

Energy Conscious Scheduling
Johnatan E. Pecero

University of Luxembourg

January 18, 2012

Green Days @ Lyon

Friday, January 20, 2012

Johnatan E. Pecero

GreenIT Project at Uni Luxembourg

• FNR CORE Project
• To provide a holistic autonomic energy-

efficient solution to manage, provision, and
administer the various resources within
large-scale distributed systems

2

Friday, January 20, 2012

Johnatan E. Pecero

GreenIT Project at Uni Luxembourg

• Aims: to develop
– Meta-models of Cloud Computing (CC)

systems
– Resource management methodologies in CC

• Scheduling, resource allocation, load balancing
– Autonomic resource management for CC

3

Friday, January 20, 2012

Johnatan E. Pecero

Plan

• Context and Motivation

• Energy Conscious Scheduling

• Energy-aware Scheduling Algorithms

• Concluding Remarks

4

Friday, January 20, 2012

Johnatan E. Pecero

Background

• K supercomputer SPARC64 (No. 1) power : 12.65 MW
• Average top 10 supercomputer power: 4.6 MW
• More than 5% of top500 supercomputers consume

more than 1 MW
5

Top500.org data
(November 2011)

Friday, January 20, 2012

Johnatan E. Pecero

2012 Energy Consumption in Data Centers

• A projected rate of increase in energy consumption of 19%
into 2012 for world’s data center
– More than 10% (300 MW) in France (2011-2012)

6

DatacenterDynamics.com
• Data centers currently

consume about 31 GW
• The average total power to

rack is about 4.05 kW
• Around 58% of racks

consuming 5kW per rack
• 28% of racks consuming

from 5kW to 10kW
• 14% of racks consuming

more than 10kW per rack

Friday, January 20, 2012

Johnatan E. Pecero

• Source : U.S. Federal Energy Management Program
• (http://www1.eere.energy.gov/femp/program/dc_energy_consumption.html)

7

Friday, January 20, 2012

http://www1.eere.energy.gov/femp/program/dc_energy_consumption.html

http://www1.eere.energy.gov/femp/program/dc_energy_consumption.html

Johnatan E. Pecero
8

Evaluation results
Distribution of energy consumption in data center

Dzmitry Kliazovich (dzmitry.kliazovich@uni.lu) 17April 16, 2010

!"#$"#%

&'#"(%)*+,-"%

.//#"/0+*'1(%)*+,-"%

.,,"%%(%)*+,-"%

!"#"$%&'#&(

&-0%%*%
234

5*1",0#6%
724

8'#+(
+#01,"*$"#%

994

)*+#%,&-

&8:
92;<(=>24?

@"A'#B
23<(=9C4?

D*%E%
9C<(=>4?

8"#*F-"#*0G
7;<(=9H4?

@'+-"#I'0#
6

C7<(=J4?

K+-"#
>J<(=934?

./012#+'3$)&(4&(-
567$8

Source: GreenCloud Simulator, University of Luxembourg

Friday, January 20, 2012

Johnatan E. Pecero

Green Approaches
• Hardware approach

– Energy-efficient Microprocessors, multi-core
– Better CPU Power Management, Power Heterogeneous

Processors
– Solid State Disks
– Energy-efficient Monitors

• Software approach
– Virtualization
– Energy Conscious Scheduling and Resource Allocation

(S&RA)
– Energy-aware Algorithm Design

• Cloud Computing
– Redesigning data centers, (e.g. google, microsoft)

9

Friday, January 20, 2012

Johnatan E. Pecero

Green Approaches
• Hardware approach

– Energy-efficient Microprocessors, multi-core
– Better CPU Power Management, Power Heterogeneous

Processors
– Solid State Disks
– Energy-efficient Monitors

• Software approach
– Virtualization
– Energy Conscious Scheduling and Resource Allocation

(S&RA)
– Energy-aware Algorithm Design

• Cloud Computing
– Redesigning data centers, (e.g. google, microsoft)

10

Friday, January 20, 2012

Johnatan E. Pecero
11

11/22/2010

16

! "#$$%&'()*+,-%%.('()/$0%/1$23,$-45/67/.++.8%'9.,7/
#-(-)'() 4.#-(4 -(4 8-:-8'%7 !"!#$%&'('#!

)"!#$%&*('#!+,-.*+/0#+1,2,3

5$
02
8.
5

;-:-8'%7

#-(-)'()/4.#-(4/-(4/8-:-8'%7/ !"!#$% '('#!+
,-.*

5$
02
8.
5

;-:-8'%7

$0
28
.5

< 4

;-:-8'%7

=.
5

<.#-(4

>'#./?4-75@
A B C

=.
5 <.#-(4

>'#./?4-75@
A B C

=.
5 <.#-(4

>'#./?4-75@
A B C

D

)"!#$%&*('#!+,-.*+/0#+1,2,3
>E
"F
/?G
H
I@

<
D
;
H
J
KH
"D

E
""
LM
N

J
E
K

>-535 K2$8.55.5 O-2).P58-,.
4'5%2'60%.4/

32

:,-%+$2#

"$,0%'$(

.(.2)7/
.++'8'.(%Q

Source: Albert Y. Zomaya’s talk, University of Luxembourg

Energy Conscious Scheduling and Resource
Allocation for Large-Scale Distributed Systems

Friday, January 20, 2012

Johnatan E. Pecero

Energy Conscious Scheduling

12

Friday, January 20, 2012

Johnatan E. Pecero

Scheduling Basis

• Scheduling deals with the allocation of
scarce resources to tasks over time,
subject to a set of constraints

• The main constraints are resource
constraints and precedence constraints
between activities

13

Friday, January 20, 2012

Johnatan E. Pecero

Traditional Scheduling - Machine
environment

• Single machine and machines in parallel
– Single machine (uniprocessor systems)
– Pm identical parallel machines

(homogeneous)
– Qm machines in parallel with different speeds
– Rm unrelated machines in parallel

(heterogeneous)

14

Friday, January 20, 2012

Johnatan E. Pecero

Traditional Scheduling - Objectives

• Performance measures of individual jobs
– Cj Completion time of a job j
– Lj Lateness
– Tj Tardiness
– Ej earliness
– Uj unit penalty = 1 if the completion time of a

job is greater than due date

15

Friday, January 20, 2012

Johnatan E. Pecero

Traditional Scheduling - Objectives

• Functions to be minimized (QoS related)
– Cmax = max Cj makespan

• The total amount of time required to complete a
group of jobs

– Lmax = max Lj maximum lateness
– ΣwjTj = Total weighted tardiness (Past due

date)
– ΣCj Flow time (user metric)

• throughput time, or time spent in the system
– ΣwjCj Total weighted completion time

16

Friday, January 20, 2012

Johnatan E. Pecero

Scheduling Problem

17

Introduction

Basics on classical scheduling

multi-objective scheduling

One step further

Fairness

Alternative approach

Conclusion

Notations

Single objective scheduling problem

Single objective problem

Scheduling Problem.

Determine σ : when and where the computational units (tasks) will
be executed.

Theorem

Minimizing the makespan (basic problem) is NP-Hard [Ullman75]

Solutions may be obtained by exact methods, purely heuristic
methods, or approximation methods.

Denis Trystram, Grenoble University Multi-criteria scheduling

• Solutions may be obtained by exact methods,
heuristic, meta-heuristic method, approximated
methods

Friday, January 20, 2012

Johnatan E. Pecero

Traditional Scheduling - LS Algorithm

18

2 State of the Art

magnitude of priority. First, list scheduling sorts the task of the DAG to be scheduled according

to a priority scheme, while respecting the precedence constraints of the tasks, that is the resulting

task list is in topological order. After, each task of the list is successively scheduled to a processor

chosen for the task. Usually, the chosen is the one that allows the earliest start time of the task.

Figure 2.3 outlines the pseudo-code of the list scheduling algorithm.

Algorithm 2.3 List Scheduling

Calculate the priority of each task ti ∈ V according to
some predefined scheme.
Sort tasks ti into list L = {t1, t2,tn} by decreasing
order of their priorities and precedence constraints.
While L is not empty

Remove the first task from L and assign it to an
appropriate processor in order to optimize a predefined
cost function.

return (schedule)

Figure 2.3: List scheduling pseudo-code

Two important attributes used to calculate the priority of a task taking communication delays

into account are the t-level (top level) and b-level (bottom level) [118, 50, 107]. The t-level of a task

is defined as the length of a longest path from an entry task to the task (excluding the task itself).

The length of a path is the sum of all the task and edge weights (i.e., the task execution times and

the communication costs) along the path. The t-level is related to the earliest start time of the task.

The b-level of a task is the length of a longest path from the task to an exit task. The critical path

(CP) of a DAG is the longest path from an entry task to an exit task in the DAG. Clearly, the upper

bound of a task’s b-level is the critical path of the DAG. There are different ways to determine

the b-level. Most algorithms examine a task for scheduling only when all the precedent tasks of

the task have been scheduled. Nevertheless, some algorithms allow the scheduling of a child node

before its parents. In such a case, the b-level becomes a dynamic attribute. Both, b-level and

t-level can be computed with time complexity O(e + n), where e is the number of edges and n is

the number of tasks in the DAG.

