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Dynamic Power Consumption

One can use Dynamic Voltage and Frequency Scaling (DVFS) to
reduce power consumption.

Power = αfV 2

α the effective capacitance
f the frequency
V the operating voltage

⇒Voltage has a quadratic impact on the dynamic power.
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The Easy Way

We target energy consumption only, not time.

For any frequency value, there is a threshold voltage:

1 Find the frequency that minimizes energy consumption
2 Decrease the voltage to threshold voltage

?
Can we do better ?



4/27

Introduction Theoretical Approach Simulations Conclusion

The Easy Way

We target energy consumption only, not time.

For any frequency value, there is a threshold voltage:
1 Find the frequency that minimizes energy consumption

2 Decrease the voltage to threshold voltage

?
Can we do better ?



4/27

Introduction Theoretical Approach Simulations Conclusion

The Easy Way

We target energy consumption only, not time.

For any frequency value, there is a threshold voltage:
1 Find the frequency that minimizes energy consumption
2 Decrease the voltage to threshold voltage

?
Can we do better ?



4/27

Introduction Theoretical Approach Simulations Conclusion

The Easy Way

We target energy consumption only, not time.

For any frequency value, there is a threshold voltage:
1 Find the frequency that minimizes energy consumption
2 Decrease the voltage to threshold voltage

?
Can we do better ?



5/27

Introduction Theoretical Approach Simulations Conclusion

Threshold Voltage
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Figure: Set of voltages of a FPGA multiplier block and the associated
error probabilities measured on random inputs at 90MHz and 27°C
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Timing Errors

Definition
The results of some logic gates could be used before their
output signals reach their final values.

Occur when Vdd < Vth

Deterministic but unpredictable
Induce Silent Data Corruptions (SDC)

Unlike lightning, timing errors always strike twice

Silent errors are detected only when the corrupt data is activated
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Two Approaches

Near-Threshold Computing (Vdd ≈ Vth)

Used in NTC circuits (hardware)
Almost safe ,
Great energy savings ,

Voltage Overscaling (Vdd < Vth)

Even more energy savings ,
Purely software-based approach ,
Generate timing errors /
Require a verification mechanism /
Require probabilities of failure for the platform /
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Question

?
Is it possible to obtain the (correct) result of a computation

for a lower energy budget than that of the best DVFS / NTC
solution?
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Model Assumptions

Consider a task and a set of voltages V:

Voltages V1 V2 · · · Vm = Vth
P(V`-fail) p1 p2 . . . pm = 0
Cost c1 c2 . . . cm

Remember: timing errors always strike twice.

When an error strikes, a higher voltage must be used
Switching from voltage V` to Vh incurs a cost o`,h

Execution at Vth always succeeds

How to compute the probability of failure ?

The optimal sequence of voltages ?
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Property of Timing Errors

1 Given an operation and an input I, there exists a threshold
voltage Vth(I):

V < Vth(I) will always lead to an incorrect result
V ≥ Vth(I) will always lead to a successful execution

2 Given an operation and a voltage V ∈ V:
I denotes the set of all possible inputs
If (V ) ⊆ I is the set of inputs that will fail at voltage V
Failure probability is computed as pV = | If (V )|/| I |
For any two voltages V1 ≥ V2, we have If (V1) ⊆ If (V2)

P(V`-fail | V0V1 · · ·V`−1-fail) = | If (V`)|/| I |
| If (V`−1)|/| I |

= p`

p`−1
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Energy Consumption of a Single Task

Consider a sequence L of k voltages V1 < V2 < · · · < Vk = Vth,

Execution starts at voltage V1:
1 In case of success, return the result !
2 In case of failure, go to next (higher) voltage

E (L) = c1 + p1

(
o1,2 + c2 + p2

p1

(
o2,3 + c3 + . . .

pk−1
pk−2

(ok−1,k + ck

))
= c1 + p1(o1,2 + c2) + p2(o2,3 + c3) + · · ·+ pk−1(ok−1,k + ck)

We generalize:

E (L) = c1 +
k∑

`=2
p`−1 (o`−1,` + c`) (1)
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Optimal Sequence of Voltages

Theorem
To minimize the expected energy consumption for a single task,
the optimal sequence of voltages to execute the task with a preset
voltage Vp ∈ V of the system can be obtained by dynamic
programming with complexity O(k2).

