Energy Simulation with SimGrid

Millian Poquet millian.poquet@inria.fr

Slides from SimGrid tutorials and F. C. Heinrich (Cluster'17)

Chicken-and-egg Situation

- Typically: MJ to save some %
- Classical issue in optimization...

Can we do more reasonable experiments?

Simulation at rescue

The fastest path from idea to data.

Comfortable

- Thousands of runs within the week on your laptop
- Preliminary results from partial implementations
- Focus on ideas, don't fiddle with technical subtleties (yet)

Challenges

- Validity: Realistic results (controlled experimental bias)
- Scalability: Simulate big enough problems fast enough
- Applicability: Should simulate what is important to users

Outline

- 1 Introduction
- 2 Overview and Models
- 3 Validation (CLUSTER'17)
- 4 Conclusion

SimGrid at a glance

- 18-year-old open-source project
- Collaboration: France (Inria, CNRS, Grenoble, Lyon, Rennes...), US (UCSD, Hawaii), UK, Austria (Vienna)...
- Papers: 500 cite, 300 use, 60 extend
- LOC: ≈150k C/C++
- Initially focused on Grids. Argue that same techniques can be used for P2P, HPC, Cloud...
- Goal: Usable tool with predictive capability
- Model Checking capabilities

Software Architecture

Essentially a library. Architectured as an OS.

- 1 system process (kernel + user code)
- mutual exclusion on actors' execution
- maestro dictates who run
- user code increases simulation time via syscalls

Internals Organization

User-visible components

- S4U (MSG): general purpose
- SimDag: DAGs of ptasks
- SMPI: online/offline MPI

Internally: Strict layers

- S4U: User-friendly sugar
- SIMIX: Processes, synchro
- SURF: Resources usage
- Models: Action completion computation

Network Models

Several are available:

- Fast flow-based, towards realism and speed (by default)
 Contention, slow start, TCP congestion, cross-traffic effects.
- Constant time: A bit faster, no hope for realism
- Coordinate-based: Easier to instantiate P2P scenarios
- Packet-level: NS3 bindings

DVFS and Energy Model

DVFS

- Modern CPUs can reduce computation speed to save energy
- Power states: Levels of performance. *Governors* pick them.
- SimGrid: Manually switch pstates, which change the flop rate

Energy Model

- For one pstate, consumption = linear function of CPU use
- Classically accepted model in the literature, rarely challenged

Basic Energy Model Instantiation

- watt_off: the host is off ⇒ 10 Watts
- watt_per_state power consumption interval [min:max]
 - Idling host ⇒ 100 Watts
 - Fully loaded host (100.0Mf=100 MFlops/s) ⇒ 200 Watts
 - Linear model in between: CPU loaded at 50% ⇒ 150 Watts

DVFS Energy Model Instantiation

- power: 3 pstates {0,1,2}: 100, 50 and 20 Mflops/s
- pstate: Initial pstate (here, pstate=0, ie. 100 Mflops/s)
- watt_per_state two power values [min:max] as before
 - Here, CPU loaded at 50% in pstate 2 consumes 120 Watts.
 - Remember, pstates are numbered from 0! pstate 2 is 20 Mflops/s peak

ON/OFF Energy Model

 $ON \leftrightarrow OFF$ takes time (seconds) and energy (Joules).

Many ways to do it

- Not easy for the noise: everybody wants something specific
- SimGrid provides basic mechanisms, you have to help yourself
- Switching on/off is instantaneous

CLUSTER'17 paper

Heinrich, Cornebize, Degomme, Legrand, Carpen-Amarie, Hunold, Orgerie, Quinson: *Predicting the Energy-Consumption of MPI Applications at Scale Using Only a Single Node.*

Main goal: Validate performance and energy predictions

Quick overview:

- Obtain a platform model
 - How does MPI perform on **this** platform?
- 2 Run the application on one node, all cores
 - Processes interferences (memory contention, L1-L3 caches)
 - Measure the energy consumption
- 3 Run the application on one node, one core
 - Measure the energy consumption
- Feed measurements / platform model into simulator

MPI Simulation in SimGrid

Introduction

Contribution 1: Problem

Introduction

Energy Model should be application-dependent.

