Introduction 000000 Theoretical Approach

Simulations

Conclusion 000

Voltage Overscaling Algorithms for Energy-Efficient Workflow Computations With Timing Errors

Aurélien Cavelan¹, Yves Robert^{1,2}, Hongyang Sun¹ and Frédéric Vivien¹

ENS Lyon & INRIA, France
 University of Tennessee Knoxville, USA

aurelien.cavelan@ens-lyon.fr

Green Days – Toulouse March 17, 2015

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000	00000000	000
Outline			

2 Theoretical Approach

3 Simulations

Introduction	Theoretical Approach	Simulations	Conclusion
●00000	00000	00000000	000
Dynamic Power	Consumption		

One can use *Dynamic Voltage and Frequency Scaling (DVFS)* to reduce power consumption.

Introduction	Theoretical Approach	Simulations	Conclusion
•00000	00000	00000000	000
Dynamic Power	Consumption		

One can use *Dynamic Voltage and Frequency Scaling (DVFS)* to reduce power consumption.

Power = $\alpha f V^2$

- $\bullet \ \alpha$ the effective capacitance
- *f* the frequency
- V the operating voltage

Introduction	Theoretical Approach	Simulations	Conclusion
•00000	00000	00000000	000
Dynamic Power	Consumption		

One can use *Dynamic Voltage and Frequency Scaling (DVFS)* to reduce power consumption.

Power = $\alpha f V^2$

- α the effective capacitance
- *f* the frequency
- V the operating voltage

 \Rightarrow Voltage has a quadratic impact on the dynamic power.

Introduction	Theoretical Approach	Simulations	Conclusion
o●oooo		00000000	000
The Easy Way			

For any frequency value, there is a threshold voltage:

Introduction	Theoretical Approach	Simulations	Conclusion
0●0000		00000000	000
The Easy Way			

For any frequency value, there is a threshold voltage:

• Find the frequency that minimizes energy consumption

Introduction	Theoretical Approach	Simulations	Conclusion
0●0000		00000000	000
The Easy Way			

For any frequency value, there is a threshold voltage:

- Find the frequency that minimizes energy consumption
- ② Decrease the voltage to threshold voltage

Introduction 00000	Theoretical Approach	Simulations 00000000	Conclusion
The Easy Way			

For any frequency value, there is a threshold voltage:

- Find the frequency that minimizes energy consumption
- ② Decrease the voltage to threshold voltage

Can we do better ?

Introduction	Theoretical Approach	Simulations	Conclusion
000000			
Threshold Volt	tage		

Figure: Set of voltages of a FPGA multiplier block and the associated error probabilities measured on random inputs at 90MHz and 27°C

Introduction	Theoretical Approach	Simulations	Conclusion
000●00		00000000	000
Timing Errors			

Definition

The results of some logic gates could be used before their output signals reach their final values.

- Occur when $V_{
 m DD} < V_{
 m TH}$
- Deterministic but unpredictable
- Induce Silent Data Corruptions (SDC)

Introduction	Theoretical Approach	Simulations	Conclusion
000000		0000000	000
Timing Errors			

Definition

The results of some logic gates could be used before their output signals reach their final values.

- Occur when $V_{
 m DD} < V_{
 m TH}$
- Deterministic but unpredictable
- Induce Silent Data Corruptions (SDC)

Unlike lightning, timing errors always strike twice

Introduction	Theoretical Approach	Simulations	Conclusion
000●00		0000000	000
Timing Errors			

Definition

The results of some logic gates could be used before their output signals reach their final values.

- Occur when $V_{
 m DD} < V_{
 m TH}$
- Deterministic but unpredictable
- Induce Silent Data Corruptions (SDC)

Unlike lightning, timing errors always strike twice

Silent errors are detected only when the corrupt data is activated

Introduction 00000●	Theoretical Approach 00000	Simulations 00000000	Conclusion
Question			

Is it possible to obtain the (correct) result of a computation for a lower energy budget than that of the best DVFS / NTC solution?

