Multi-objective negotiation of power profiles for datacenter powered with renewable energies

Léo Grange

University of Toulouse Institut de Recherche en Informatique de Toulouse (IRIT)

July 2018

Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation 000 000 Conclusion 0

Context and overview

Léo Grange (IRIT- University of Toulouse)

Context	and	overview
0000		

Context and overview of the problem

Datacenter consumption and renewable sources

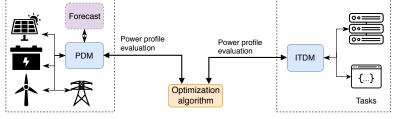
- Worldwide: 270 TWh in 2012
 - : $\,\approx\,$ Italy electricity consumption
 - High economical and environmental costs

Possible mitigations

- Improve energy efficiency, software and hardware
- Use renewable energy sources power
 - Solar, wind: intermittent and little predictability
 - > New challenges to make efficient use in datacenters

- > ANR Datazero: on-site renewable sources
- IT and electrical cooperation

Context and overview ○●○○ ○○○	Approach 0000 00	Methodology and evaluation 000 000	Conclusic o
Context and overview of the p	problem		
Electrical infrastru	icture	IT infrastructu	ire



Separated IT and electrical optimizations

- > Ability to evaluate power plan impact
- Internal objective (utility)
- **b** Black box functions $\mathbb{R}^T \to \mathbb{R}$
- Computationally expensive

Context and overview ○●○○ ○○○	Approach 0000 00	Methodology and evaluation 000 000	Conclusio O
Context and overview of the p	problem		
Electrical infrastru	icture	IT infrastructu	re

Optimization algorithm

Power profile

evaluation

Power profile

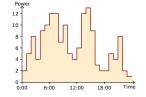
evaluation

- Ability to evaluate power plan impact
- Internal objective (utility)

Forecast

PDM

- **b** Black box functions $\mathbb{R}^T \to \mathbb{R}$
- Computationally expensive



00:

(oo:

Tasks

ITDM

Context and overview o●oo ○○○	Approach 0000 00	Methodology and 000 000	l evaluation Conclusio O
Context and overview of the proble	m		
Electrical infrastructure	Power profile evaluation	Power profile evaluation	IT infrastructure

Optimization algorithm

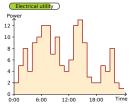
Separated IT and electrical optimizations

- Ability to evaluate power plan impact
- Internal objective (utility)

PDM

- **b** Black box functions $\mathbb{R}^T \to \mathbb{R}$
- Computationally expensive





Tasks

ITDM

Context and overview 0●00 000	Approach 0000 00	Methodology and evaluation 000 000	Conclusic o
Context and overview of the p	roblem		
Electrical infrastruc		IT infrastructure	

Optimization algorithm

Power profile

evaluation

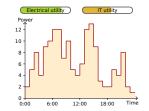
Power profile

evaluation

- Ability to evaluate power plan impact
- Internal objective (utility)

PDM

- **b** Black box functions $\mathbb{R}^T \to \mathbb{R}$
- Computationally expensive



Tasks

(oo=

ITDM

Context	and	overview
0000		

Conclusion 0

Context and overview of the problem

Multi-objective aspect

- Each DM has one or more objectives to satisfy
- Objectives may differ between DM
 - QoS related for ITDM, environmental impact for PDM

Managing different objectives

- Avoiding the problem: find common objective (money?)
- Scalarization (e.g. weighted sum)
- Finding a set of good solutions (set of possible trade-offs)

Context	and	overview
0000		

Conclusion 0

Context and overview of the problem

Multi-objective aspect

- Each DM has one or more objectives to satisfy
- Objectives may differ between DM
 - QoS related for ITDM, environmental impact for PDM

Managing different objectives

- Avoiding the problem: find common objective (money?)
- Scalarization (e.g. weighted sum)
- Finding a set of good solutions (set of possible trade-offs)

Context	and	overview
0000		

Conclusion 0

Context and overview of the problem

Multi-objective aspect

- Each DM has one or more objectives to satisfy
- Objectives may differ between DM
 - QoS related for ITDM, environmental impact for PDM

Managing different objectives

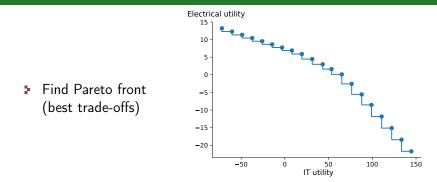
- Avoiding the problem: find common objective (money?)
- Scalarization (e.g. weighted sum)
- Finding a set of good solutions (set of possible trade-offs)

