temperature and CPU load values
 - Decision on the average of the last values
 - Decision only on the last value



- Deployment on Rennes site Cluster Parapluie
- Scripts to run experiments, extract data from log files, and then calculate the metrics:
 - Number of migrations
 - Energy consumption
 - Time spent in each 3 states

Results – Example Stable

3 hosts (1 processor 12 cores) – 6 virtual machines (2 CPU) cpuburn



Violaine Villebonnet

GreenDays@Lille

28th November 2013

Results – Example PingPong

- + : Capping the temperatures and energy consumption
 - : Unstable system, Degraded QoS, Overhead due to migrations

Results – Threshold variations

Variation of temperature max threshold

CPU threshold > 20%						
Temperature	Number of	Energy	Underload	Stable	Overheat	Expe
Threshold	Migrations	Consumption (J)	(%)	(%)	(%)	duration (s)
40 °C	91	1020674	9.94	0.00	89.73	1872
42 °C	68	952451	56.79	1.86	41.06	1725
44 °C	73	974632	62.06	19.61	18.03	1766
46 °C	46	915494	68.11	23.86	7.88	1667

Higher is the temperature threshold, lower is the energy consumption of the servers

Energy Consumption of the cooling system is not taken into account here!

Conclusion & Improvements

Conclusion

Problematic

- Successful integration of new relocation algorithms in Snooze
- Snooze is now able to monitore temperature and even other measures with Ganglia
- Experimental platform is operational and possibility to compare algorithms by metrics calculation

Possible improvements

- Module to predict temperature
- List of last states of the nodes
- Variable thresholds
- Add a delay between migrations
- Energy consumption of the cooling system

Any further questions, contact me: Violaine.Villebonnet@irit.fr