Earliest Task First (ETF) Algorithm
List scheduling were originally devised with the assumption of zero inter-task communica-

tion costs. Even with this simplification, the scheduling problem remains NP-complete. However,

Graham [95] has shown that in the absence of communication, list scheduling heuristics have a

guaranteed performance within 50% of the optimum. In an effort to cater for communication

14

Task Selection
Phase

Processor
Selection Phase

• Theorem : The List Scheduling algorithm is a 2-approximation
for MAKESPAN Scheduling on identical machines

• Some List Scheduling Priorities:
• Critical Path Method, Longest Path, Longest Processing Time

Friday, January 20, 2012

Johnatan E. Pecero
19

Energy-aware Scheduling at Site Level

Friday, January 20, 2012

Johnatan E. Pecero

Scheduling with Energy considerations

• Three optimization problems
– P1: Optimize performance (QoS related

objective) subject to an Energy Budget

– P2: Optimize energy without performance
deterioration

– P3: Optimize performance and energy
simultaneously

20

Friday, January 20, 2012

Johnatan E. Pecero

Energy-aware Scheduling
• As computation time cost, better scheduling is

intrinsically more green
– maximizing resource utilization, avoiding idle time, task

and resource consolidation
• Popular energy saving techniques combined with

scheduling
– Dynamic power management

• When a device is idle, it can transition to low-power sleep states...,
switch off/on

– Dynamic Voltage Scaling
• A device can be run at different speeds with different usage rates
• Execution of jobs can be slowed down to save power as long as all

jobs are completed bi their deadline

21

Friday, January 20, 2012

Johnatan E. Pecero
22

Dynamic Voltage Scaling
• DVS enables processors to dynamically changing

its working voltage and frequency without stopping
or pausing the execution of any instruction.
– During some time slots

• Idle time
• Communication phases

– Modern components allow voltage regulation
– Bios
– Application such as PowerStrip

– The aim of DVS is to reduce energy consumption
– This reduction is achieved at the expense of sacrificing clock

frequencies; therefore longer time is will be required to execute a
given application

Friday, January 20, 2012

Johnatan E. Pecero

System Model

• A set M of m heterogeneous and DVS-enabled
processors that are fully interconnected

23

Level

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
Volt.
(vk)

Rel.
Speed
(%)

Volt.
(vk)

Rel.
Speed
(%)

Volt.
(vk)

Rel.
Speed
(%)

Volt.
(vk)

Rel.
Speed
(%)

Volt.
(vk)

Rel.
Speed
(%)

Volt.
(vk)

Rel.
Speed
(%)

0 1.50 100 2.20 100 1.50 100 1.75 100 1.20 100 1.35 100
1 1.20 80 1.90 85 1.40 90 1.40 80 1.15 90 1.25 85.7
2 0.90 50 1.60 65 1.30 80 1.20 60 1.10 80 1.20 71.5
3 1.30 50 1.20 70 0.90 40 1.05 70 1.10 57.1
4 1.00 35 1.10 60 1.00 60 0.9 32.2
5 1.00 50 0.90 50
6 0.90 40

Table: Voltage-Relative Speed Pairs

Friday, January 20, 2012

Johnatan E. Pecero

Application Model

24

Introduction
Problem
Solution

Summary

Target System
Modeling

Application model

!

" # $ %

& '

(

"" "("% ""

"$ "! ") "$ #(

#" "$

task m0 m1 m2 pi b-level
0 11 13 9 11 101
1 10 15 11 12 67
2 9 12 14 11.67 63.67
3 12 16 10 12.67 73.67
4 15 11 19 15 79
5 13 9 5 9 42
6 11 15 13 13 37
7 11 15 10 12 12

Figure: In the left a sample Directed Acyclic Graph. In the right a
table with base execution time of the tasks for the DAG.

10 / 38

Figure: In the left a sample Directed Acyclic Graph. In the right a
table with base execution time of the tasks at maximum voltage.

Communication to Computation Ratio
(CCR)

Friday, January 20, 2012

Johnatan E. Pecero

Energy Model
• Derived from the power consumption model in complementary

metal-oxide semiconductor (CMOS) logic circuit

• Capacitive Power

A: #switches per clock cycle, C: total capacitive load
V: supply voltage, f: frequency

• Our Energy Model

• Total Energy

25

Table I
VOLTAGE-RELATIVE SPEED PAIRS [6], [7]

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel.

Level (vk) Speed (vk) Speed (vk) Speed (vk) Speed (vk) Speed (vk) Speed
(%) (%) (%) (%) (%) (%)

0 1.50 100 2.20 100 1.50 100 1.75 100 1.20 100 1.35 100
1 1.20 80 1.90 85 1.40 90 1.40 80 1.15 90 1.25 85.7
2 0.90 50 1.60 65 1.30 80 1.20 60 1.10 80 1.20 71.5
3 1.30 50 1.20 70 0.90 40 1.05 70 1.10 57.1
4 1.00 35 1.10 60 1.00 60 0.9 32.2
5 1.00 50 0.90 50
6 0.90 40

Figure 1. A sample Directed Acyclic Graph with the task numbers ni

inside nodes and values of cij function next to the corresponding edges.

Table II
A TABLE WITH VALUES OF COMPUTATIONAL COST pij , MEAN

COMPUTATIONAL COST pi AND B-LEVEL VALUES FOR EACH TASK.

task p0 p1 p2 pi b-level
0 11 13 9 11 101.33
1 10 15 11 12 67
2 9 12 14 11.67 63.67
3 12 16 10 12.67 73.67
4 15 11 19 15 79
5 13 9 5 9 42
6 11 15 13 13 37
7 11 15 10 12 12

dissipation). The most significant factor is the capacitive
power, which can be interpreted as the dynamic power
consumption [6]. The power consumption Pij of machine
mi during the execution of the task tj is calculated as
follows:

Pc = ACefv
2f, (5)

where A is the number of switches per clock cycle, Cef is
the total capacitance load, v is the supply voltage, and f is
the machine frequency. Equation 5 indicates the reduction of
the supply voltage would be most influential to lower power
consumption because it is the dominant factor. The energy
consumption of the execution of a precedence-constrained

parallel application used in this work is defined as:

Ec =
n
∑

i=1

ACefv
2
i f.p

∗

i =
n
∑

i=1

γv2i p
∗

i , (6)

where γ = ACef is assumed constant for a given machine;
vi is the voltage supply value of the processor on which
task ti is executed, and p∗i is the computation cost of task
ti on the scheduled processor. We also consider energy
consumption during idle time. During idle time, processors
are automatically scaled to lowest possible voltage level.
Energy consumption during idle is defined as [6]:

Ei =
m
∑

j=1

∑

idlejk∈IDLEj

γv2j,lowIjk, (7)

where IDLEj is the set of idling slots on machine pj , Vj,low

is the lowest supply voltage on pj , and Ijk is the amount of
idling time for idlejk. Then the total energy consumption is
defined as:

Et = Ec + Ei. (8)

C. The scheduling model
The scheduling problem is the process of allocating a

set T of n tasks to a set P of m processors (without
violating precedence constraints) aiming to minimize the
schedule length (makespan) with energy consumption as low
as possible. The makespan Cmax of a DAG represents the
time at which the last component of the application finishes
execution. It is defined as Cmax = maxAFT (nexit) after
the scheduling of n tasks in the DAG is completed. Because
our scope is on scheduling workflows, we do not consider
deadlines as a constraint within our problem definition.
However, inclusion of such a constraint will have little or
no bearing on our problem formulation.

III. RELATED WORK

The scheduling problem without energy consideration
is NP-hard in its simplest version (without considering
communications and homogeneous case). Therefore, many
heuristics have been proposed to schedule DAG applications
in heterogeneous distributed system environments. A well-
known scheduling algorithm in heterogeneous distributed

Table I
VOLTAGE-RELATIVE SPEED PAIRS [6], [7]

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel.

Level (vk) Speed (vk) Speed (vk) Speed (vk) Speed (vk) Speed (vk) Speed
(%) (%) (%) (%) (%) (%)

0 1.50 100 2.20 100 1.50 100 1.75 100 1.20 100 1.35 100
1 1.20 80 1.90 85 1.40 90 1.40 80 1.15 90 1.25 85.7
2 0.90 50 1.60 65 1.30 80 1.20 60 1.10 80 1.20 71.5
3 1.30 50 1.20 70 0.90 40 1.05 70 1.10 57.1
4 1.00 35 1.10 60 1.00 60 0.9 32.2
5 1.00 50 0.90 50
6 0.90 40

Figure 1. A sample Directed Acyclic Graph with the task numbers ni

inside nodes and values of cij function next to the corresponding edges.

Table II
A TABLE WITH VALUES OF COMPUTATIONAL COST pij , MEAN

COMPUTATIONAL COST pi AND B-LEVEL VALUES FOR EACH TASK.

task p0 p1 p2 pi b-level
0 11 13 9 11 101.33
1 10 15 11 12 67
2 9 12 14 11.67 63.67
3 12 16 10 12.67 73.67
4 15 11 19 15 79
5 13 9 5 9 42
6 11 15 13 13 37
7 11 15 10 12 12

dissipation). The most significant factor is the capacitive
power, which can be interpreted as the dynamic power
consumption [6]. The power consumption Pij of machine
mi during the execution of the task tj is calculated as
follows:

Pc = ACefv
2f, (5)

where A is the number of switches per clock cycle, Cef is
the total capacitance load, v is the supply voltage, and f is
the machine frequency. Equation 5 indicates the reduction of
the supply voltage would be most influential to lower power
consumption because it is the dominant factor. The energy
consumption of the execution of a precedence-constrained

parallel application used in this work is defined as:

Ec =
n
∑

i=1

ACefv
2
i f.p

∗

i =
n
∑

i=1

γv2i p
∗

i , (6)

where γ = ACef is assumed constant for a given machine;
vi is the voltage supply value of the processor on which
task ti is executed, and p∗i is the computation cost of task
ti on the scheduled processor. We also consider energy
consumption during idle time. During idle time, processors
are automatically scaled to lowest possible voltage level.
Energy consumption during idle is defined as [6]:

Ei =
m
∑

j=1

∑

idlejk∈IDLEj

γv2j,lowIjk, (7)

where IDLEj is the set of idling slots on machine pj , Vj,low

is the lowest supply voltage on pj , and Ijk is the amount of
idling time for idlejk. Then the total energy consumption is
defined as:

Et = Ec + Ei. (8)

C. The scheduling model
The scheduling problem is the process of allocating a

set T of n tasks to a set P of m processors (without
violating precedence constraints) aiming to minimize the
schedule length (makespan) with energy consumption as low
as possible. The makespan Cmax of a DAG represents the
time at which the last component of the application finishes
execution. It is defined as Cmax = maxAFT (nexit) after
the scheduling of n tasks in the DAG is completed. Because
our scope is on scheduling workflows, we do not consider
deadlines as a constraint within our problem definition.
However, inclusion of such a constraint will have little or
no bearing on our problem formulation.

III. RELATED WORK

The scheduling problem without energy consideration
is NP-hard in its simplest version (without considering
communications and homogeneous case). Therefore, many
heuristics have been proposed to schedule DAG applications
in heterogeneous distributed system environments. A well-
known scheduling algorithm in heterogeneous distributed

Table I
VOLTAGE-RELATIVE SPEED PAIRS [6], [7]

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel.

Level (vk) Speed (vk) Speed (vk) Speed (vk) Speed (vk) Speed (vk) Speed
(%) (%) (%) (%) (%) (%)

0 1.50 100 2.20 100 1.50 100 1.75 100 1.20 100 1.35 100
1 1.20 80 1.90 85 1.40 90 1.40 80 1.15 90 1.25 85.7
2 0.90 50 1.60 65 1.30 80 1.20 60 1.10 80 1.20 71.5
3 1.30 50 1.20 70 0.90 40 1.05 70 1.10 57.1
4 1.00 35 1.10 60 1.00 60 0.9 32.2
5 1.00 50 0.90 50
6 0.90 40

Figure 1. A sample Directed Acyclic Graph with the task numbers ni

inside nodes and values of cij function next to the corresponding edges.