Context and	d overview
0000	

Approacl 0000 00 Methodology and evaluation

Context and overview of the problem

Multi-objective optimization and heuristics



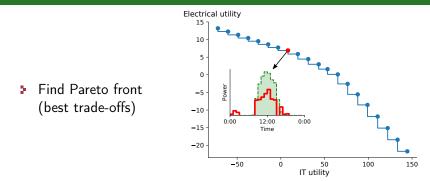
- Well studied area, various approaches
- Focused on SPEA2 (genetic algorithm)

Context a	nd overview
0000	

Approact 0000 00 Methodology and evaluation

Context and overview of the problem

Multi-objective optimization and heuristics



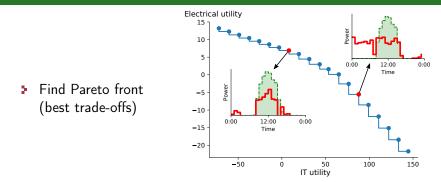
- Well studied area, various approaches
- Focused on SPEA2 (genetic algorithm)

Context and	d overview
0000	

Approact 0000 00 Methodology and evaluation

Context and overview of the problem

Multi-objective optimization and heuristics



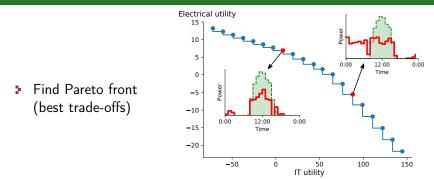
- Well studied area, various approaches
- Focused on SPEA2 (genetic algorithm)

Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation

Context and overview of the problem

Multi-objective optimization and heuristics



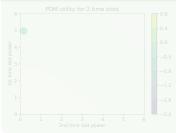
- Well studied area, various approaches
- Focused on SPEA2 (genetic algorithm)

Conclusion 0

Approximation of power profile utility

- Evaluation of power profile is costly
 - Genetic algorithms require many evaluations
- Workaround: Utility approximation
 - Fast approximation based on known solutions
 - Evaluate only potentially good ones

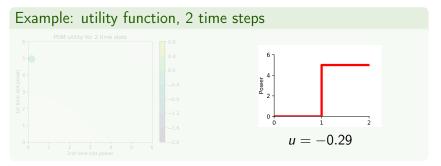
Example: utility function, 2 time steps



Conclusion 0

Utility approximation

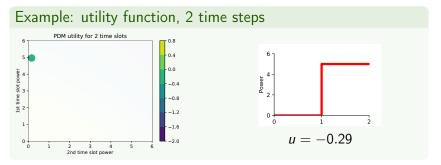
- Evaluation of power profile is costly
 - Genetic algorithms require many evaluations
- Workaround: Utility approximation
 - Fast approximation based on known solutions
 - Evaluate only potentially good ones



Conclusion 0

Utility approximation

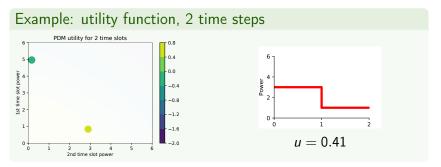
- Evaluation of power profile is costly
 - Genetic algorithms require many evaluations
- Workaround: Utility approximation
 - Fast approximation based on known solutions
 - Evaluate only potentially good ones



Conclusion 0

Utility approximation

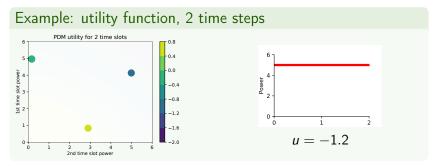
- Evaluation of power profile is costly
 - Genetic algorithms require many evaluations
- Workaround: Utility approximation
 - Fast approximation based on known solutions
 - Evaluate only potentially good ones



Conclusion 0

Utility approximation

- Evaluation of power profile is costly
 - Genetic algorithms require many evaluations
- Workaround: Utility approximation
 - Fast approximation based on known solutions
 - Evaluate only potentially good ones



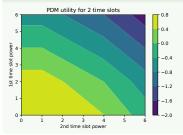
Conclusion 0

Utility approximation

Approximation of power profile utility

- Evaluation of power profile is costly
 - Genetic algorithms require many evaluations
- Workaround: Utility approximation
 - Fast approximation based on known solutions
 - Evaluate only potentially good ones

Example: utility function, 2 time steps



Only 2 dimensions, easy regression. What about 80 dimensions?