Introduction 000000	Theoretical Approach	Simulations 00000000	Conclusion
Outline			

2 Theoretical Approach

Introduction	Theoretical Approach	Simulations	Conclusion
000000	●0000	0000000	000
Model Assu	mptions		

Voltages	V_1	V_2	 $V_m = V_{\text{TH}}$
$\mathbb{P}(V_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_m = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 Cm

Introduction	Theoretical Approach	Simulations	Conclusion
000000	●0000	0000000	000
Model Assumpti	ons		

Voltages	V_1	V_2	 $V_m = V_{\text{TH}}$
$\mathbb{P}(V_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_m = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 Cm

Remember: timing errors always strike twice.

Introduction	Theoretical Approach	Simulations	Conclusion
000000	●0000	0000000	000
Model Assumpti	ons		

Voltages	V_1	V_2	 $V_m = V_{\text{TH}}$
$\mathbb{P}(V_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_m = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 Cm

Remember: timing errors always strike twice.

- When an error strikes, a higher voltage *must* be used
- Switching from voltage V_{ℓ} to V_h incurs a cost $o_{\ell,h}$
- Execution at $V_{\rm TH}$ always succeeds

Introduction	Theoretical Approach	Simulations	Conclusion
000000	●0000	0000000	000
Model Assumpti	ons		

Voltages	V_1	V_2	 $V_m = V_{\text{TH}}$
$\mathbb{P}(V_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_m = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 Cm

Remember: timing errors always strike twice.

- When an error strikes, a higher voltage *must* be used
- Switching from voltage V_{ℓ} to V_h incurs a cost $o_{\ell,h}$
- Execution at $V_{\rm TH}$ always succeeds

How to compute the probability of failure ?

Introduction	Theoretical Approach	Simulations	Conclusion
000000	●0000	0000000	000
Model Assumpti	ons		

Voltages	V_1	V_2	 $V_m = V_{\text{TH}}$
$\mathbb{P}(V_{\ell} ext{-fail})$	p_1	<i>p</i> ₂	 $p_m = 0$
Cost	<i>c</i> ₁	<i>c</i> ₂	 Cm

Remember: timing errors always strike twice.

- When an error strikes, a higher voltage *must* be used
- Switching from voltage V_{ℓ} to V_h incurs a cost $o_{\ell,h}$
- Execution at $V_{\rm TH}$ always succeeds

How to compute the probability of failure ? The optimal sequence of voltages ?

Introduction	Theoretical Approach	Simulations	Conclusion
000000	0●000	0000000	000
Property of Tim	ing Errors		

- Given an operation and an input *I*, there exists a *threshold* voltage V_{TH}(*I*):
 - $V < V_{\text{TH}}(I)$ will *always* lead to an incorrect result
 - $V \geq V_{\scriptscriptstyle\mathrm{TH}}(I)$ will always lead to a successful execution

Introduction	Theoretical Approach	Simulations	Conclusion
000000	0●000	0000000	000
Property of Ti	ming Errors		

- Given an operation and an input *I*, there exists a *threshold* voltage V_{TH}(*I*):
 - $V < V_{\text{TH}}(I)$ will *always* lead to an incorrect result
 - $V \geq V_{\scriptscriptstyle\mathrm{TH}}(I)$ will always lead to a successful execution
- **2** Given an operation and a voltage $V \in \mathcal{V}$:
 - $\bullet \ {\cal I}$ denotes the set of all possible inputs
 - $\mathcal{I}_f(V) \subseteq \mathcal{I}$ is the set of inputs that will fail at voltage V
 - Failure probability is computed as $p_V = |\mathcal{I}_f(V)|/|\mathcal{I}|$
 - For any two voltages $V_1 \geq V_2$, we have $\mathcal{I}_f(V_1) \subseteq \mathcal{I}_f(V_2)$