Table II
A TABLE WITH VALUES OF COMPUTATIONAL COST pij , MEAN

COMPUTATIONAL COST pi AND B-LEVEL VALUES FOR EACH TASK.

task p0 p1 p2 pi b-level
0 11 13 9 11 101.33
1 10 15 11 12 67
2 9 12 14 11.67 63.67
3 12 16 10 12.67 73.67
4 15 11 19 15 79
5 13 9 5 9 42
6 11 15 13 13 37
7 11 15 10 12 12

dissipation). The most significant factor is the capacitive
power, which can be interpreted as the dynamic power
consumption [6]. The power consumption Pij of machine
mi during the execution of the task tj is calculated as
follows:

Pc = ACefv
2f, (5)

where A is the number of switches per clock cycle, Cef is
the total capacitance load, v is the supply voltage, and f is
the machine frequency. Equation 5 indicates the reduction of
the supply voltage would be most influential to lower power
consumption because it is the dominant factor. The energy
consumption of the execution of a precedence-constrained

parallel application used in this work is defined as:

Ec =
n
∑

i=1

ACefv
2
i f.p

∗

i =
n
∑

i=1

γv2i p
∗

i , (6)

where γ = ACef is assumed constant for a given machine;
vi is the voltage supply value of the processor on which
task ti is executed, and p∗i is the computation cost of task
ti on the scheduled processor. We also consider energy
consumption during idle time. During idle time, processors
are automatically scaled to lowest possible voltage level.
Energy consumption during idle is defined as [6]:

Ei =
m
∑

j=1

∑

idlejk∈IDLEj

γv2j,lowIjk, (7)

where IDLEj is the set of idling slots on machine pj , Vj,low

is the lowest supply voltage on pj , and Ijk is the amount of
idling time for idlejk. Then the total energy consumption is
defined as:

Et = Ec + Ei. (8)

C. The scheduling model
The scheduling problem is the process of allocating a

set T of n tasks to a set P of m processors (without
violating precedence constraints) aiming to minimize the
schedule length (makespan) with energy consumption as low
as possible. The makespan Cmax of a DAG represents the
time at which the last component of the application finishes
execution. It is defined as Cmax = maxAFT (nexit) after
the scheduling of n tasks in the DAG is completed. Because
our scope is on scheduling workflows, we do not consider
deadlines as a constraint within our problem definition.
However, inclusion of such a constraint will have little or
no bearing on our problem formulation.

III. RELATED WORK

The scheduling problem without energy consideration
is NP-hard in its simplest version (without considering
communications and homogeneous case). Therefore, many
heuristics have been proposed to schedule DAG applications
in heterogeneous distributed system environments. A well-
known scheduling algorithm in heterogeneous distributed

Table I
VOLTAGE-RELATIVE SPEED PAIRS [6], [7]

Pair 1 Pair 2 Pair 3 Pair 4 Pair 5 Pair 6
Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel. Volt. Rel.

Level (vk) Speed (vk) Speed (vk) Speed (vk) Speed (vk) Speed (vk) Speed
(%) (%) (%) (%) (%) (%)

0 1.50 100 2.20 100 1.50 100 1.75 100 1.20 100 1.35 100
1 1.20 80 1.90 85 1.40 90 1.40 80 1.15 90 1.25 85.7
2 0.90 50 1.60 65 1.30 80 1.20 60 1.10 80 1.20 71.5
3 1.30 50 1.20 70 0.90 40 1.05 70 1.10 57.1
4 1.00 35 1.10 60 1.00 60 0.9 32.2
5 1.00 50 0.90 50
6 0.90 40

Figure 1. A sample Directed Acyclic Graph with the task numbers ni

inside nodes and values of cij function next to the corresponding edges.

Table II
A TABLE WITH VALUES OF COMPUTATIONAL COST pij , MEAN

COMPUTATIONAL COST pi AND B-LEVEL VALUES FOR EACH TASK.

task p0 p1 p2 pi b-level
0 11 13 9 11 101.33
1 10 15 11 12 67
2 9 12 14 11.67 63.67
3 12 16 10 12.67 73.67
4 15 11 19 15 79
5 13 9 5 9 42
6 11 15 13 13 37
7 11 15 10 12 12

dissipation). The most significant factor is the capacitive
power, which can be interpreted as the dynamic power
consumption [6]. The power consumption Pij of machine
mi during the execution of the task tj is calculated as
follows:

Pc = ACefv
2f, (5)

where A is the number of switches per clock cycle, Cef is
the total capacitance load, v is the supply voltage, and f is
the machine frequency. Equation 5 indicates the reduction of
the supply voltage would be most influential to lower power
consumption because it is the dominant factor. The energy
consumption of the execution of a precedence-constrained

parallel application used in this work is defined as:

Ec =
n
∑

i=1

ACefv
2
i f.p

∗

i =
n
∑

i=1

γv2i p
∗

i , (6)

where γ = ACef is assumed constant for a given machine;
vi is the voltage supply value of the processor on which
task ti is executed, and p∗i is the computation cost of task
ti on the scheduled processor. We also consider energy
consumption during idle time. During idle time, processors
are automatically scaled to lowest possible voltage level.
Energy consumption during idle is defined as [6]:

Ei =
m
∑

j=1

∑

idlejk∈IDLEj

γv2j,lowIjk, (7)

where IDLEj is the set of idling slots on machine pj , Vj,low

is the lowest supply voltage on pj , and Ijk is the amount of
idling time for idlejk. Then the total energy consumption is
defined as:

Et = Ec + Ei. (8)

C. The scheduling model
The scheduling problem is the process of allocating a

set T of n tasks to a set P of m processors (without
violating precedence constraints) aiming to minimize the
schedule length (makespan) with energy consumption as low
as possible. The makespan Cmax of a DAG represents the
time at which the last component of the application finishes
execution. It is defined as Cmax = maxAFT (nexit) after
the scheduling of n tasks in the DAG is completed. Because
our scope is on scheduling workflows, we do not consider
deadlines as a constraint within our problem definition.
However, inclusion of such a constraint will have little or
no bearing on our problem formulation.

III. RELATED WORK

The scheduling problem without energy consideration
is NP-hard in its simplest version (without considering
communications and homogeneous case). Therefore, many
heuristics have been proposed to schedule DAG applications
in heterogeneous distributed system environments. A well-
known scheduling algorithm in heterogeneous distributed

Friday, January 20, 2012

Johnatan E. Pecero

Scheduling Model
• Allocation of a set N of n tasks to a set P of p processors (without violating

precedence constraints) aiming to minimize schedule length (i.e. Earliest
Finish Time - EFT) and energy consumption

26

Problem Description

8/29/10 CLCAR 2010

7

!  Scheduling Model
!  Allocation of a set N of n tasks to a set P of p processors

(without violating precedence constraints) aiming to
minimize makespan with Energy consumption as low as
possible

!

" # $ %

& '

(

"" "("% ""

"$ "! ") "$ #(

#" "$

M
A
P
P
I
N
G DVS-enabled procs

t3
t1

t6

t5

t7

m0 m1 m2

t0

t4

t2

9

18

27

36

45

54

63

72

81

90

0

1.75v
1.40v
1.20v
0.90v

Supply voltage
Levels

Friday, January 20, 2012

Johnatan E. Pecero

Energy-aware Scheduling (Best-effort + Slack Reclamation)

27

t3
t1

t6

t5

t7

m0 m1 m2

t0

t4

t2

9

18

27

36

45

54

63

72

81

90

0

1.75v
1.40v
1.20v
0.90v

Best-effort With DVS

Performance Evaluation

8/29/10 CLCAR 2010

11

t3
t1

t6

t5

t7

m0 m1 m2

t0

t4

t2

9

18

27

36

45

54

63

72

81

90

0

1.75v
1.40v
1.20v
0.90v

MKSP = 89, Energy = 380 MKSP = 89, Energy = 333

t3

t6

t5

t7

m0 m1 m2

t0

t4

t2

9

18

27

36

45

54

63

72

81

90

0

t
1

1.75v
1.40v
1.20v
0.90v

HEFT without DVS HEFT with DVS Proposed Solution

MKSP = 74, Energy = 272

t
3

t6

t5

t7

P0 P1 P2

t0

t4

t
2

9

18

27

36

45

54

63

72

81

90

0

t1

1.75v
1.40v
1.20v
0.90v

Makespan = 89,
Energy = 380

Makespan = 89,
Energy = 333

Friday, January 20, 2012

Johnatan E. Pecero

Problem Summary

• Scheduling: performance EFT
• DVS: energy optimization
• Contradictory Objectives:

– Speed of computation vs energy consumption

28

• Multi-objective approach is a necessity
• The aim

• To provide Decision Maker (DM) a set of possible schedules to
choose from

• DM can offer a set of price based services by Service Level
Agreement

• Price - energy
• Quality of Service (QoS) - EFT

Friday, January 20, 2012

Johnatan E. Pecero

Pareto Dominance

• Given a set of M objectives f1, f2,..., fM to be
minimized, solution s1 weakly dominates solution
s2, denoted s1 s2, whenever :
•	
The solution s1 is no worse than s2 in all

objectives or fi(s1) <= fi(s2) i {1, 2, ...,M}.
•	
If, in addition, there exists a j {1, 2,...,M} such

that fj(s1) < fj(s2), then s1 strictly dominates s2,
denoted s1 s2.