Context	and	overview
0000		
000		

Approach 0000 00 Methodology and evaluation

Conclusion 0

Constraints for approximation methods

Goal: find a function $\mathbb{R}^T \to \mathbb{R}$ (profile to utility).

- Online learning with few training data
 - Utility function changes between negotiations

Curse of dimensionality...

- $\blacksquare \mathbb{R}^{T} \text{ is huge } (T > 100 \text{ in many scenarios})$
- Most regression method become impractical

Context	and	overview
0000		
000		

Approach 0000 00 Methodology and evaluation

Conclusion 0

Constraints for approximation methods

Goal: find a function $\mathbb{R}^T \to \mathbb{R}$ (profile to utility).

- Online learning with few training data
 - Utility function changes between negotiations

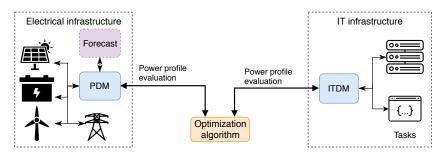
Curse of dimensionality...

- $\mathbf{R}^{T} \text{ is huge } (T > 100 \text{ in many scenarios})$
- Most regression method become impractical

Context	and	overview
0000		
000		

Approach 0000 Methodology and evaluation

Approximation in the overall infrastructure



Improving negotiation for utility approximation

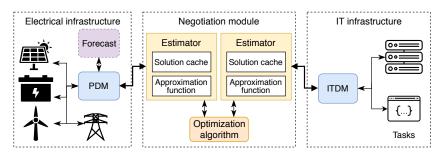
- Estimator between negotiation algorithm and DM
- Acts like a smart cache

Context	and	overview
0000		
000		

pproach

Methodology and evaluation

Approximation in the overall infrastructure



- Improving negotiation for utility approximation
 - Estimator between negotiation algorithm and DM
 - Acts like a smart cache

Conclusion 0

Approach

Léo Grange (IRIT- University of Toulouse)

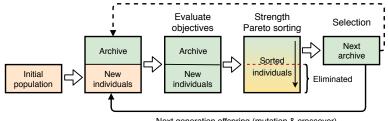
Context	and	overview
0000		

Approach

Methodology and evaluation

Adapting MOEA for objective approximation

Integration of objective approximation



Next generation offspring (mutation & crossover)

- Asynchronous approximation integration
 - Evaluation may be replaced by approximation
 - Mix of evaluated and approximated individuals

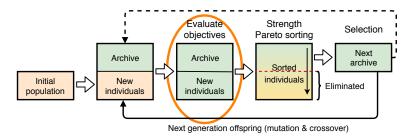
Context	and	overview
0000		

Approach

Methodology and evaluation 000 000

Adapting MOEA for objective approximation

Integration of objective approximation

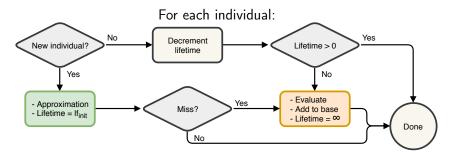


- Asynchronous approximation integration
 - Evaluation may be replaced by approximation
 - Mix of evaluated and approximated individuals

Adapting MOEA for objective approximation

Integration of objective approximation (2)

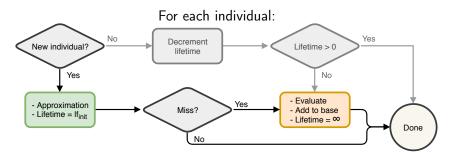
- Lifetime associated to individuals
- Evaluated if conserved until lifetime is zero (archive)
 - Added to knowledge base



Adapting MOEA for objective approximation

Integration of objective approximation (2)

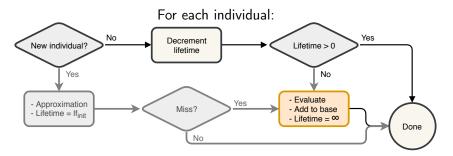
- Lifetime associated to individuals
- Evaluated if conserved until lifetime is zero (archive)
 - Added to knowledge base



Adapting MOEA for objective approximation

Integration of objective approximation (2)

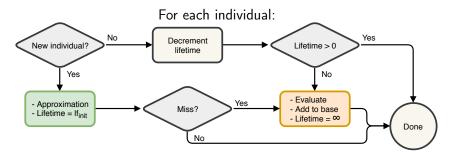
- Lifetime associated to individuals
- Evaluated if conserved until lifetime is zero (archive)
 - Added to knowledge base