Introduction	Theoretical Approach	Simulations	Conclusion
000000	0●000	0000000	000
Property of Tim	ing Errors		

- Given an operation and an input *I*, there exists a *threshold* voltage V_{TH}(*I*):
 - $V < V_{\text{TH}}(I)$ will *always* lead to an incorrect result
 - $V \geq V_{\scriptscriptstyle\mathrm{TH}}(I)$ will always lead to a successful execution
- **2** Given an operation and a voltage $V \in \mathcal{V}$:
 - $\bullet \ \mathcal{I}$ denotes the set of all possible inputs
 - $\mathcal{I}_f(V) \subseteq \mathcal{I}$ is the set of inputs that will fail at voltage V
 - Failure probability is computed as $p_V = |\mathcal{I}_f(V)|/|\mathcal{I}|$
 - For any two voltages $V_1 \geq V_2$, we have $\mathcal{I}_f(V_1) \subseteq \mathcal{I}_f(V_2)$

$$\mathbb{P}(V_{\ell}\text{-fail} \mid V_0V_1 \cdots V_{\ell-1}\text{-fail}) = \frac{|\mathcal{I}_f(V_{\ell})|/|\mathcal{I}|}{|\mathcal{I}_f(V_{\ell-1})|/|\mathcal{I}|} = \frac{p_{\ell}}{p_{\ell-1}}$$

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00●00	00000000	000
Energy	Consumption of a Single	Task	

Consider a sequence L of k voltages $V_1 < V_2 < \cdots < V_k = V_{\text{TH}}$,

Execution starts at voltage V_1 :

- In case of success, return the result !
- In case of failure, go to next (higher) voltage

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00●00	00000000	000
Energy	Consumption of a Single	Task	

Consider a sequence L of k voltages $V_1 < V_2 < \cdots < V_k = V_{\text{TH}}$,

Execution starts at voltage V_1 :

- In case of success, return the result !
- In case of failure, go to next (higher) voltage

$$E(L) = c_1 + p_1 \left(o_{1,2} + c_2 + \frac{p_2}{p_1} \left(o_{2,3} + c_3 + \dots + \frac{p_{k-1}}{p_{k-2}} (o_{k-1,k} + c_k) \right) \right)$$

= $c_1 + p_1 (o_{1,2} + c_2) + p_2 (o_{2,3} + c_3) + \dots + p_{k-1} (o_{k-1,k} + c_k)$

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00●00	0000000	000
Energy	Consumption of a Single	Task	

Consider a sequence L of k voltages $V_1 < V_2 < \cdots < V_k = V_{\text{TH}}$,

Execution starts at voltage V_1 :

- In case of success, return the result !
- In case of failure, go to next (higher) voltage

$$E(L) = c_1 + p_1 \left(o_{1,2} + c_2 + \frac{p_2}{p_1} \left(o_{2,3} + c_3 + \dots + \frac{p_{k-1}}{p_{k-2}} (o_{k-1,k} + c_k) \right) \right)$$

= $c_1 + p_1 (o_{1,2} + c_2) + p_2 (o_{2,3} + c_3) + \dots + p_{k-1} (o_{k-1,k} + c_k)$

We generalize:

$$E(L) = c_1 + \sum_{\ell=2}^{k} p_{\ell-1} \left(o_{\ell-1,\ell} + c_{\ell} \right)$$
(1)

Introduction	Theoretical Approach	Simulations	Conclusion
000000	000●0	00000000	
Optimal Sequen	ce of Voltages		

Theorem

To minimize the expected energy consumption for a single task, the optimal sequence of voltages to execute the task with a preset voltage $V_p \in \mathcal{V}$ of the system can be obtained by dynamic programming with complexity $O(k^2)$.

