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Introduction

• Data centers are known as one of the big players when talking about energy consumption; 

• In 2006, were responsible for 61.4 billion kWh in the United States; 

• In 2010 about 1.3% of world's electricity;
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Section 01 
Powering our  
Digital World

01POWERING OUR DIGITAL WORLD

The digital world–our digital devices and the internet 
that links them together–is becoming more central and 
a larger piece of modern society with each passing year. 
Ubiquitous, fast and cheap Internet access combined 
with a seemingly endless array of internet-enabled 
devices is rapidly redefining what we consider online 
and what is offline. This transformation to the digital age 
offers tremendous potential to help us be smarter about 
how we use energy, enabling us to better measure and 
manage our energy consumption, allowing us to rely more 
and more on renewable sources of energy.  

This ability to catalyze transformative change in the 
consumption and production of energy is why IT 
companies have such a critical role in whether we will 
be able to transition to a much smarter and renewably 
powered economy and achieve the significant reduction 

in greenhouse gases (GHGs) to avoid devastating 
impacts from climate change.

But along with the significant solutions potential, 
delivering the digital age requires a tremendous amount 
of energy. Despite significant improvements in energy 
efficiency in both our devices and in the operation of 
data centers, our IT-related energy appetite marches 
rapidly upward.  When accounting for the energy needed 
to both manufacture our devices and power the internet 
and the rest of the digital infrastructure needed to run 
our connected world, the IT sector was estimated to 
already consume over 7% of global electricity demand 
in 2012, with projections this could exceed 12% by 2017, 
and continue to grow at least 7% annually through 2030, 
double the average rate of electricity growth globally.10  
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Introduction

• In the last years, the use of cloud computing has been the basis of data 
centers, either in a public or private fashion.
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• This migration to cloud computing increases the concern about power 
utilization, especially when considering renewable energy sources and its 
oscillation over time; 

• Tasks submitted by users needs to be executed inside a time interval 
(release time and due date); 

• But:  When? Where? At which speed/frequency?

Introduction
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Figure XX.  Solar PV Capacity and Additions, Top 10 Countries, 2015
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Figure ??. Solar PV Global Additions and Total Capacity, 2005–2015
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WIND POWER
Wind Power Global Capacity and Annual Additions, 2005–2015

Wind Power Capacity and Additions, Top 10 Countries, 2015

Market Shares of Top 10 Wind Turbine Manufacturers, 2015
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✤ Set of Jobs J: Jj=[tj,i;pej,i;memj,i]


✤ tj,i=[trelase j,i;tduedate j,i;tdurationj,i]


✤ memj,i = Memory requested by task j,i


✤ pej,i = Number of processing elements requested by task j,i


✤ Set of Machines M: Mi=[npei;memi;Pmin i;Pmax i] 


✤ [fi] set of frequencies available


✤ memi: Memory available in node


✤ Pmin i:Power when node is idle


✤ 𝛼i: Coefficient dependent on the machine


✤ npei: Number of processing elements


✤ Pmax i: g(Pmin i;fi,l;𝛼i) Power with processing element at 100%


✤ Discrete power curves Pavailable(t): power available at instant t
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IT Optimization Module
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✤ Output:


✤ Which task will run where, 
when, at which frequency;


✤ Constraints {Power, CPU, 
Memory}


✤ Translated as a set of 
scheduling possibilities in the 
form of a power profile;


✤ Associated with metrics 
(energy, due date violations…)
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• Meta-heuristic (Genetic 
Algorithm): 

• Allows to produce a large 
number of adapted solutions; 

• Makes it possible to approach 
an optimum solution; 

• Slow execution time; 

• Difficulties in setting 
parameters (crossover, 
mutation rate, population size, 
selection method). 
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• Greedy Heuristic (Best Fit): 

• Fast scheduling decisions; 

• Easy implementation; 

• Tasks can be sorted by 
arrival time, due date…; 

• Tasks are scheduled in a 
local optimal, limited by the 
power curve received; 

• The combinations of choices 
locally optimal do not always 
lead to an overall optimum.

IT Optimization Module
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๏ 2 Variations:

• Minimize Due Date 

violations (MPGA)

• Minimize Due Date and 

Energy (MPGA-MO)
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• Two execution phases for Genetic Algorithm to improve execution time:


• First phase provides an initial placement of tasks respecting a simplified 
power curve;


• Second phase uses the power prediction with all variations to improve this 
initial placement, allowing the scheduling to take profit of power peaks.
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Evaluation



Evaluation

✤ Computing Resources: 

✤ Based in Paravance and Taurus (Grid5000)                                   

✤ 30 Nodes x 2 Processors x 5 Frequencies 
(1.2 to 2.4 Ghz); 

✤ + Overhead of turning on/off a node.
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Source: Villebonnet, V. (2016). Scheduling and Dynamic Provisioning for Energy Proportional  
Heterogeneous Infrastructures (Doctoral dissertation, Université de Lyon).

T. Mudge, “Power: A first-class architectural design constraint,” Computer, vol. 34, pp. 52– 58, 2001.
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✤ 2 days simulation with DCWorms:


✤ 3 power profiles


✤ 3 workloads (Google Based)


✤ 234, 569 and 1029 tasks 
(known at beginning of 
execution)
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Conclusion

• Different algorithms that aims to minimize due date 
violations while respecting power and resource constraints. 

• Provide scheduling possibilities translated into power 
profiles with associated metrics for decision modules. 

• Integration between power production and IT load; 

• Just one segment of DataZero, which contains more 
modules that interacts with IT.
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Future Works

• Scheduling of mixed workload batch and services; 

• Phases based tasks: 

• Pre-evaluate workload/time available to choose algorithm; 

• Online scheduling + weather events (quick reaction).
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