29

III. RELATED WORK

The scheduling problem without energy consideration
is NP-hard in its simplest version (without considering
communications and homogeneous case). Therefore, many
heuristics have been proposed to schedule DAG applications
in heterogeneous distributed system environments. The Het-
erogeneous Earliest Finish Time (HEFT) algorithm [4] is a
list based scheduling approach. HEFT maintains a list of all
tasks of a given graph according to their priorities. It consists
in two phases. In the first phase of the algorithm a ready
task is selected from the list based on its priority. The task
with highest priority is selected. This process corresponds
to the task prioritizing or task selection phase. Then, a
suitable processor that minimizes a predefined cost function
is selected (i.e., the processor selection phase). HEFT is
highly competitive in that it generates a schedule length
comparable to other scheduling algorithms, with a low time
complexity (O(nlogn+ (e+ n)p)).
The most common approach that energy-aware scheduling

algorithms exploit is the DVS technique [2], [3], [5], [6],
[7], [8], [9]. In [12], different scheduling algorithms using
the concept of slack sharing among DVFS-enable proces-
sors were proposed. The rationale behind the algorithms
is to utilize idle (slack) time slots of processors lowering
supply voltage (frequency/speed). This technique is known
as slack reclamation. These slack time slots occur, due
to earlier completion (than the worst-case execution time)
and/or dependencies of tasks. [11] gives a formulation of
energy aware scheduling algorithm and a detailed discus-
sion of slack time computation. This scheduling algorithm
also concerns reducing voltages during the communication
phases between parallel jobs on homogeneous processors.
Ref. [2] proposes heuristics that are devised with relative
superiority as a novel objective function, which takes into
account energy and performance. It is a low-complexity
energy conscious scheduling algorithm that consists in two
phases. In the first phase a linear function of both objec-
tives is proposed and a schedule is computed based on
this function. Since each scheduling decision that makes
tends to be confined to a local optimum, another energy
reduction technique (the second phase) is incorporated into
the energy reduction phase. In [5], a set of memetic based
evolutionary algorithms have been proposed that exploit
DVFS for optimizing performance and energy consumption
in processors and communication links. DAGs applications
and homogeneous resources were considered.
Concerning multi-objective approaches, the authors in [9]

proposed a bi-objective genetic algorithm which is improved
with the first phase of the algorithm developed in [2].
Precedence-constrained task graphs were considered. DVFS
was used to optimize energy. The proposed approach com-
putes a set of solutions instead of only one. The work
reported in [9] has been extended in [1] to a parallel

model of their approach. The parallelization is based on
the island parallel model and multi-start parallel model.
Ref. [10] investigates the same problem addressed in [1].
A set of multi-objective evolutionary algorithms with DVFS
have been proposed and evaluated. To the best of our
knowledge no multi-objective GRASP based solutions has
been proposed for the investigated problem.

IV. PROPOSED MULTI-OBJECTIVE GRASP

A. Multi-Objective Optimization and GRASP
Given a set of M objectives f1, f2, ..., fM to be mini-

mized, solution s1 weakly dominates solution s2, denoted
s1 ! s2, whenever :

• The solution s1 is no worse than s2 in all objectives or
fi(s1) ≤ fi(s2) ∀i ∈ 1, 2, ...,M .

• If, in addition, there exists a j ∈ 1, 2, ...,M such that
fj(s1) < fj(s2), then s1 strictly dominates s2, denoted
s1 ≺ s2.

Given a set of solutions, S, a solution a ∈ S is non-
dominated if there are no solutions s ∈ S that strictly domi-
nate a. If S is a set of all feasible solutions, a non-dominated
solution is Pareto-optimal [14]. The set of solutions which
could satisfy the needs of a decision maker is the set of
all Pareto-optimal solutions. These solutions represents the
possible trade-offs, as each solution in the Pareto set, is
non-dominated in Pareto sense. Plotting the positions of the
Pareto-optimal solutions in the objective space results in
the Pareto-front. To facilitate the decisions of the decision
maker, a multi-objective algorithm should provide a set of
solutions that closely approximates the Pareto-front.
Greedy Randomized Adaptive Search Procedure

(GRASP) is an iterative or multi-start randomized
search technique for producing good-quality solutions
for combinatorial optimization problems [13], [15]. The
iterative GRASP framework consists of two phases: greedy
construction and local search or post-processing. The
construction phase build a feasible solution which is
improved in the post-processing phase by investigating its
neighborhood with a local search procedure until a local
minimum is found. This process is repeated a number
of iterations to search possible optimal solutions. The
best overall solution is kept as the result. A GRASP is
terminated when the specified criterion is satisfied, for
example, after completing a certain number of iterations. In
the first phase, GRASP constructs a solution one element
at a time. Candidate elements are assessed using a greedy
evaluation function and the best elements form an adaptive
restricted candidate list (RCL). Two major mechanism
can be used to generate the RCL list, value-based and
cardinality-based mechanism. In the value-based case, the
RCL is associated with a parameter α ∈ [0, 1] and a given
threshold. All the candidates whose incremental cost is no
greater than the threshold value are recorded into the RCL

III. RELATED WORK

The scheduling problem without energy consideration
is NP-hard in its simplest version (without considering
communications and homogeneous case). Therefore, many
heuristics have been proposed to schedule DAG applications
in heterogeneous distributed system environments. The Het-
erogeneous Earliest Finish Time (HEFT) algorithm [4] is a
list based scheduling approach. HEFT maintains a list of all
tasks of a given graph according to their priorities. It consists
in two phases. In the first phase of the algorithm a ready
task is selected from the list based on its priority. The task
with highest priority is selected. This process corresponds
to the task prioritizing or task selection phase. Then, a
suitable processor that minimizes a predefined cost function
is selected (i.e., the processor selection phase). HEFT is
highly competitive in that it generates a schedule length
comparable to other scheduling algorithms, with a low time
complexity (O(nlogn+ (e+ n)p)).
The most common approach that energy-aware scheduling

algorithms exploit is the DVS technique [2], [3], [5], [6],
[7], [8], [9]. In [12], different scheduling algorithms using
the concept of slack sharing among DVFS-enable proces-
sors were proposed. The rationale behind the algorithms
is to utilize idle (slack) time slots of processors lowering
supply voltage (frequency/speed). This technique is known
as slack reclamation. These slack time slots occur, due
to earlier completion (than the worst-case execution time)
and/or dependencies of tasks. [11] gives a formulation of
energy aware scheduling algorithm and a detailed discus-
sion of slack time computation. This scheduling algorithm
also concerns reducing voltages during the communication
phases between parallel jobs on homogeneous processors.
Ref. [2] proposes heuristics that are devised with relative
superiority as a novel objective function, which takes into
account energy and performance. It is a low-complexity
energy conscious scheduling algorithm that consists in two
phases. In the first phase a linear function of both objec-
tives is proposed and a schedule is computed based on
this function. Since each scheduling decision that makes
tends to be confined to a local optimum, another energy
reduction technique (the second phase) is incorporated into
the energy reduction phase. In [5], a set of memetic based
evolutionary algorithms have been proposed that exploit
DVFS for optimizing performance and energy consumption
in processors and communication links. DAGs applications
and homogeneous resources were considered.
Concerning multi-objective approaches, the authors in [9]

proposed a bi-objective genetic algorithm which is improved
with the first phase of the algorithm developed in [2].
Precedence-constrained task graphs were considered. DVFS
was used to optimize energy. The proposed approach com-
putes a set of solutions instead of only one. The work
reported in [9] has been extended in [1] to a parallel

model of their approach. The parallelization is based on
the island parallel model and multi-start parallel model.
Ref. [10] investigates the same problem addressed in [1].
A set of multi-objective evolutionary algorithms with DVFS
have been proposed and evaluated. To the best of our
knowledge no multi-objective GRASP based solutions has
been proposed for the investigated problem.

IV. PROPOSED MULTI-OBJECTIVE GRASP

A. Multi-Objective Optimization and GRASP
Given a set of M objectives f1, f2, ..., fM to be mini-

mized, solution s1 weakly dominates solution s2, denoted
s1 ! s2, whenever :

• The solution s1 is no worse than s2 in all objectives or
fi(s1) ≤ fi(s2) ∀i ∈ 1, 2, ...,M .

• If, in addition, there exists a j ∈ 1, 2, ...,M such that
fj(s1) < fj(s2), then s1 strictly dominates s2, denoted
s1 ≺ s2.

Given a set of solutions, S, a solution a ∈ S is non-
dominated if there are no solutions s ∈ S that strictly domi-
nate a. If S is a set of all feasible solutions, a non-dominated
solution is Pareto-optimal [14]. The set of solutions which
could satisfy the needs of a decision maker is the set of
all Pareto-optimal solutions. These solutions represents the
possible trade-offs, as each solution in the Pareto set, is
non-dominated in Pareto sense. Plotting the positions of the
Pareto-optimal solutions in the objective space results in
the Pareto-front. To facilitate the decisions of the decision
maker, a multi-objective algorithm should provide a set of
solutions that closely approximates the Pareto-front.
Greedy Randomized Adaptive Search Procedure

(GRASP) is an iterative or multi-start randomized
search technique for producing good-quality solutions
for combinatorial optimization problems [13], [15]. The
iterative GRASP framework consists of two phases: greedy
construction and local search or post-processing. The
construction phase build a feasible solution which is
improved in the post-processing phase by investigating its
neighborhood with a local search procedure until a local
minimum is found. This process is repeated a number
of iterations to search possible optimal solutions. The
best overall solution is kept as the result. A GRASP is
terminated when the specified criterion is satisfied, for
example, after completing a certain number of iterations. In
the first phase, GRASP constructs a solution one element
at a time. Candidate elements are assessed using a greedy
evaluation function and the best elements form an adaptive
restricted candidate list (RCL). Two major mechanism
can be used to generate the RCL list, value-based and
cardinality-based mechanism. In the value-based case, the
RCL is associated with a parameter α ∈ [0, 1] and a given
threshold. All the candidates whose incremental cost is no
greater than the threshold value are recorded into the RCL

Friday, January 20, 2012

Johnatan E. Pecero

Proposed Solution
• A solution founded on GRASP framework

– Multi-objective
• (CGC 2011, Sydney, Australia)

• Two phases search procedure
– First phase principle

• Best-effort idea

– Second phase
• The schedules in the first phase are scrutinized

using DVS by a local search

30

Friday, January 20, 2012

Johnatan E. Pecero
31

energy-aware scheduling GRASP. The variable N represents
the number of iterations of GRASP, the variable I represents
the number of times the local search is executed per iteration.
The algorithm starts by initializing (line 2) the bestfront
which represents the Pareto-front. A list L of tasks priorities
is constructed (line 2). This list is used in the construction
phase to determine the order in which tasks will be evaluated
to help in the construction of the solution. The aim is to
reduce time complexity in the construction phase. This list
is computed only one and is not modified through the op-
timization process. The OneGeneration(G = (T,E), L, I)
function (line 5) constructs a new front at each iteration of
Algorithm 1. The function calls the construction phase, the
slack reclamation algorithm and local search phase. After
that, the set of non-dominated solutions is modified by
adding any new non-dominated solutions (line 6), hence any
solutions that become dominated are removed from the non-
dominated set (line 7).