Introduction	Theoretical Approach	Simulations	Conclusion
000000	000●0	00000000	000
Optimal Sequen	ce of Voltages		

Theorem

To minimize the expected energy consumption for a single task, the optimal sequence of voltages to execute the task with a preset voltage $V_p \in \mathcal{V}$ of the system can be obtained by dynamic programming with complexity $O(k^2)$.

$$E(L_{s}^{*}) = c_{s} + \min_{s < \ell \le k} \{ E(L_{\ell}^{*}) - c_{\ell} + p_{s}(o_{s,\ell} + c_{\ell}) \}$$
(2)

and the optimal sequence starting with V_s is $L^*_s = \langle V_s, L^*_{\ell'} \rangle$ where

$$\ell' = \arg\min_{s<\ell\leq k} \left\{ E(L_{\ell}^*) + p_s o_{s,\ell} + (p_s - 1)c_{\ell} \right\}.$$

The dynamic program is initialized with $E(L_k^*) = c_k$ and $L_k^* = \langle V_k \rangle$

Introduction	Theoretical Approach	Simulations	Conclusion
000000	0000●	0000000	000
Chain of Tasks			

• Without switching cost: optimal sequence for one task can be used to execute each task.

Introduction	Theoretical Approach	Simulations	Conclusion
000000	0000●	0000000	000
Chain of Tasks			

- Without switching cost: optimal sequence for one task can be used to execute each task.
- With switching cost:
 - After execution of a task, platform is left at voltage V_e
 - Optimal sequence starts at voltage V_s
 - Additional switching cost o_{e,s} must be paid
 - Algorithm for one task is no longer optimal

Introduction	Theoretical Approach	Simulations	Conclusion
000000	0000●	0000000	000
Chain of Tasks			

- Without switching cost: optimal sequence for one task can be used to execute each task.
- With switching cost:
 - After execution of a task, platform is left at voltage V_e
 - Optimal sequence starts at voltage V_s
 - Additional switching cost o_{e,s} must be paid
 - Algorithm for one task is no longer optimal

Theorem

To minimize the expected energy consumption for a linear chain of tasks, the optimal sequence of voltages to execute each task, given the terminating voltage of its preceding task (or given the preset voltage V_p of the system for the first task), can be obtained by dynamic programming with complexity $O(nk^2)$.

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000		000
Outline			

1 Introduction

2 Theoretical Approach

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000	●0000000	
Blocked Matrix-I	Matrix Multiplication		

Consider the blocked matrix multiplication $C = A \times B$.

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000	●0000000	000
Blocked Matrix-I	Matrix Multiplication		

Consider the blocked matrix multiplication $C = A \times B$.

ABFT can be used to add per-block verification.

Introduction 000000	Theoretical App 00000	roach	Simulations 0000000	Conclusion 000
Algorithm	Based Fault ⁻	Tolerence (A	ABFT)	

Let $e^T = [1, 1, \cdots, 1]$, we define

$$A^{c} := \begin{pmatrix} A \\ e^{T}A \end{pmatrix}, B^{r} := \begin{pmatrix} B & Be \end{pmatrix}, C^{f} := \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix}.$$

Where A^c is the column checksum matrix, B^r is the row checksum matrix and C^f is the full checksum matrix.

Algorithm Rose	d Fault To	Jerence (ARET)	
Introduction 000000	Theoretical Approa	ch Simulations ⊙●○○○○○○	Conclusion

Let
$$e^T = [1, 1, \cdots, 1]$$
, we define

$$A^{c} := \begin{pmatrix} A \\ e^{T} A \end{pmatrix}, B^{r} := \begin{pmatrix} B & Be \end{pmatrix}, C^{f} := \begin{pmatrix} C & Ce \\ e^{T} C & e^{T} Ce \end{pmatrix}.$$

Where A^c is the column checksum matrix, B^r is the row checksum matrix and C^f is the full checksum matrix.

$$A^{c} \times B^{r} = \begin{pmatrix} A \\ e^{T}A \end{pmatrix} \times \begin{pmatrix} B & Be \end{pmatrix}$$
$$= \begin{pmatrix} AB & ABe \\ e^{T}AB & e^{T}ABe \end{pmatrix} = \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix} = C^{f}$$

$= \left\lceil \frac{m}{b} \right\rceil^3$ tasks.