Adapting MOEA for objective approximation

Integration of objective approximation (2)

- Lifetime associated to individuals
- Evaluated if conserved until lifetime is zero (archive)
 - Added to knowledge base



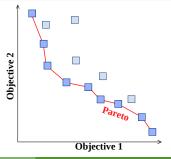
Context	and	overview
0000 000		

Conclusion 0

Adapting MOEA for objective approximation

Limitations of SPEA2

- Limited archive of individuals
- Solutions Bad (optimistic) approximations \rightarrow good solutions lost
- Still approximated solutions after ending condition reached



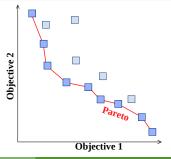
Context	and	overview
0000 000		

Conclusion 0

Adapting MOEA for objective approximation

Limitations of SPEA2

- Limited archive of individuals
- Solutions Bad (optimistic) approximations \rightarrow good solutions lost
- Still approximated solutions after ending condition reached



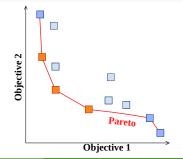
Context	and	overview
0000		

Conclusion 0

Adapting MOEA for objective approximation

Limitations of SPEA2

- Limited archive of individuals
- Bad (optimistic) approximations → good solutions lost
- Still approximated solutions after ending condition reached



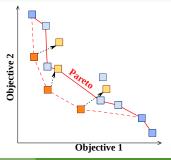
Context	and	overview
0000 000		

Conclusion 0

Adapting MOEA for objective approximation

Limitations of SPEA2

- Limited archive of individuals
- Bad (optimistic) approximations \rightarrow good solutions lost
- Still approximated solutions after ending condition reached



Context	and	overview
0000		

Conclusion 0

Adapting MOEA for objective approximation

Uncertain-SPEA2 (USPEA2)

Modify SPEA2 to manage uncertain solutions (approximations)

- Add an archive of evaluated solutions (certain archive)
- Avoiding duplication of individuals

Stopping USPEA2 at any time results in a set of valid solutions.

Context and overview 0000 000	Approach ○○○○ ●○	Methodology and evaluation 000 000	Conc O
Multi-resolution Haar approxi	mation		

Overview

Haar wavelet transform

- Fast to compute
- Works well with discrete series
- : pprox successive mean between time steps
- Conserve euclidean distances

Context and overview	Approach	Methodo
0000	0000	0 00
	•0	

Multi-resolution Haar approximation

Overview

Haar wavelet transform

- Fast to compute
- Works well with discrete series
- : pprox successive mean between time steps
- Conserve euclidean distances

Context and overview	Approach
0000	0000
	•0

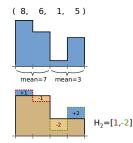
Conclusion 0

Multi-resolution Haar approximation

Overview

Haar wavelet transform

- Fast to compute
- Works well with discrete series
- : pprox successive mean between time steps
- Conserve euclidean distances



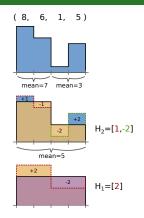
Context	and	overview	
0000			

Multi-resolution Haar approximation

Overview

Haar wavelet transform

- Fast to compute
- Works well with discrete series
- : pprox successive mean between time steps
- Conserve euclidean distances



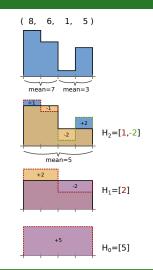
Context	and	overview
<u>0000</u>		

Multi-resolution Haar approximation

Overview

Haar wavelet transform

- Fast to compute
- Works well with discrete series
- : pprox successive mean between time steps
- Conserve euclidean distances



Context	and	overview
0000		

Approach ○○○○ Methodology and evaluation

Conclusion 0

Multi-resolution Haar approximation

Multi-resolution Haar approximation

- Distance between partial Haar representations from known solutions
 - Lowest frequencies features first
- Select known solutions closer than a threshold
- If enough solutions: repeat with higher frequency
- Result: weighted average of close utilities
- Complexity: O(n log(n)) (n solutions in base)

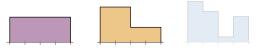
Context	and	overview
0000		

Approach ○○○○ Methodology and evaluation

Conclusion 0

Multi-resolution Haar approximation

Multi-resolution Haar approximation



- Distance between partial Haar representations from known solutions
 - Lowest frequencies features first
- Select known solutions closer than a threshold
- If enough solutions: repeat with higher frequency
- Result: weighted average of close utilities
- Complexity: O(n log(n)) (n solutions in base)

