Power Characterization of Servers in Heterogeneous Cloud Environments

Mascha Kurpicz, Anita Sobe, Pascal Felber
Université de Neuchâtel

This project and the research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 318693
Bigger data centers

More powerful CPUs

Cloud computing requires more energy than India or Germany

Goal:
Reduce energy consumption on multiple levels
Context

- Heterogeneous hardware within a data center is common
- Multi-cloud scenarios: connecting heterogeneous data centers
Study about power consumption for different workloads
- CPU
- Disk
- Real-world application

On heterogeneous hardware

Physical power meter

- PowerSpy device from Alciom
- Setup: power every second (Watt)
Metrics

\[E = P \times t \]
Joule = Watt x seconds

\[\frac{\text{Perf}}{W} = \frac{\text{Throughput}}{P} \]
E.g. for disk workload:
Read Rate / Watt

Workload
OS
Hardware
Idle power
Idle power consumption

<table>
<thead>
<tr>
<th>M1-i3</th>
<th>M2-i5</th>
<th>M3-i7-2gm</th>
<th>M4-i7-4g</th>
<th>M5-xeon</th>
<th>M6-amd</th>
<th>M7-amd tc</th>
<th>M8-via</th>
</tr>
</thead>
<tbody>
<tr>
<td>Desktop</td>
<td>Desktop</td>
<td>Mobile</td>
<td>Desktop</td>
<td>Desktop</td>
<td>Server</td>
<td>Desktop</td>
<td>Mobile</td>
</tr>
</tbody>
</table>
Idle power consumption

![Graph showing idle power consumption for different processors. M1-i3 to M8-via are listed with their corresponding power consumption values. M5-xeon has the highest power consumption among the listed processors.](image)

<table>
<thead>
<tr>
<th>Processor</th>
<th>M1-i3</th>
<th>M2-i5</th>
<th>M3-i7-2gm</th>
<th>M4-i7-4g</th>
<th>M5-xeon</th>
<th>M6-amd</th>
<th>M7-amdtc</th>
<th>M8-via</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Desktop</td>
<td>Desktop</td>
<td>Mobile</td>
<td>Desktop</td>
<td>Desktop</td>
<td>Server</td>
<td>Desktop</td>
<td>Mobile</td>
</tr>
</tbody>
</table>

16 cores, older architecture, server
CPU workload (factorial)

Best: i7-2gm
Disk workload (Bonnie++)

<table>
<thead>
<tr>
<th>Type</th>
<th>M8-via</th>
<th>M3-i7-2gm</th>
<th>M2-i5</th>
<th>M1-i3</th>
<th>M4-i7-4g</th>
<th>M5-xeon</th>
<th>M7-amdtc</th>
<th>M6-amd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Mobile</td>
<td>Mobile</td>
<td>Desktop</td>
<td>Desktop</td>
<td>Desktop</td>
<td>Desktop</td>
<td>Desktop</td>
<td>Server</td>
</tr>
<tr>
<td>Disk RPM</td>
<td>5400</td>
<td>5400</td>
<td>5900</td>
<td>7200</td>
<td>7200</td>
<td>7200</td>
<td>7200</td>
<td>7200</td>
</tr>
</tbody>
</table>
Impact on energy-aware scheduling

Different scheduling possibilities on the same two machines

<table>
<thead>
<tr>
<th></th>
<th>M1-i3</th>
<th>M4-i7-4g</th>
<th>Total (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placement 1</td>
<td>5xDisk</td>
<td>5xCPU</td>
<td>14'370</td>
</tr>
<tr>
<td>Placement 2</td>
<td>5xCPU</td>
<td>5xDisk</td>
<td>16'110</td>
</tr>
</tbody>
</table>

M1-i3: Desktop
M4-i7-4g: Desktop
Current work: Job and HW profiles

- HW profile on reference machine
- Extrapolation from one machine to another
- Online job profiling
- Estimation of job energy consumption as input for scheduling decision
HW profile

- Profile machine m1 as a reference
- CPU (usr and sys) and disk
- Utilization intervals u_1, \ldots, u_n

<table>
<thead>
<tr>
<th>Util</th>
<th>u_1</th>
<th>u_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>usr</td>
<td>10W</td>
<td>20W</td>
<td>...</td>
</tr>
<tr>
<td>sys</td>
<td>10W</td>
<td>15W</td>
<td>...</td>
</tr>
<tr>
<td>disk</td>
<td>3W</td>
<td>5W</td>
<td>...</td>
</tr>
</tbody>
</table>
Extrapolation for other HW

<table>
<thead>
<tr>
<th>Util</th>
<th>u_1</th>
<th>u_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>usr</td>
<td>10W</td>
<td>20W</td>
<td>...</td>
</tr>
<tr>
<td>sys</td>
<td>10W</td>
<td>15W</td>
<td>...</td>
</tr>
<tr>
<td>disk</td>
<td>3W</td>
<td>5W</td>
<td>...</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Util</th>
<th>u_1</th>
<th>u_2</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>usr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>sys</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>disk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Utilization mapping between machines

- Utilization mapping tables
 - For CPU (sys and \textit{usr})
 - For disk

<table>
<thead>
<tr>
<th>sys(%)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>m1</td>
<td>10</td>
<td>20</td>
<td>...</td>
</tr>
<tr>
<td>m2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Online job profiling – machine m1

- On job arrival, monitor part of the job on m1
- Measure CPU and disk utilization
- Look up power consumption in HW profile of m1

Expected power consumption on machine m1
Online job profiling – other machines

- Utilization mapping for machines m_2, \ldots, m_n
- Look up power values in HW table for mapped utilization values

Expected power consumption on machines m_2, \ldots, m_n

- Provide table with expected power consumption for the different machines to the scheduler
Workflow

1. **Job arrival**
2. **Profile m1**
3. **Obtain data for all machines**
4. **Power profile**
5. **Scheduling**

HW matrix

Utilization mapping

- **m1**: 35W
- **m2**: 40W
...
Scheduler

- Estimated power consumption on each machine
- Estimated execution time

Energy efficient scheduling decision
Open points

- Data locality
- Which subset of the workload to monitor?
- What HW can be covered by the model?
- Exact definition of the mapping functions
Conclusion

Different workload characteristics

Heterogenous hardware

Different energy consumption
Conclusion

- Different workload characteristics
- Heterogeneous hardware
- Different energy consumption

- Workload placement and consolidation
- Pricing model

Energy efficient scheduling!
Power Characterization of Servers in Heterogeneous Cloud-Environments

Mascha Kurpicz, Université de Neuchâtel

This project and the research leading to these results has received funding from the European Community's Seventh Framework Programme [FP7/2007-2013] under grant agreement n° 318693