E (L∗s ) = cs + min
s<`≤k

{E (L∗` )− c` + ps(os,` + c`)} (2)

and the optimal sequence starting with Vs is L∗s = 〈Vs , L∗`′〉 where

`′ = arg min
s<`≤k

{E (L∗` ) + psos,` + (ps − 1)c`} .

The dynamic program is initialized with E (L∗k) = ck and L∗k = 〈Vk〉
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Chain of Tasks

Without switching cost: optimal sequence for one task can be
used to execute each task.

With switching cost:
After execution of a task, platform is left at voltage Ve
Optimal sequence starts at voltage Vs
Additional switching cost oe,s must be paid
Algorithm for one task is no longer optimal

Theorem
To minimize the expected energy consumption for a linear chain of
tasks, the optimal sequence of voltages to execute each task, given
the terminating voltage of its preceding task (or given the preset
voltage Vp of the system for the first task), can be obtained by
dynamic programming with complexity O(nk2).
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Blocked Matrix-Matrix Multiplication

Consider the blocked matrix multiplication C = A× B.

Application Workflow

for i = 1 to dm
b e do

for j = 1 to dm
b e do

for k = 1 to dm
b e do

Ci ,j ← Ci ,j + Ai ,k × Bk,j

m denotes the matrix size
b denotes the block size

ABFT can be used to add per-block verification.
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Algorithm Based Fault Tolerence (ABFT)

Let eT = [1, 1, · · · , 1], we define

Ac :=
(

A
eT A

)
, Br :=

(
B Be

)
, C f :=

(
C Ce

eT C eT Ce

)
.

Where Ac is the column checksum matrix, Br is the row checksum
matrix and C f is the full checksum matrix.

Ac × Br =
(

A
eT A

)
×
(

B Be
)

=
(

AB ABe
eT AB eT ABe

)
=
(

C Ce
eT C eT Ce

)
= C f
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Matrix Parameters
Consider the matrix multiplication as a chain of n = dm

b e
3 tasks.

Time to Execute one Task
t = τ · w/η

τ = 1/f time to do one cycle
η = 0.8 peak performance

w = b(b + 1)2 + σ

σ = 83 initialization overhead
(b + 1) ABFT overhead

Failure Probabilities
Consider a set of voltages V. For any voltage V` ∈ V

p` = 1− (1− p(1)
` /γ)w

γ = silent errors
timing errors

p(1)
` probablity of timing error for one random operation
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Platform Settings

From [1] for a FPGA at f = 90MHz and 27◦C:
Set of voltages
Timing errors probabilities

Dynamic Power Consumption

P(V , f ) = αfV 2

We assume (wlog) αf = 1

Voltage Switching Cost

o`,h =
{

0, if ` = h
β · |V`−Vh|

Vk−V1
otherwise

β = o1,k
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Algorithms

N-Voltage: Baseline algorithm that applies NTC and always
uses threshold voltage.
DP1-detect & DP1-correct: Optimal dynamic programming
algorithms for a single task.
DPn-detect & DPn-correct: Optimal dynamic programming
algorithms for a for a chain of tasks.

detect algorithms use ABFT for error detection.
correct algorithms use ABFT for detection and correction.
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Probabilities of failure
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Figure: Failure probabilities for one operation and for one task under
different block sizes and voltages.
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Simulations (without switching cost)
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Figure: Impact of b and γ on the expected energy consumption for zero
voltage switching cost. Only the results for the DPn-correct algorithm are

shown.
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Simulations (with switching cost)
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Figure: Impact of b and β on the expected energy consumption. The
voltage switching cost is equivalent to the energy consumed to multiply

two 32× 32 matrices at threshold voltage without overhead.
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Conclusion

We use dynamic voltage overscaling to reduce power consumption.

Summary
Software based approach
Model for timing errors
Optimal polynomial-time solution for a chain of tasks
Simulations on matrix multiplication using ABFT

Original problem and encouraging results; needs further research.

Future Work
Algorithms for other task graphs
Additional simulations, emulations and experiments
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Questions

Thanks! ,

Questions?
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