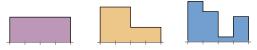
Context	and	overview
0000		

Approach ○○○○ Methodology and evaluation

Conclusion 0

Multi-resolution Haar approximation

Multi-resolution Haar approximation



- Distance between partial Haar representations from known solutions
 - Lowest frequencies features first
- Select known solutions closer than a threshold
- If enough solutions: repeat with higher frequency
- Result: weighted average of close utilities
- Complexity: O(n log(n)) (n solutions in base)

Approach 0000 00 Methodology and evaluation •••• •••• Conclusion 0

Methodology and evaluation

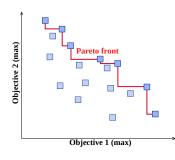
Context an	d overview
0000	

Approact

Methodology and evaluation $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion 0

Quality indicators



Hypervolume indicator

Area covered between Pareto front of solution set and any reference point.

- if solutions are better (dominate)
- \ge if solution set is more spread

Generational distance

Average distance between approximation front and best known Pareto front

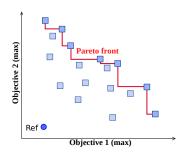
Context an	d overview
0000	

Approact

Methodology and evaluation $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion 0

Quality indicators



Hypervolume indicator

Area covered between Pareto front of solution set and any reference point.

- if solutions are better (dominate)
- \ge if solution set is more spread

Generational distance

Average distance between approximation front and best known Pareto front

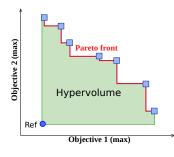
Context an	d overview
0000	

Approact

Methodology and evaluation $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion 0

Quality indicators



Hypervolume indicator

Area covered between Pareto front of solution set and any reference point.

- if solutions are better (dominate)
- \ge if solution set is more spread

Generational distance

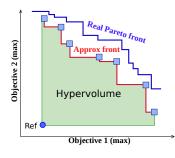
Average distance between approximation front and best known Pareto front

Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

Conclusion 0

Quality indicators



Hypervolume indicator

Area covered between Pareto front of solution set and any reference point.

- if solutions are better (dominate)
- \ge if solution set is more spread

Generational distance

Average distance between approximation front and best known Pareto front

Context	and	overview
0000		

Approach

Methodology and evaluation

Conclusion 0

Infrastructure and decision modules

Simplified models, keep optimum computable

IT decision module

- «Fluid» workload: total amount of CPU time
- > Utility: revenue
 - Reward for each unit scheduled
 - Incentive to execute unit early

Electrical decision module

- Solar panels, batteries, electrical grid in/out
- Utility: equivalent CO2 emission
 - Zero for renewable
 - Grid electricity average emission
 - Battery aging, based on manufacturing cost

Context	and	overview
0000		

Approach

Methodology and evaluation 000 Conclusion 0

Infrastructure and decision modules

Simplified models, keep optimum computable

IT decision module

- «Fluid» workload: total amount of CPU time
- Utility: revenue
 - Reward for each unit scheduled
 - Incentive to execute unit early

Electrical decision module

- Solar panels, batteries, electrical grid in/out
- Utility: equivalent CO2 emission
 - Zero for renewable
 - Grid electricity average emission
 - Battery aging, based on manufacturing cost

Context	and	overview
0000		

Evaluation

- 3 days scenarios
- Workload: 75% of maximum data center capacity
 - ExcessRenew: sunny days, initial battery 50%
 - Normal: less sunny days
 - FewRenew: almost no sun, initial battery at 25%

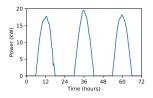


Optimal formulation
 → comparison Pareto front
(II)SPEA2 ending condition: budget of utility evaluat

Context	and	overview
0000		

Evaluation

- 3 days scenarios
- Workload: 75% of maximum data center capacity
 - ExcessRenew: sunny days, initial battery 50%
 - Normal: less sunny days
 - FewRenew: almost no sun, initial battery at 25%

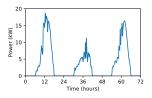


Optimal formulation → comparison Pareto front
(U)SPEA2 ending condition: budget of utility evaluations

