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Introduction

Context

Machine Learning has become a powerful tool for various
applications
Modelling of complex functions for
processing/analysing/interpreting data
State-of-the-art models: Deep Neural Network (DNN)
Requires huge computational and memory resources
Especially for training but also for the deployed systems
Common solution: cloud computing

Stefan Duffner, LIRIS, INSA Lyon Low-Power Approximations of CNN 28/03/2023 4 / 28



Introduction

DNN models for image classification (ImageNet)
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Introduction

Context

Can DNNs be integrated in embedded systems, mobile and
low-power devices?
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Introduction

Motivation

Reducing server maintenance costs,
Scalability,
Reducing network transfer and lag,
Privacy
Reducing environmental impact
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Deep Neural Network Models

Model overview

Basic operations:
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Deep Neural Network Models

Model overview

Convolutions:
high computational complexity
low memory requirements

Pooling: no memory and very fast
Fully connected layers:

low computational complexity
high memory requirements

Implementations heavily rely on parallelisation (using GPU)
→ high power consumption

Stefan Duffner, LIRIS, INSA Lyon Low-Power Approximations of CNN 28/03/2023 10 / 28



Neural Network Compression

Outline

1 Introduction

2 Deep Neural Network Models

3 Neural Network Compression

4 Weight quantisation with dyadic rationals

Stefan Duffner, LIRIS, INSA Lyon Low-Power Approximations of CNN 28/03/2023 11 / 28



Neural Network Compression

Neural Network Compression

Very large redundancy in trained DNN models (i.e. the weights)
Some approaches try to avoid this during the design or training of
a model (AutoML)
Most current approaches:

1 Train a (highly redundant) DNN
2 Compress the model
3 Retrain/refine the model (to compensate for errors)

Recent DNN models: ∼ 106 − 107 parameters, ∼ 102 MB
Compression rates: ∼ 1 : 10− 1 : 200

Very little or no loss in classification performance!
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Neural Network Compression

Compression Approaches
ii Anthony Berthelier et al.
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Fig. 1: Roadmap of our paper.

1 Introduction

Since the advent of deep neural network architectures and their massively par-
allelized implementations [1,2], deep learning based methods have achieved
state-of-the-art performance in many applications such as face recognition,
semantic segmentation, object detection, etc. In order to achieve these perfor-
mances, a high computation capability is needed as these models have usually
millions of parameters. Moreover, the implementation of these methods on
resource-limited devices for smart cameras is difficult due to high memory con-
sumption and strict size constraints. For example, AlexNet [1], is over 200MB
and all the milestone models that followed such as VGG [3], GoogleNet [4] and
ResNet [5] are not necessarily time or memory efficient. Thus finding solutions
to implement deep models on resource-limited platforms such as mobile phones
or smart cameras is essential. Each device has a different computational capac-
ity. Therefore, to run these applications on embedded devices the deep models
need to be less-parametrized in size and time efficient.

Few works has been done focusing on dedicated hardware or FPGA with
a fixed specific architecture. Having a specific hardware is helpful to optimize
a given application. However, it is difficult to generalise. The CPU architec-
tures of the smartphones are different from each other. Thus, it is important
to develop generic methods to help optimize neural networks. This paper aims
to describe general compression methods for deep models that can be im-
plemented on a large range of hardware architectures, especially on various
generic-purpose CPU architectures.

Few surveys exist on deep neural compression [6,7]. However these works
are mainly focused on compression and acceleration algorithms of existing
models. In this paper, we present not only the methods to compress or ac-

Neural Architecture
Specific Architectures
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Neural Network Compression

Existing code and solutions

Many implementations on-line (github etc.)
Tensorflow Lite
Core ML (Apple)
CNTK netopt module (Microsoft)
MXNet quantisation API (Apache) (BMXnet)
PyTorch pruning/quantization package
Deep Learning framework N2D2 (CEA LIST)
(https://github.com/CEA-LIST/N2D2)
Apache TVM
Alibaba MNN
Hardware-oriented: NVIDIA, Xilinx VITIS
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Weight quantisation with dyadic rationals

Our approach

Post-training quantisation method
We focus on low-power approximations
Approximate weights by dyadic rationals
→all multiplications replaced by bit-shifts and additions
We approximate each convolution matrix M individually by:

M̂ = α∗T∗ . (1)

Each element of T∗ is a dyadic rational m/2n from a set D
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Weight quantisation with dyadic rationals

Examples of D

D1 = {−1, 0, 1} ,
D2 = {−2,−1, 0, 1, 2} ,
D3 = {−4,−3,−2,−1, 0, 1, 2, 3, 4} ,
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Weight quantisation with dyadic rationals

CSD representation

α∗ > 0 ∈ R is a expansion factor approximated by the closest CSD
representation (Canonical Signed Digit encoding)
CSD:

CSD presentation of a number consists of numbers 0, 1 and -1.
The CSD presentation of a number is unique.
The number of nonzero digits is minimal.
There cannot be two consecutive non-zero digits.