Algorithm 1. Multi-objective GRASP.
1: function MOGRASP(G = (T,E), N, I)
2: bestfront := ∅
3: L := ComputeListPriority(G = (T, E))
4: for x:=1 to N do

5: newFront := OneGeneration(G = (T, E), L, I)
6: bestFront := bestFront ∪ newFront
7: Remove dominated solutions from bestFront
8: end for

9: return bestFront
10: end function

11: function OneGeneration(G = (T,E), L, I)
12: solution := ConstructSolution(G = (T, E), L)
13: solution’ := VoltageScaling(solution)
14: front := MOLocalSearch(solution’, I)
15: return front
16: end function

Algorithm 2 constructs the list of priorities based on the
b-level metric (line 2) and the List is sorted in decreasing
order of priority (line 3).

Algorithm 2. Construct List of Priorities.
1: function ComputeListPriority(G)
2: Calculate the priority of each task according to the

b-level value using Eq. 4
3: Sort the tasks in a priority list L by decreasing order

of b-level
4: return L
5: end function

Algorithm 3 computes a feasible solution based on the
List scheduling principle. A feasible solution for the investi-
gated problem is required to respect precedence constraints
and every task is scheduled once and only once on the pro-

cessors. The algorithm uses a value based RCL mechanism.
It starts by selecting a ready task (i.e. the task at the top of
the list) from the list L (line 4). The scheduler estimates the
makespan increase for each ready task, that is, it computes
the EFT value on each processor (line 7). The makespan
increase of a task ti on a processor pj is the increase
of the execution length to the current completion time if
task ti is allocated on pj . The greedy algorithm selects
a task assignment randomly from the task and resource
pair whose makespan increase is less than the threshold
minI +α(maxI −minI) (line 10 to 15), where minI and
maxI are the lowest and highest makespan increase found
respectively. The variable α is a parameter to determine how
much variation is allowed for creating RCL for each task
and α ∈ [0, 1]. Once a feasible solution is constructed, we
apply a voltage scaling algorithm to reduce the energy of
the current schedule without allowing the degradation of the
makespan.

The local search is applied into the neighborhood of the
solution after the construction phase and voltage scaling.
We propose a local search (Algorithm 4) that adopts DVS
technique to reduce energy consumption, however makespan
is improved by allocating tasks to different current allocation
(i.e., processor). This local search is an iterative search pro-
cess in which the local search direction is randomly selected.
However, we have designed the local search bearing in mind
two basic considerations of local search diversification vs
intensification. In the first step of the local search procedure,
the front is initialized with the feasible solution computed
in the construction phase (line 2). The algorithm retains
any new non-dominated solutions and eliminates those that
are dominated. A task is selected from the current initial
solution at random (line 4). A simple neighborhood point
of a schedule in the solution space is another schedule
that is obtained by transferring a task from a processor to
another processor (line 7) and changing a voltage and speed
level to another operating point (i.e. level) of the selected
processor (line 8). Changing the current allocation of tasks
explores possible makespan improvement while changing a
voltage and speed level explores energy gain (line 9). The
new solution is evaluated (line 10), if the neighbor of the
initial solution is non-dominated, the local search moves
to the refined solution point (line 12 and 13). Otherwise,
the movements are not allowed and task ti and voltage vk
are moved back to their original processor and operating
point, and another search direction is randomly selected.
The constant MAXSTEPS in Algorithm 4 is defined
to limit the number of steps so that only MAXSTEPS
different current allocation and voltages levels are explored
(intensification). This process is iteratively repeated I times,
so that I tasks are inspected at each call of the local search
procedure (diversification).

Computational
Complexity

Algorithm 3. Construction phase function.
1: function ConstructSolution(G = (T,E), L�)
2: solution := ∅
3: while L’ �= ∅ do

4: Select ready task, ti, from the top of L’
5: pairs := ∅
6: for all pj ∈ P do

7: Compute EFT(ti, pj)
8: pairs := pairs ∪ (ti, pj)
9: end for

10: minI := minimum EFT over pairs
11: maxI := maximum EFT over pairs
12: RCL := pairs whose EFT < minI +α(maxI −

minI)
13: (t�i, p

�
j) := select a pair (ti, pj) at random from

RCL
14: Remove ready task, ti, from L’
15: solution := solution ∪ (t�i, p

�
j)

16: end while

17: return solution
18: end function

Algorithm 4. Multi-objective Local Search Function.
1: function MOLocalSearch(solution, I)
2: front := solution
3: for iter :=1 to I do

4: Select a task ti at random from solution
5: for searchstep :=1 to MAXSTEPS do

6: � Next step explores possible makespan improvement
7: Select a processor pk �= pj at random � pj

is the current location of task ti

8: Select (vk, rsk) from the corresponding set
of voltage and relative speed of pk randomly � DVFS
technique to explore energy improvement

9: Allocate ti on pk with voltage vk and relative
speed rsk

10: solution’ := Compute current EFT and En-
ergy

11: if solution’ is not dominated by any member
of front then

12: front := front ∪ solution’
13: solution := solution’
14: end if

15: end for

16: end for

return front
17: end function

C. Complexity Analysis

The upper bound complexity of the developed algorithm
(Algorithm 1) is as follows. Algorithm 2 starts by com-
puting the b-level priority for each task. The upper bound
of this algorithm is O(e+ n). The sorting of line 3 can be

done in O(nlgn). Therefore, the complexity of Algorithm
2 is O(e + n + nlgn). Algorithm 1 calls OneGeneration
function. This function calls Algorithm 3, a voltage scaling
algorithm and Algorithm 4. The complexity of Algorithm

3 is O(e+n)m. It is based on the list scheduling principle.
The voltage scaling algorithm scales the supply voltage
of a processor. Assuming we have the m processors with
TS time slots, thus the upper bound of this algorithm
is O(mTS). Algorithm 4 explores I tasks and selects
MAXSTEPS processor and voltage pairs. At each itera-
tion of the random local search we compute a new schedule
(line 10). Line 9 moves a task ti to a processor pk and
voltage vk. Each move takes O(e) time to compute the
schedule length. Line 11 compares the new solution with
the current front. This operation takes K steps, where K

is the number of non-dominated solutions in the current
front. Hence, the upper bound complexity of Algorithm 4 is
O(IMAXSTEPS(e+N)). To identify the non-dominated
set of solutions (line 6) in Algorithm 1, K non-dominated
solutions in the current front are compared ND times with
the solutions in the Pareto front, where ND is the maximum
number of non-dominated solutions we allow in the Pareto
front. Thus the upper complexity to construct the Pareto
front is O(KND).

The loose upper bound of the new developed algorithm
is :
O(|e| + |n| + |n|lg|n| + N(|m|(e + n) + |m||TS| +

|I||MAXSTEPS|(e+ n) + |K||ND|)).

V. EXPERIMENTS

We report experimental results to validate the new pro-
posed approach. We compare the multi-objective GRASP
against HEFT. We use HEFT because it is one of the most
practical and applicable heuristics for DAGs in distributed
heterogeneous computing systems. We have also imple-
mented HEFT with Slack Reclamation. It is an extension
of the work proposed in [11]. In [11] proposed a list
scheduling algorithm with DVFS to optimize energy without
performance degradation. The idea is to use idle time mainly
due to precedence constraint and communication delays.
DVFS is applied to no critical task. A task is critical if it
is in the critical path of the schedule. However, the authors
considered a homogeneous set of processors. We extend to
heterogeneous case considering HEFT as the list scheduling
algorithm. As far as we are concerned no HEFT + DVFS
approach has been developed, despite its simplicity and
effectiveness.

We show in Figure 2 a sample Pareto front computed
by the multi-objective GRASP on the instance provided
as example in Figure 1. The number of GRASP iterations
for this small example was fixed to 50. We have used
α ∈ [0, 0.2]. We show this example to illustrate the basic
multi-objective definitions provided in Section IV. We can
observe that HEFT+DVFS weakly dominates the HEFT

Friday, January 20, 2012

Johnatan E. Pecero
32

Algorithm 3. Construction phase function.
1: function ConstructSolution(G = (T,E), L�)
2: solution := ∅
3: while L’ �= ∅ do

4: Select ready task, ti, from the top of L’
5: pairs := ∅
6: for all pj ∈ P do

7: Compute EFT(ti, pj)
8: pairs := pairs ∪ (ti, pj)
9: end for

10: minI := minimum EFT over pairs
11: maxI := maximum EFT over pairs
12: RCL := pairs whose EFT < minI +α(maxI −

minI)
13: (t�i, p

�
j) := select a pair (ti, pj) at random from

RCL
14: Remove ready task, ti, from L’
15: solution := solution ∪ (t�i, p

�
j)

16: end while

17: return solution
18: end function

Algorithm 4. Multi-objective Local Search Function.
1: function MOLocalSearch(solution, I)
2: front := solution
3: for iter :=1 to I do

4: Select a task ti at random from solution
5: for searchstep :=1 to MAXSTEPS do

6: � Next step explores possible makespan improvement
7: Select a processor pk �= pj at random � pj

is the current location of task ti

8: Select (vk, rsk) from the corresponding set
of voltage and relative speed of pk randomly � DVFS
technique to explore energy improvement

9: Allocate ti on pk with voltage vk and relative
speed rsk

10: solution’ := Compute current EFT and En-
ergy

11: if solution’ is not dominated by any member
of front then

12: front := front ∪ solution’
13: solution := solution’
14: end if

15: end for

16: end for

return front
17: end function

C. Complexity Analysis

The upper bound complexity of the developed algorithm
(Algorithm 1) is as follows. Algorithm 2 starts by com-
puting the b-level priority for each task. The upper bound
of this algorithm is O(e+ n). The sorting of line 3 can be

done in O(nlgn). Therefore, the complexity of Algorithm
2 is O(e + n + nlgn). Algorithm 1 calls OneGeneration
function. This function calls Algorithm 3, a voltage scaling
algorithm and Algorithm 4. The complexity of Algorithm

3 is O(e+n)m. It is based on the list scheduling principle.
The voltage scaling algorithm scales the supply voltage
of a processor. Assuming we have the m processors with
TS time slots, thus the upper bound of this algorithm
is O(mTS). Algorithm 4 explores I tasks and selects
MAXSTEPS processor and voltage pairs. At each itera-
tion of the random local search we compute a new schedule
(line 10). Line 9 moves a task ti to a processor pk and
voltage vk. Each move takes O(e) time to compute the
schedule length. Line 11 compares the new solution with
the current front. This operation takes K steps, where K

is the number of non-dominated solutions in the current
front. Hence, the upper bound complexity of Algorithm 4 is
O(IMAXSTEPS(e+N)). To identify the non-dominated
set of solutions (line 6) in Algorithm 1, K non-dominated
solutions in the current front are compared ND times with
the solutions in the Pareto front, where ND is the maximum
number of non-dominated solutions we allow in the Pareto
front. Thus the upper complexity to construct the Pareto
front is O(KND).

