

Data Center Energy-Efficient Network-Aware Scheduling

Dzmitry Kliazovich
University of Luxembourg

Why energy is important?

Increased computing demand

- □ Data centers are rapidly growing
- □ Consume 10 to 100 times more energy per square foot than a typical office building

Energy cost dynamics

- Energy accounts for 10% of data center operational expenses (OPEX) and can rise to 50% in the next few years
- Accompanying cooling system costs \$2-\$5 million per year

Distribution of data center energy consumption

Data center architectures

- Past: Two-tier data center architecture
 - □ Access and Core layers
 - □ 1 GE and 10 GE links
 - ☐ Full mesh core network
 - □ Load balancing using ICMP

Data center architectures

- Present: Three-tier data center architecture
 - ☐ Most Widely Used Nowadays
 - □ Access, Aggregation, and Core layers
 - ☐ Scales to over 10,000 servers

Data center architectures

- Present: Three-tier High-Speed architecture
 - Increased core network bandwidth
 - 2-way ECMP load balancing
 - □ 100 GE standard (IEEE 802.3ba) approved in June 2010

Data center components

Data center components

Switches

- Most common Top-of-Rack (ToR) switches typically operate at Layer-2 interconnecting gigabit links in the access network
- 300000 00000 man - 10
- □ Aggregation and core networks host Layer-3 switches operating at 10 GE (or 100 GE)

Links

- ☐ Transceivers' power consumption depends on the quality of signal transmission in cables and is proportional to their cost
- 1 GE links consume 0.4W for 100 meter transmissions over twisted pair

□ 10 GE links consume 1W for 300 meter transmission over optical fiber

Supported power management modes

Dynamic voltage scaling, dynamic shutdown, or both

Simulator components

Switches' Energy Model

P. Mahadevan, P. Sharma, S. Banerjee, and P. Ranganathan, "A Power Benchmarking Framework for Network Devices," 8th international IFIP-TC 6 Networking Conference, Aachen, Germany, May 11 - 15, 2009.

DENS methodology

- DENS achieves balance between
 - Energy consumed by the data center
 - ☐ Individual job performances and their QoS requirements
 - □ Data center traffic demands

Data Center Architecture

Avoid Overloading

DENS methodology

Server load, I

DENS methodology

Computing server selection

DENS methodology

- GreenCloud simulator is developed
- Three-tier data center topology
 - □ 1536 nodes, 32 racks, 4 core and 8 aggregation switches

Server workload distribution

Network workload distribution

Top-of-Rack (ToR) switch load

Data center energy consumption

	Power Consumption (kW·h)		
Parameter	Round Robin scheduler	Green Scheduler	DENS scheduler
Data center Servers Network switches	417.5K 353.7K 63.8K	203.3K (48%) 161.8K (45%) 41.5K (65%)	212.1K (50%) 168.2K (47%) 43.9K (68%)

Conclusions

- We acknowledge
 - Funding form Luxembourg FNR in the framework of GreenIT project

 Research fellowship provided by the European Research Consortium for Informatics and Mathematics (ERCIM)

References

GreenCloud simulator

- In Journal of Supercomputing, special issue on Green Networks
 "GreenCloud: A Packet-level Simulator of Energy-aware Cloud Computing Data Centers"
- In IEEE Global Communications Conference (GLOBECOM)
 "GreenCloud: A Packet-level Simulator of Energy-aware Cloud Computing Data Centers"

GreenCloudavailable at http://greencloud.gforge.uni.lu

Energy-Efficient Network-Aware Scheduling

- ☐ In Cluster Computing, special issue on Green Networks
 "DENS: Data Center Energy-Efficient Network-Aware Scheduling"
- ☐ In IEEE/ACM GreenCom [Best paper award]

 "DENS: Data Center Energy-Efficient Network-Aware Scheduling"

Thank you!