Example: 1 0010 000-1 = 256 + 32 -1 = 287
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Weight quantisation with dyadic rationals

Optimisation

We formulate this as an optimisation problem:

(α∗,T∗) = argmin
α,T
‖M− α ·T‖2, (2)

Frobenius norm ‖M‖ =
√∑m

i=1

∑n
j=1 |mi,j |

Mixed integer non-linear programming (INLP)
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Weight quantisation with dyadic rationals

Optimisation

Linearisation of problem
M = [mi,j ] i, j = 1, 2, . . . , N and r ∈ D
binary decision variables:

xi,j(r) =

{
1, if mi,j = r,
0, otherwise.

(2) can be re-written according to the following binary linear
programming problem:

min
xi,j(r)

N∑
i=1

N∑
j=1

∑
r∈D

(r − α ·mi,j)
2 · xi,j(r), (3)

subject to ∑
r∈D

xi,j(r) = 1, i, j = 1, 2, . . . , N.
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Weight quantisation with dyadic rationals

Optimisation

Each entry of Tα can be computed as:

t
(α)
i,j =

∑
r∈D

r · x(α)i,j (r). (4)

Resulting approximation error:

Error(α) = ‖M− α ·Tα‖2.

Can be solved in O(N)

Global optimum value α∗:

α∗ = argmin
α

Error(α), (5)

Solved by simple minimization over a vector of values.
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Weight quantisation with dyadic rationals

Example

M0 =


1.5200701 1.0317051 0.7906240 −0.2153791 −0.2340538
1.3982610 2.1860176 2.0152923 1.5620477 0.8270900

−0.6848867 0.7470516 1.6923728 1.2537112 1.1946758

−1.2387477 −0.5483563 0.1261987 0.8677799 0.7742613

−1.4691808 −1.2178997 −0.2924347 0.2172496 0.1325074

 .
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Weight quantisation with dyadic rationals

Example

Solving (2) for the above matrix using D8, we obtain:

α∗ = 0.30931,

T∗ =


5 3.25 2.5 −0.75 −0.75
4.5 7 6.5 5 2.75
−2.25 2.5 5.5 4 3.75
−4 −1.75 0.5 2.75 2.5
−4.75 −4 −1 0.75 0.5



=
1

4
·


20 13 10 −3 −3
18 28 26 20 11
−9 10 22 16 15
−16 −7 2 11 10
−19 −16 −4 3 2

 .
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Weight quantisation with dyadic rationals

Example

CSD approximation of α∗:
α∗ = 0.30931 ≈ 2−2 + 2−4 − 2−8 = 0.30859375.
Fully multiplierless approximation:

M̂ = (2−4 + 2−6 − 2−10) ·


20 13 10 −3 −3
18 28 26 20 11
−9 10 22 16 15
−16 −7 2 11 10
−19 −16 −4 3 2

 .
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Weight quantisation with dyadic rationals

Results

Tested on three different models of different complexity:
Face detection CNN: 1k parameters, 97% of exact model
MNIST: 180k parameters, 99% of exact model
AlexNet/ImageNet: 1.2M convolution matrices, 96% of exact model

Different approximations for different layers
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Weight quantisation with dyadic rationals

Low-complexity face detection with our approach

approximate vs. exact
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Weight quantisation with dyadic rationals

Results

Mean classification rates for the MNIST test set and different
approximations relative to the exact model.

Exact ASG PLAN Linear I Linear II Quadratic I Quadratic II

Exact 1.0000 1.0000 0.9847 0.9680 0.9978 1.0000 1.0000
A1 0.9684 0.9684 0.9588 0.9260 0.9615 0.9684 0.9684
A2 0.9643 0.9643 0.9627 0.8805 0.9573 0.9643 0.9643
A3 0.9961 0.9961 0.9848 0.9655 0.9944 0.9961 0.9961
A4 0.9973 0.9973 0.9863 0.9700 0.9969 0.9973 0.9973
A5 0.9976 0.9976 0.9866 0.9666 0.9969 0.9976 0.9976
A6 0.9991 0.9991 0.9868 0.9701 0.9973 0.9991 0.9991
A7 0.9992 0.9992 0.9846 0.9680 0.9977 0.9992 0.9992
A8 0.9994 0.9994 0.9848 0.9675 0.9981 0.9994 0.9994

A3,3,1,1 0.9931 0.9931 0.9749 0.9625 0.9924 0.9931 0.9931
A3,1,1,1 0.9891 0.9891 0.9684 0.9580 0.9866 0.9891 0.9891
A4,4,1,1 0.9937 0.9937 0.9780 0.9618 0.9943 0.9937 0.9937
A4,1,1,1 0.9885 0.9885 0.9655 0.9572 0.9872 0.9885 0.9885
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Weight quantisation with dyadic rationals

Further information

R. J. Cintra, S. Duffner, C. Garcia, A. Leite, "Low-complexity
Approximate Convolutional Neural Networks", IEEE Transactions
on Neural Networks and Learning Systems, 2018
Y. Cheng, D. Wang, P. Zhou, T. Zhang, and S. Member, “A Survey
of Model Compression and Acceleration for Deep Neural
Networks,” IEEE Signal Processing Magazine, 2017
J. Cheng, P. Wang, G. Li, Q. Hu, and H. Lu, “Recent Advances in
Efficient Computation of Deep Convolutional Neural Networks,”
Frontiers of Information Technology Electronic Engineering, 2018
T. Elsken, J. H. Metzen, F. Hutter, "Neural Architecture Search: A
Survey", JMLR, 2019
http://www.automl.org
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