BREAKING THE CLOUD

Energy-Eff cient & Network-Aware Distributed Cloud Infrastructure

Ismael Cuadrado-Cordero, PhD candidate Anne-Cecile Orgerie, Research Scientist Christine Morin, Senior Scientist

Introduction

Is all this energy well spent?

Problem def intion

Switch Off

Existent solutions approach

Switch OFF

Energy = **Base_Consumption + conf guration**)

- Length path
- QoS

Energy saving

Save energy by keeping the shortest path

Existing solutions

Commercial solutions

8

Existing solutions

Dynamic reservation based protocol Energy-efficiency in cloud computing networks

Issues:

- Completely distributed
- Datacenters' addressed

On the Energy Eff ciency of Centralized and Decentralized Management for Reservation-Based Networks - Orgerie, A.-C. ; LIP, ENS de Lyon, Lyon, France ; Lefevre, L. ; Guerin-Lassous, I.

Existing solutions

Energy-efficient & QoS geographic approach to clouds. First replication of data for *energy saving in cloud* solution.

Issues:

- Specially QoS focused
- Imply ISPs collaboration

Greening the internet with nano data centers. Vytautas Valancius, Nikolaos Laoutaris, Laurent Massouli Christophe Diot, and Pablo Rodriguez.

Existing solution's problem

11

Existing solution's problem

Wrong cloud conception: is meant to be everywhere, but in reality is centralized (in datacenters).

- The Energy-Eff ciency achieved is only local
- Growth of clients imply a growth in resources needs
- Imply the interaction of several parties
- We cannot build you your own cloud datacenter...

Existing solution's problem

Our approach

Or do we?

We propose *breaking the cloud* Distribute the computation between the clients according to geographical needs

A semi-decentralized **software architecture** and a **routing protocol** to manage the distribution of computation

Geography

Current path

Our Solution

Break the cloud

Microcloud

Microcloud

Participants

Use case

Architecture

Architecture

Architecture

Dynamic green protocol DEEPACC

Energy eff ciency

We save energy by keeping the traff c local AS should switch devices off

- Energy consumption **adapted to needs** (the smallest the cloud, the less nodes consuming)
- Decentralization of the system **independence** of the cloud datacenter
- Consumption reduction for datacenters
- Better QoS

Targeted Clouds:

- High distribution clients/small interaction
 - Streaming platforms, videocalls...
- High interaction/ small clients distribution
 - GDocs

Limitations

Not meant to:

- Strong computation clouds
 VHPC
- High clients distribution/ high interaction
 - GWave, sharedDBs systems...

Early experimentation

Experimentation testbed

32

Experimentation results

Routing protocol

Experimentation results

Routing protocol

Experimentation results

Experimentation:

» Energy consumption

» Overhead computation time (Overall)

» Response time (On new customer)

» Microcloud size

» Internet

» Experimental determination of microcloud size

» Prediction