• $\gamma = \frac{\text{silent errors}}{\text{timing errors}}$ • $p_{\ell}^{(1)}$ probablity of timing error for one random operation

Platform	Settings		
Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000	00000000	000

From [1] for a FPGA at f = 90MHz and 27° C:

- Set of voltages
- Timing errors probabilities

Dynamic Power Consumption

•
$$P(V, f) = \alpha f V^2$$

• We assume (wlog)
$$\alpha f = 1$$

Platform	Settings		
Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000	00000000	000

From [1] for a FPGA at f = 90MHz and 27° C:

- Set of voltages
- Timing errors probabilities

Dynamic Power Consumption

•
$$P(V, f) = \alpha f V^2$$

• We assume (wlog)
$$\alpha f = 1$$

Platform	Settings		
Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000	00000000	000

From [1] for a FPGA at f = 90MHz and 27° C:

- Set of voltages
- Timing errors probabilities

Dynamic Power Consumption

•
$$P(V, f) = \alpha f V^2$$

• We assume (wlog)
$$\alpha f = 1$$

Voltage Switching Cost
•
$$o_{\ell,h} = \begin{cases} 0, & \text{if } \ell = h \\ \beta \cdot \frac{|V_{\ell} - V_h|}{|V_k - V_1|} & \text{otherwise} \end{cases}$$

• $\beta = o_{1,k}$

000000	00000	00000000	000
Algorithms			

- *N-Voltage*: Baseline algorithm that applies NTC and always uses threshold voltage.
- *DP*₁-*detect* & *DP*₁-*correct*: Optimal dynamic programming algorithms for a single task.
- DP_n -detect & DP_n -correct: Optimal dynamic programming algorithms for a for a chain of tasks.

detect algorithms use ABFT for error detection. *correct* algorithms use ABFT for detection and correction.

Figure: Failure probabilities for one operation and for one task under different block sizes and voltages.

Simulations	(without switching	cost)	
000000	00000	00000000	000
Introduction	Theoretical Approach	Simulations	Conclusion

Figure: Impact of b and γ on the expected energy consumption for zero voltage switching cost. Only the results for the DP_n-correct algorithm are shown.

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000	0000000	
Simulations (with switching cost)		

Figure: Impact of *b* and β on the expected energy consumption. The voltage switching cost is equivalent to the energy consumed to multiply two 32 × 32 matrices at threshold voltage without overhead.

Introduction	Theoretical Approach	Simulations	Conclusion
Outling			

1 Introduction

2 Theoretical Approach

3 Simulations

Conclusion			
			000
Introduction	Theoretical Approach	Simulations	Conclusion

We use dynamic voltage overscaling to reduce power consumption.

Introduction	Theoretical Approach	Simulations	Conclusion
			000
Conclusion			

We use dynamic voltage overscaling to reduce power consumption.

Original problem and encouraging results; needs further research.

We use dynamic voltage overscaling to reduce power consumption.

Original problem and encouraging results; needs further research.

Future Work

- Algorithms for other task graphs
- Additional simulations, emulations and experiments

Introduction	Theoretical Approach	Simulations	Conclusion
000000		00000000	⊙●⊙
Questions			

Thanks! 🙂

Questions?

Introduction	Theoretical Approach	Simulations	Conclusion
000000	00000	00000000	00●
Bibliography			

 D. Ernst, S. Das, S. Lee, D. Blaauw, T. Austin, T. Mudge, N. S. Kim, and K. Flautner.
 Razor: circuit-level correction of timing errors for low-power operation.
 IEEE Micro, 24(6):10–20, 2004.