The loose upper bound of the new developed algorithm
is :
O(|e| + |n| + |n|lg|n| + N(|m|(e + n) + |m||TS| +

|I||MAXSTEPS|(e+ n) + |K||ND|)).

V. EXPERIMENTS

We report experimental results to validate the new pro-
posed approach. We compare the multi-objective GRASP
against HEFT. We use HEFT because it is one of the most
practical and applicable heuristics for DAGs in distributed
heterogeneous computing systems. We have also imple-
mented HEFT with Slack Reclamation. It is an extension
of the work proposed in [11]. In [11] proposed a list
scheduling algorithm with DVFS to optimize energy without
performance degradation. The idea is to use idle time mainly
due to precedence constraint and communication delays.
DVFS is applied to no critical task. A task is critical if it
is in the critical path of the schedule. However, the authors
considered a homogeneous set of processors. We extend to
heterogeneous case considering HEFT as the list scheduling
algorithm. As far as we are concerned no HEFT + DVFS
approach has been developed, despite its simplicity and
effectiveness.

We show in Figure 2 a sample Pareto front computed
by the multi-objective GRASP on the instance provided
as example in Figure 1. The number of GRASP iterations
for this small example was fixed to 50. We have used
α ∈ [0, 0.2]. We show this example to illustrate the basic
multi-objective definitions provided in Section IV. We can
observe that HEFT+DVFS weakly dominates the HEFT

Friday, January 20, 2012

Johnatan E. Pecero
33

t3

t6

t5

t7

m0 m1 m2

t0

t4

t2

9

18

27

36

45

54

63

72

81

90

0

t1

1.75v
1.40v
1.20v
0.90v

Makespan = 74,
Energy = 236

Friday, January 20, 2012

Johnatan E. Pecero

A sample Pareto Front Computed by
GRASP

extend to heterogeneous case considering HEFT as the list scheduling algorithm. As far as we are concerned
no HEFT + DVFS approach has been developed, despite its simplicity and effectiveness.

Before describing the experimental settings, we show in Figure 2 a sample Pareto front computed by the
multi-objective GRASP on the instance provided as example in Figure 1. The number of GRASP iterations
for this small example was fixed to 50. We have used α ∈ [0, 0.2]. We show this example to illustrate the basic
multi-objective definitions provided in Section 4. We can observe that HEFT+DVFS weakly dominates the
HEFT solution. Green curve represents the Pareto front and red points represent the set of non-dominated
solutions (Pareto-optimal solutions) computed by our developed algorithm.

 250

 300

 350

 400

 450

 60 70 80 90 100 110 120 130

En
er

gy

Makespan

GRASP Pareto front vs HEFT without DVFS vs HEFT with DVFS

GRASP Pareto front
GRASP Pareto optimal solutions

HEFT without DVFS
HEFT + DVFS

Figure 2: A sample Pareto front computed by the new proposed solution.

5.1 Experimental settings

The performance of the multi-objective GRASP was evaluated on a set of structured real-world applications.
The four real-world parallel applications used for our experiments were the Laser Interferometer Gravitational
Wave Observatory (LIGO) application [27], the robot and the sparse matrix solver from the Standard Task
Graph Set (STG) [28] and Gaussian Elimination (GE) that has been generated synthetically. The GE
application represents a graph for solving standard matrix multiplication for which the DAG structure is
known and dependent on the input size. Table II describes the main characteristics for these applications:
instances size, edges amount and the ratio between tasks and edges (ETR). ETR gives information on the
degree of parallelism [29]. For GE elimination we have varied the size of the instance: 42, 52, 63, 75 and
88 tasks. The computational costs of the tasks in each application were generated as described in [4]. We
fixed the parameter β to 1. Parameter β is basically the heterogeneity factor for processor speeds. A high
percentage value (i.e., a percentage of 1) causes a significant difference in a task’s computation cost among
the processors. Additionally, for each graph we have varied the CCR ratio. We have generated five CCRs
(0.1, 0.5, 1, 5, 10) for each graph and instances size. The execution of the applications is performed on 8,
16 and 32 processors.

The total number of multi-objective GRASP iterations was N = 200, the maximum number of movements
during the local search was fixed to I = 60, α ∈ [0, 0.2]. These parameters were set by experiments. We have
decided to use an interval for α close to 0 based on the best-effort idea. That is, to perform the construction
phase like a list scheduling algorithm with some degree of randomness.

5.2 Experimental results

Let us remark that the new proposed approach computes a set of non-dominated solutions and the two
reference approaches provides only one solution. To compare the new multi-objective GRASP with HEFT
and HEFT+DVFS, we have considered the methodology proposed in [12]. To determine the contribution
of the new approach, we compare the solution provided by HEFT and HEFT+DVFS to only one solution
of the Pareto set provided by the new approach. However, the proposed algorithm provides a set of Pareto
solutions to the decision maker instead of one solution.

Friday, January 20, 2012

Johnatan E. Pecero

Experimental Results

• We compare the performance of the
algorithm against a best effort scheduling
algorithm (Heterogeneous Earliest Task
First - HEFT) and HEFT with a Dynamic
Voltage Scaling technique

35

Friday, January 20, 2012

Johnatan E. Pecero

Heterogeneous Earliest Finish Time
(HEFT)
• List based scheduling algorithm

– Maintain a list of all tasks according to a
priority (b-level)

• Two phases:
– First phase: a ready task is selected from the

priority list
– Second phase: A suitable processor that

minimizes EFT for the task is selected
• Highly competitive

36

Friday, January 20, 2012

Johnatan E. Pecero

HEFT + DVS

• Best effort idea first
– Apply HEFT

• Then reduce voltage without increasing
schedule length

37

Friday, January 20, 2012

Johnatan E. Pecero

Experimental Setting

• GRASP iteration number : N = 200
• Maximum number of iterations in the local

search: I = 60

• The parameters fixed by experiments

38

122

iterations for this small example was fixed to 50. We have set ! ! [0, 0.2]. We show this example to
illustrate the basic multi-objective definitions provided in Section 4. We can observe that HEFT+DVS
weakly dominates the HEFT solution. Green curve represents the Pareto front and red points represent the
set of non-dominated solutions (Pareto-optimal solutions) computed by our developed algorithm.

Algorithm 3. Construction phase function.

1: function ConstructSolution(G = (T,E), L′)
2: solution := ∅
3: while L’ "= ∅ do

4: Select ready task, ti, from the top of L’
5: pairs := ∅
6: for all pj ∈ P do

7: Compute EFT(ti, pj)
8: pairs := pairs ∪ (ti, pj)
9: end for

10: minI := minimum EFT over pairs

11: maxI := maximum EFT over pairs

12: RCL := pairs whose EFT < minI + α(maxI −minI)
13: (t′i, p

′

j) := select a pair (ti, pj) at random from RCL
14: Remove ready task, ti, from L’
15: solution := solution ∪ (t′i, p

′

j)
16: end while

return solution

17: end function

Algorithm 4. Multi-objective Local Search Function.

1: function MOLocalSearch(solution, I)
2: front := solution
3: for iter :=1 to I do

4: Select a task ti at random from solution

5: for searchstep :=1 to MAXSTEPS do

" Next step explores possible makespan improvement
6: Select a processor pk "= pj at random " pj is the current location of task ti
7: Select (vk, rsk) from the corresponding set of voltage and relative speed of pk randomly

" DVFS technique to explore energy improvement
8: Allocate ti on pk with voltage vk and relative speed rsk
9: solution’ := Compute current EFT and Energy

10: if solution’ is not dominated by any member of front then

11: front := front ∪ solution’

12: solution := solution’

13: end if

14: end for

15: end for

return front

16: end function

5.1 Experimental settings

The performance of the multi-objective GRASP was evaluated on a set of structured real-world
applications. The four real-world parallel applications used for our experiments were the Laser
Interferometer Gravitational Wave Observatory (LIGO) application [27], the robot and the sparse matrix
solver from the Standard Task Graph Set (STG) [28] and Gaussian Elimination (GE) that has been
generated synthetically. The GE application represents a graph for solving standard matrix multiplication
for which the DAG structure is known and dependent on the input size. Table II describes the main
characteristics for these applications: instances size, edges amount and the ratio between tasks and edges
(ETR). ETR gives information on the degree of parallelism [29]. For GE elimination we have varied the
size of the instance: 42, 52, 63, 75 and 88 tasks. The computational costs of the tasks in each application
were generated as described in [4]. We fixed the parameter ! to 1. Parameter ! is basically the
heterogeneity factor for processor speeds. A high percentage value (i.e., a percentage of 1) causes a
significant difference in a task's computation cost among the processors. Additionally, for each graph we
have varied the CCR ratio. We have generated five CCRs (0.1, 0.5, 1, 5, 10) for each graph and instances
size. The execution of the applications is performed on 8, 16 and 32 processors.

The total number of multi-objective GRASP iterations was N=200, the maximum number of

movements during the local search was fixed to I=60, ! ! [0, 0.2]. These parameters were set by
experiments. We have decided to use an interval for ! close to 0 based on the best-effort idea. That is, to
perform the construction phase like a list scheduling algorithm with some degree of randomness.

Interval close to 0 based on the
best effort idea

Friday, January 20, 2012

Johnatan E. Pecero

Comparison Methodology

• A first solution is computed with HEFT and HEFT+DVS
• A second resolution is done with the GRASP approach to

generate the Pareto solution set
• Only one solution is selected from the Optimal Pareto Set
• The solution is closest to the solution computed by HEFT

and HEFT+DVS in the sense of Euclidean distance
• Final a comparison is done between the closest solution,

HEFT, and HEFT+DVS
– the gain over these solution

39

gain = (HEFTbasedSoluts - GRASPSol) / HEFTbasedSols

Friday, January 20, 2012

Johnatan E. Pecero

Simulations

• Instances
– Four real-world parallel applications

• Laser Interferometer Wave Observatory (LIGO)
• Robot
• Sparse matrix
• Gaussian Elimination

– Generated synthetically

• Number of Processors (8, 16, 32)
• Five different CCRs (0.1, 0.5, 1, 5, 10)

–
40

From the Standard Task Graph Set

Friday, January 20, 2012

Johnatan E. Pecero

Sample Instances

41

E. Deelman et al. / Pegasus: A framework for mapping complex scientific workflows onto distributed systems 229

1

22

5

1

2 2

5

1

2 2

5

1

2

5

1

2

5

1

5

3

4

6

7

Fig. 9. A small montage workflow.