Context	and	overview
0000		

Evaluation

- 3 days scenarios
- Workload: 75% of maximum data center capacity
 - ExcessRenew: sunny days, initial battery 50%
 - Normal: less sunny days
 - FewRenew: almost no sun, initial battery at 25%

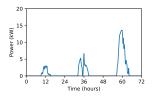


Optimal formulation → comparison Pareto front
(U)SPEA2 ending condition: budget of utility evaluations

Context	and	overview
0000		

Evaluation

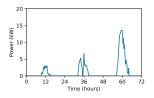
- 3 days scenarios
- Workload: 75% of maximum data center capacity
 - ExcessRenew: sunny days, initial battery 50%
 - Normal: less sunny days
 - FewRenew: almost no sun, initial battery at 25%



Optimal formulation → comparison Pareto front
(U)SPEA2 ending condition: budget of utility evaluations

Context	and	overview
0000		

- 3 days scenarios
- Workload: 75% of maximum data center capacity
 - ExcessRenew: sunny days, initial battery 50%
 - Normal: less sunny days
 - FewRenew: almost no sun, initial battery at 25%

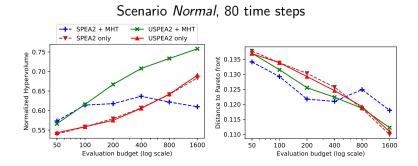


- Optimal formulation \rightarrow comparison Pareto front
- (U)SPEA2 ending condition: budget of utility evaluations

Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation ••• Conclusion 0

Budget of evaluations

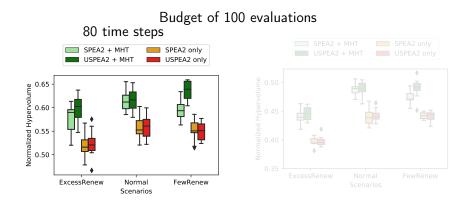


Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation

Conclusion 0

Scenarios and number of time steps

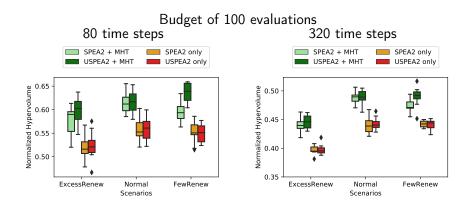


Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation

Conclusion 0

Scenarios and number of time steps

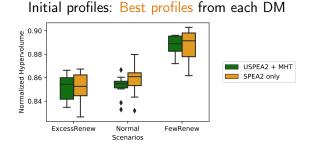


Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation

Conclusion 0

Some unexpected results



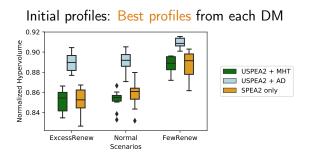
Approximation method AD: naive and usually \approx baseline

Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation

Conclusion 0

Some unexpected results



- Approximation method AD: naive and usually pprox baseline

Context	and	overview
0000		

Approach 0000 00 Methodology and evaluation

Conclusion

Conclusion

Léo Grange (IRIT- University of Toulouse)

Conclusion

- Find set of trade-offs power plans
- Approximation of power profile utility valuable
 - More objective space covered
 - Similar hypervolume for $1/3^{rd}$ to $1/5^{th}$ evaluations
 - Difficult to predict performances in advance...
- USPEA2 ensure stable results with approximation
 - Similar to SPEA2 without approximation

Future works

- Repeated planning policies: choosing a solution
- Better understanding of MOEA/approximation relationship

Conclusion

- Find set of trade-offs power plans
- Approximation of power profile utility valuable
 - More objective space covered
 - Similar hypervolume for $1/3^{rd}$ to $1/5^{th}$ evaluations
 - Difficult to predict performances in advance...
- USPEA2 ensure stable results with approximation
 - Similar to SPEA2 without approximation

Future works

- Repeated planning policies: choosing a solution
- Better understanding of MOEA/approximation relationship

Conclusion

- Find set of trade-offs power plans
- Approximation of power profile utility valuable
 - More objective space covered
 - Similar hypervolume for $1/3^{rd}$ to $1/5^{th}$ evaluations
 - Difficult to predict performances in advance...
- USPEA2 ensure stable results with approximation
 - Similar to SPEA2 without approximation

Future works

- Repeated planning policies: choosing a solution
- Better understanding of MOEA/approximation relationship

Approach 0000 00 Methodology and evaluation

Questions?

Léo Grange (IRIT- University of Toulouse)

GreenDays@Toulouse 2018

21 / 21