
CPU and DRAM power estimations of software
containers

Guillaume Fieni

University of Lille

July 2018



Context & Challenges

I Data-intensive software systems
I Process continuous flows of data (smartphones, IoT...)
I Deployed in distributed environments (public/private)
I Two key concerns: security and energy

I Explores the security/energy trade-offs and optimizations

I Maximize the security while minimizing the power
consumption



Related work

I Static power models: BitWatts

I Per-process power estimations

I Use Hardware Performance Counters

I Use of external power meter (IPMI, PowerSpy...)

I Requires an offline calibration phase

I Accurate (2-3% error)

I No DRAM power estimations



SmartWatts

I Self-adaptive power meter

I Provides per-contaienr CPU and DRAM power estimations

I Lightweight

I No external power-meter required



Introduction
Software containers

Figure 1: Different types of software containers



SmartWatts
Software containers

I Linux’s control groups (cgroups)

I Used by: Docker, Libvirt, Systemd

I perf event supports per-container monitoring



SmartWatts
Hardware Performance Counters

I Low overhead

I High amount of available events

I Limited amount of simultaneous events

I Virtualized by perf event

I Need to select the most relevant events (correlation)



SmartWatts
Hardware Performance Counters - Selection

I Heuristic based

I Needed for CPU and DRAM models (different indicators)

I On newest architectures: quick, almost same results

I On oldest architectures: slower, various results



SmartWatts
Running Average Power Limit (RAPL)

I Available on Intel (since Sandy Bridge) and AMD (since Zen)

I Power capping feature
I Provides power estimations for CPU and DRAM

I Multiple domains: Package, Core, Uncore, DRAM
I Package wide power estimations



SmartWatts
Power models

I Learning power models at runtime

I Triggers learning of new power model if error >= threshold

I Build a robust power model over the time

I Multivariate linear regression



Hardware optimizations
C-states

I Power optimization (idle states)

I Disable some parts of the CPU when unused

I Reduce greatly the power consumption

I Hardware Performance Counters are not correlated anymore



Hardware optimizations
C-states - IDLE

Figure 2: CPU power comsuption with C-states enabled/disabled



Hardware optimizations
P-states

I Performance optimization (operational states)

I Reduce power consumption without impacting performance

I Hardware P-states on >= Skylake micro-architectures

I Boost states

I Model does not predict the correct power consumption



Hardware optimizations
Advanced Vector Extensions (AVX)

I SIMD instructions

I Have designated turbo frequencies

I Affect all cores when using AVX2 or AVX-512

I Model does not predict the correct power consumption



SmartWatts
Architecture

Power meter MongoDB Node Container Sensor



SmartWatts
Evaluation

I Qarnot computing Heater 1

I Docker
I CPU rendering of 3D graphics (Blender)

I Cluster infrastructure
I Kubernetes
I Typical HPC workloads (NPB, Linpack)
I CPU and Memory intensive
I Deployed on the Grid’5000 testbed infrastructure

1https://www.qarnot.com/

https://www.qarnot.com/


Future perspectives

I Extend SmartWatts to other architectures (AMD, ARM)

I Power estimations of Intel SGX secure enclaves

I Energy aware scheduling of distributed environments