Site A

Site B

Site C

Submit Host

Pegasus
DAGMan
Condor-G

head node

Fig. 10. Pegasus and DAGMan schedule and submit jobs to multiple sites.

structs an application workflow in the form of an ab-
stract workflow, then uses Pegasus to do the resource
allocation for the jobs in the workflow and to generate
the Condor submit files. These submit files specify the
head node of the remote site to which the job has to be
submitted and any required input files. Condor DAG-
Man takes the workflow specification and submits the
ready jobs to the local Condor queue while maintain-
ing the dependencies between the jobs in the workflow.

Condor-G is used to schedule the submitted jobs in the
workflow on the remote resources. In this scenario, the
Condor software has to be installed on the user’s local
machine and the Globus software has to be installed
on the head nodes of the various sites. The Globus
installation at the remote sites takes care of receiving
the job specification and submitting it to the local re-
source management system such as PBS [26], Condor,
LSF [27], etc.

LIGO

Cluster Comput

Fig. 10 Gaussian elimination task graph for a matrix of size 5

Fig. 11 Average energy savings for Gaussian elimination

In the simulation, a matrix of size 8 × 8 has been used to
evaluate EADAGS. Since the structure of the graph is fixed
only the number of processors and the CCR values were var-
ied. For a matrix of size 8 the total number of tasks in the
graph is 35 and largest number of tasks at a single level is
7 so the number of processors is bounded to 7. CCR values
were 0.1, 0.5, 1.0, 5.0, and 10. In this experiment since the
same operation is executed at every processor and the same
information is communicated from one processor to another,
a uniform computation cost for all tasks and equal commu-
nication cost for all communication links were assumed.

Fig. 12 Average energy savings for Gaussian elimination

Figures 11 and 12 show the average energy savings using
EADAGS over DPS with respect to number of processors
and CCR values. Figure 11 shows an increase in the aver-
age energy savings with increasing number of processors.
This is because at each level only a certain number of tasks
can be executed at the same time so increasing the available
processors number produces more idle time, thus increasing
the energy savings. The average energy savings measured
was 32% for 2 processors and 60% when 7 processors are
used.

Figure 12 plots the average energy savings with respect to
different CCR values. The average energy savings increase
with increasing CCR. When CCR increases, processors are
idle longer due to communication between tasks. EADAGS
is able to use such idle times to achieve energy savings. The
average energy savings of EADAGS over DPS ranges from
52% for CCR = 0.1 to 74% when CCR = 10 for 5 V/off
technique. Savings are smaller for 2 V scale; they range be-
tween 45% and 62%. Savings are even smaller for the 3.3 V
scale; they are 30% for CCR = 0.1 and 42% for CCR = 10.

5.2.2 Molecular dynamics code

Figure 13 represents the DAG of a molecular dynamics code
as given in [1]. Again, since the graph has a fixed structure
and fixed number of nodes, the only parameters that could
be varied were the number of processors and CCR values.

Since there are at most seven tasks at any level in Fig. 13,
the number of processors was bound to seven. We assumed
that the computation costs of all nodes are not equal and the
communication costs were also not equal for all links since
the task computed at each node and the data communicated
from one node to another is different. Five values for CCR
were used in our experiments: 0.25, 0.5, 1, 5, and 10.

Figures 14 and 15 show the average energy savings of
EADAGS over DPS with respect to number of processors
and CCR values respectively. Figure 14 shows increase in

Gaussian Elimination

Friday, January 20, 2012

Johnatan E. Pecero

Employed Instances and Their
Characteristics

42

Application Number of Tasks Number of Edges ETR
LIGO 76 132 1.73

Robot Control 88 131 1.48
Sparse Matrix 96 128 0.69

 42 68 1.61
 52 86 1.65

GE 63 106 1.68
 75 128 1.70
 88 152 1.72

Friday, January 20, 2012

Johnatan E. Pecero

Results

43

Number of Processors Gain over HEFT Gain over HEFT +DVS
Makespan(%) Energy(%) Makespan (%) Energy (%)

8 7.35 12.77 7.22 8.15
16 6.95 13.36 6.86 8.61
32 8.59 14.47 8.57 11.15

Table 2: Gain according to the number of processors

Friday, January 20, 2012

Johnatan E. Pecero

Results

44

Application Gain over HEFT Gain over HEFT +DVS
Makespan(%) Energy(%) Makespan (%) Energy (%)

LIGO 8.13 15.56 8.13 13.03
ROBOT 8.12 17.78 8.07 9.94
SPARSE 5.24 16.35 5.24 15.20

Table 3: Gain in Real Applications

Friday, January 20, 2012

Johnatan E. Pecero

Results

45

CCR Gain over HEFT Gain over HEFT +DVS
Makespan(%) Energy(%) Makespan (%) Energy (%)

0.1 1.81 7.8 1.74 3.41
0.5 4.43 10.05 4.30 5.10
1 6.25 12.15 6.10 7.35
5 11.58 18.54 11.55 14.29

10 14.07 19.15 14.06 16.37

Table 4: Gain according to the CCRs

Friday, January 20, 2012

Johnatan E. Pecero

Results

46

Number of Tasks Gain over HEFT Gain over HEFT +DVS
Makespan(%) Energy(%) Makespan (%) Energy (%)

42 8.37 12.9 8.26 8.90
52 7.35 10.89 7.18 6.74
63 7.97 11.93 7.89 7.33
75 7.59 11.64 7.46 6.72
88 8.33 11.25 8.19 6.56

Table 5: Gain according to size for Gaussian
Elimination Applications

Friday, January 20, 2012

Johnatan E. Pecero
47

!"#$"

!"%&

'()")#*)+,-
./&,$)0,("

123-4)*,5$%6,77%$7-
4)*,

1%680,("1%680,("98#*)":-
'(;)6#"%$7

1%680,("1%680,("<#",/-=#>*,7

1,6)7)%(-
?#$)#>*,7-
?#*8,7

'()")#*)+,-5$%>*,0

1%680,("1%680,("@-A%/&*%"7

@,#;-
'(7"#(6,

./&,$)0,("-
!,"")(B7

@8(-./&,$)0,("

C%0&8",-
!"#")7")67

D$)",-
!"#")7")67

D$)",-
@,78*"7

E>F,6")G,-
48(6")%(-
?#*8,7

3,(,$#",-
2&&$%/0)#",;-
5#$,"%-4$%("

D$)",-5#$,"%-
4$%("

H80>,$-%I
'(;,&,(;,("-$8(7-

$,#6J,;K

1%680,("1%680,("5#$,"%-4$%("7

./,68",-
!)08*#")%(-@8(

H%

L,7

GreenMetal

Friday, January 20, 2012

Johnatan E. Pecero

Scheduling in Grids

• Efficient scheduling across nodes is necessary to
maximize application performance regardless of
the efficiency of your parallel algorithms

• Dynamic scheduling in a heterogeneous
environment is significantly more complicated

• Many unpredictable events can occur :
– Robust schedules

48

Friday, January 20, 2012

Johnatan E. Pecero

Scheduling in Grids (cont...)

• Scheduling is a key part of the workload
management software which usually
perform some or all of:
– Queuing
– Monitoring
– Resource Management
– Accounting
– Scheduling

49

Friday, January 20, 2012

Johnatan E. Pecero

Exploiting Heterogeneity

• Schedulers can take advantage of
heterogeneity to schedule tasks efficiently
and in a green mode

50

Friday, January 20, 2012

Johnatan E. Pecero
51

!"

!#

!"#$%&'()*+',#*

-. -/

/ 0

-(1#2*3()4%,5&'()

-.*!,6"789*:*./;

-.*!'<=#789*:**>.

-/*!,6"789*:*.?;

-/*!'<=#789*:**@?A/

3*B.*:*C

-. -/• An execution time function ET : T × P → R+, where ET (ti,mj) is
the time required to execute task ti on machine mj ;

• An energy consumption function EC : T×P → R+, where EC(ti,mj)
is the energy required to execute task ti on machinemj , and ECIDLE(mj)
is the energy that machine mj consumes in idle state.

The goal of the ME-HCSP is to find an assignment function f : TN → PM

which simultaneously minimizes the makespan metric, defined in Equation
1, and the total energy consumption, defined in Equation 2. The total energy
consumption accounts for both the energy required to execute the assigned
tasks, and the energy that each machine consumes in idle state (i.e., when
no task is executing, see a descriptive example in Figure 2). The energy
required to execute a given task depends on the execution time ET (ti,mj),
but the two objectives considered in this work are usually in conflict, since
the fastest machines generally consume more energy than the slower ones.

max
mj∈P

∑

ti∈T :
f(ti)=mj

ET (ti,mj) (1)

∑

ti∈T :
f(ti)=mj

EC(ti,mj) +
∑

mj∈P

ECIDLE(mj) (2)

In the previous formulation all tasks can be independently executed, dis-
regarding the execution order. This kind of programs frequently appears in
many lines of e-Science applications over grid computing, such as Single-
Program Multiple-Data applications used for multimedia processing, data
mining, parallel domain decomposition of numerical models for physical phe-
nomena, etc.

Figure 2: The energy consumption includes the energy in idle state.

5

Friday, January 20, 2012

Johnatan E. Pecero
52

!"

!#

!"#$%&'()*+',#*

-. -/

/ 0

-(1#2*3()4%,5&'()

-.*!,6"789*:*./;

-.*!'<=#789*:**>.

-/*!,6"789*:*.?;

-/*!'<=#789*:**@?A/

3*B.*:*C

-. -/

3*B/*:*0

D'24&*E$#)62'(

!)#2FG*:*./;HC*I*.?;*H*0*I*>.H/*:*.?0@**

J6K#456)*:*0

Friday, January 20, 2012

Johnatan E. Pecero
53

!"

!#

!"#$%&'()*+',#*

-. -/

/ 0

-(1#2*3()4%,5&'()

-.*!,6"789*:*./;

-.*!'<=#789*:**>.