Taurus cluster - 13 nodes @ 2300 MHz

25 50 75 100 0 25 50 75 100 0 25 50 75 100

Contribution 1: Solution

Instantiate the energy model presented before!

Contribution 1: Outcome

Contribution 2: Problem

- Previous benchmark (NAS-EP) uses almost no communication. What about more complicated applications?
- NAS-LU uses collective communciations and is memory bound
- Applications often contend e.g., on L1 or L3 caches

Contribution 2: Solution

Introduction

We unbias by computing speedup factors through trace alignment.

	•			•		Ū		
Calibration ^{RL} trace (MPI)				Calibration ^{SMPI} trace (uncorrected SMPI)				
rank	start (s)	duration (mus)	state	start (s)	duration (mus)	state	Filename	Line
1	1.643388	1293	mpi_allreduce	0.550426	1130	mpi_allreduce	l2norm.f	57
1	1.644681	62	Computing	0.551556	18	Computing		
1	1.644743	82	mpi_barrier	0.551574	47	mpi_barrier	ssor.f	74
1	1.644825	6454	Computing	0.551621	5303	Computing		
1	1.651279	549	mpi_recv	0.556924	617	mpi_recv	exchange_1.f	30
1	1.651828	474	Computing	0.557541	608	Computing	Region 3	
1	1.652302	53	mpi_send	0.558149	4	mpi send	exchange 1.f	113
1	1.652355	2	Computing	0.558153	12	Computing	Region 17	
1	1.652357	15	mpi_send	0.558165	4	mpi send	exchange 1.f	130
1	1.652372	359	Computing	0.558169	652	Computing	Region 18	
1	1.652731	11	mpi recv	0.558821	8	mpi recv	exchange 1.f	30
1	1.652742	462	Computing	0.558829	587	Computing	Region 3	
1	1.653204	15	mpi_send	0.559416	5	mpi_send	exchange_1.f	113
1	1.653219	1	Computing	0.559421	12	Computing	Region 17	
1	1.653220	9	mpi_send	0.559433	5	mpi send	exchange 1.f	130
1	1.653229	376	Computing	0.559438	699	Computing	Region 18	
1	1.653605	22	mpi_recv	0.560137	9	mpi recv	exchange 1.f	30
1	1.653627	465	Computing	0.560146	597	Computing	Region 3	
1	1.654092	16	mpi send	0.560743	4	mpi send	exchange 1.f	113
1	1.654108	1	Computing	0.560747	14	Computing	Region 18	

Merging traces

Region-based speedup/slowdown factors

"bcast_inputs.f:37:exchange_3.f:42".0.1655 Region 1 "exchange 1.f:30:exchange 1.f:48",14.6704 Region 2 "exchange 1.f:30:exchange 1.f:113".1.2967 "exchange 1.f:30:exchange 1.f:130",1.2994 Region 4 "exchange 1.f:113:exchange 1.f:130".11.7101 Region 17 "exchange 1.f:130:exchange 1.f:30",1.9696 Region 18 "exchange 3.f:288:exchange 1.f:30".0.8933 Region 43

Contribution 2: Outcome

Contribution 3: Problem

HPL is more complicated than this. Two main issues:

Contribution 3: Problem (2/2)

- Makes heavy use of MPI_Iprobe in order to run computations while waiting for data.
 - But Iprobes **do** consume significant amounts of energy!
 - We hence cannot ignore Iprobes!

Contribution 3: Solution

Calibrate loopback usage by sending local messages

Iprobe issue is simple: Scale CPU usage while iprobeing via parameter -cfg=smpi/iprobe-cpu-usage (here: 0.61)

Contribution 3: Outcome

Introduction

Validation Recap

Take-aways

SimGrid can be helpful to your research

- Versatile: Several communities (Scheduling, Grids, HPC, P2P, Clouds)
- Accurate: Model limits known thanks to validation studies
- Sound: Easy to use, extensible, fast to execute, scalable, well tested
- Open: LGPL; User-community much larger than contributors group
- Around since 18 years, ready for at least 18 more years

- **Discover**: http://simgrid.gforge.inria.fr/
- Learn: tutorials, user manual and examples
- Join: mailing list, #simgrid on irc.debian.org