-/*!,6"789*:*.?;

-/*!'<=#789*:**@?A/

3*B.*:*C

-. -/

3*B/*:*0

D#$()<*D$#)62'(

!)#2EF*:*./;G0*H*0G@?A/*:*I@IA0*

J6K#456)*:*0

Friday, January 20, 2012

Johnatan E. Pecero

Low complexity heuristics

54

priority used to construct the list. To optimize the flowtime
we apply the classical shortest processing time rule on each
machine after the schedule is constructed.

4.1. Low-cost heuristics

Algorithm 1 depicts the general structure of the proposed
heuristics. It is based on classical list scheduling algorithms
for what well founded theoretical performance guarantees
have been proven [7]. The heuristics start by computing the
Priority of each task according to some objective (line 1).
Hence, we compute the sorted list of tasks (line 2). The or-
der of the list is not modified during the execution of the
heuristics. Next, the heuristics proceed to allocate the tasks
to the machines and determine the starting date for them
(main loop line 3). One task at a time is scheduled. The
heuristics always consider the task ti at the top of the list
(highest priority) and remove it from that (line 4). A score
function SF (ti,mj) for the selected task is evaluated on all
the machines (lines 5 and 6). Then each heuristic selects
the machine for which the value of the score function is op-
timized for task ti and we schedule the task on that machine
(line 8). It corresponds to the second phase of the min-min
heuristic, with a different evaluation function. In the case of
min-min, the evaluation function is only based on the com-
pletion time of the selected task on all the machines. Then,
the algorithm selects the machine that gives the minimum
completion time for that task and the task is assigned on
that machine. The list is updated (line 9) and we restart the
main loop. Once all task have been scheduled we apply the
shortest processing time rule on all machines to optimize
the flowtime (lines 11 and 12).
The score of each mapping event is calculated as in equa-
tion 5. For each machine mj ,

SF (ti) = λ · Ci�m
k=1 Cik

+ (1− λ) · ETC[ti][mj]�m
k=1 ETC[ti][mk]

,

(5)
where

�m
k=1 Cik is the sum of the completion time of the

task ti over all machines and
�m

k=1 ETC[ti][mk] is the
sum of the expected time to complete of task ti over all
machines. The first term of equation 5 aims to minimize
the completion time of the tasks ti, while the second term
aims to assign the task to the fastest machine or the ma-
chine on which the task takes the minimum expected time
to complete. The heuristics differ on the objective used to
compute the priorities. For that, maximum (Algorithm 2),
minimum (Algorithm 3) and average (Algorithm 4) com-
pletion time of the task are used as if it was the only task
to be scheduled on the computing system. Let’s note that it
corresponds to the execution time (ETC[ti][mj]) of task ti
on machine mj . The name of the heuristics are MaxMax
Min (Algorithm 2) (maximum completion time of tasks,

Algorithm 1 Pseudo-code for the low-cost heuristics
1: Compute Priority of each task ti ∈ T according to some

predefined objective;
2: Build the list L of the tasks sorted in decreasing order of Pri-

ority;
3: while L �= Ø do
4: Remove the first task ti from L;
5: for each machine mj do
6: Evaluate Score Function SF(ti);
7: end for
8: Assign ti to the machine mj that optimize the Score Func-

tion;
9: Update the list L;

10: end while
11: for all machine mj do
12: Sort the tasks tk on mj in increasing ETC[tk][mj];
13: end for

sorted in decreasing order of its maximum completion time,
and scheduled based on the minimum completion time).
MinMax Min (Algorithm 3) (minimum completion time of
tasks, sorted in decreasing order of its minimum comple-
tion time, and scheduled based on the minimum completion
time). MinMean Min (Algorithm 4) (average completion
time of tasks, sorted in decreasing order of its average com-
pletion time, and scheduled based on the minimum comple-
tion time).

Algorithm 2 Pseudo-code for heuristic (MaxMax min)
1: for all task ti do
2: for each machine mj do
3: Evaluate CompletionTime(ti, mj);
4: end for
5: Select the maximum completion time for each task ti;
6: end for

Algorithm 3 Pseudo-code for heuristic (MinMax min)
1: for all task ti do
2: for each machine mj do
3: Evaluate CompletionTime(ti, mj);
4: end for
5: Select the minimum completion time for each task ti;
6: end for

Algorithm 4 Pseudo-code for heuristic (MinMean min)
1: for all task ti do
2: for each machine mj do
3: Evaluate CompletionTime(ti, mj);
4: end for
5: Compute the average completion time for each task ti;
6: end for

!"#

Complexity : O(tm log t)

Friday, January 20, 2012

Johnatan E. Pecero

Score Function

55

priority used to construct the list. To optimize the flowtime
we apply the classical shortest processing time rule on each
machine after the schedule is constructed.

4.1. Low-cost heuristics

Algorithm 1 depicts the general structure of the proposed
heuristics. It is based on classical list scheduling algorithms
for what well founded theoretical performance guarantees
have been proven [7]. The heuristics start by computing the
Priority of each task according to some objective (line 1).
Hence, we compute the sorted list of tasks (line 2). The or-
der of the list is not modified during the execution of the
heuristics. Next, the heuristics proceed to allocate the tasks
to the machines and determine the starting date for them
(main loop line 3). One task at a time is scheduled. The
heuristics always consider the task ti at the top of the list
(highest priority) and remove it from that (line 4). A score
function SF (ti,mj) for the selected task is evaluated on all
the machines (lines 5 and 6). Then each heuristic selects
the machine for which the value of the score function is op-
timized for task ti and we schedule the task on that machine
(line 8). It corresponds to the second phase of the min-min
heuristic, with a different evaluation function. In the case of
min-min, the evaluation function is only based on the com-
pletion time of the selected task on all the machines. Then,
the algorithm selects the machine that gives the minimum
completion time for that task and the task is assigned on
that machine. The list is updated (line 9) and we restart the
main loop. Once all task have been scheduled we apply the
shortest processing time rule on all machines to optimize
the flowtime (lines 11 and 12).
The score of each mapping event is calculated as in equa-
tion 5. For each machine mj ,

SF (ti) = λ · Ci�m
k=1 Cik

+ (1− λ) · ETC[ti][mj]�m
k=1 ETC[ti][mk]

,

(5)
where

�m
k=1 Cik is the sum of the completion time of the

task ti over all machines and
�m

k=1 ETC[ti][mk] is the
sum of the expected time to complete of task ti over all
machines. The first term of equation 5 aims to minimize
the completion time of the tasks ti, while the second term
aims to assign the task to the fastest machine or the ma-
chine on which the task takes the minimum expected time
to complete. The heuristics differ on the objective used to
compute the priorities. For that, maximum (Algorithm 2),
minimum (Algorithm 3) and average (Algorithm 4) com-
pletion time of the task are used as if it was the only task
to be scheduled on the computing system. Let’s note that it
corresponds to the execution time (ETC[ti][mj]) of task ti
on machine mj . The name of the heuristics are MaxMax
Min (Algorithm 2) (maximum completion time of tasks,

Algorithm 1 Pseudo-code for the low-cost heuristics
1: Compute Priority of each task ti ∈ T according to some

predefined objective;
2: Build the list L of the tasks sorted in decreasing order of Pri-

ority;
3: while L �= Ø do
4: Remove the first task ti from L;
5: for each machine mj do
6: Evaluate Score Function SF(ti);
7: end for
8: Assign ti to the machine mj that optimize the Score Func-

tion;
9: Update the list L;

10: end while
11: for all machine mj do
12: Sort the tasks tk on mj in increasing ETC[tk][mj];
13: end for

sorted in decreasing order of its maximum completion time,
and scheduled based on the minimum completion time).
MinMax Min (Algorithm 3) (minimum completion time of
tasks, sorted in decreasing order of its minimum comple-
tion time, and scheduled based on the minimum completion
time). MinMean Min (Algorithm 4) (average completion
time of tasks, sorted in decreasing order of its average com-
pletion time, and scheduled based on the minimum comple-
tion time).

Algorithm 2 Pseudo-code for heuristic (MaxMax min)
1: for all task ti do
2: for each machine mj do
3: Evaluate CompletionTime(ti, mj);
4: end for
5: Select the maximum completion time for each task ti;
6: end for

Algorithm 3 Pseudo-code for heuristic (MinMax min)
1: for all task ti do
2: for each machine mj do
3: Evaluate CompletionTime(ti, mj);
4: end for
5: Select the minimum completion time for each task ti;
6: end for

Algorithm 4 Pseudo-code for heuristic (MinMean min)
1: for all task ti do
2: for each machine mj do
3: Evaluate CompletionTime(ti, mj);
4: end for
5: Compute the average completion time for each task ti;
6: end for

!"#

Friday, January 20, 2012

Johnatan E. Pecero
56

Min Min MinMin Min MinMax Min MinMean Min

80
0

10
00

12
00

14
00

16
00

Algorithm

Se
co

nd
s

Makespan

Min Min MinMin Min MinMax Min MinMean Min

80
0

85
0

90
0

95
0

10
00

10
50

11
00

Algorithm

Se
co

nd
s

Makespan

Lambda = 1 Lambda = 0.3
512 tasks x 16 machines, High task heterogeneity, High
Machine Heterogeneity, Braun et al. Model

Friday, January 20, 2012

Johnatan E. Pecero
57

Min Min MinMin Min MinMax Min MinMean Min

40
00

0
45

00
0

50
00

0
55

00
0

60
00

0

Algorithm

Se
co

nd
s

Real energy consumed before scaling

Min Min MinMin Min MinMax Min MinMean Min

38
00

0
40

00
0

42
00

0
44

00
0

46
00

0

Algorithm
Se

co
nd

s

Real energy consumed before scaling

Lambda = 1 Lambda = 0.3

512 tasks x 16 machines

Friday, January 20, 2012

Johnatan E. Pecero

Concluding remarks

• Energy efficiency is still an important issue in large-scale
distributed systems

• Greening these systems involves many complex issues
• We investigated a software based approach

– Energy Conscious Scheduling
• We designed a MO-solution based approach
• DVS has been adopted to contribute of the energy

optimization
• Experiment results showed promising results.

58

Friday, January 20, 2012

Johnatan E. Pecero

Concluding remarks

• Most of approaches consider best-effort
approach, opportunistic computing can
help

• Scheduling algorithms and policies can
take advantage of monitoring and
prediction

• Perspectives
– To implement the algorithm in real time monitors
– To combine proposed approach with DPM
– To extend the model considering VMs

59

Friday, January 20, 2012

Johnatan E. Pecero

Thank you for your attention!

60

Friday, January 20, 2012

