
Session awareness issues for next generation cluster based network load 
balancing frameworks 

 
 

Narjess Ayari, Denis Barbaron 
France Telecom R&D – Lannion, France 
{narjess.ayari,denis.barbaron}@orange-

ftgroup.com 

Laurent Lefèvre, Pascale Primet 
INRIA / LIP (UMR CNRS, ENS, INRIA, UCB), 

France 
{laurent.lefèvre,pascale.primet}@ens-lyon.fr

  
 

Abstract 
 

While a lot of researches focused on how to efficiently 
spread the offered network load on the available cluster 
resources, less interest has been granted to the impact of 
the used mechanisms on the reliable execution of the 
upper layer services. On the other hand, emerging NGN 
services as well as some of the already familiar services 
involve multiple flows during the lifespan of a single end-
to-end session, hence, raising the challenge of session 
awareness while processing the incoming network traffic. 

In this paper, we grasp the need for fine grained 
session awareness to efficiently allocate the cluster 
resources to the offered network traffic. The analysis of 
load balancing scenarios of some representative IP 
services provides us with solid reasons to use deep packet 
inspection to achieve fine grained network traffic load 
distribution, and to meet NAT and firewall traversal 
constraints as well. 
 
 
1. Introduction 
 

IP Service scalability is a key issue that has been 
addressed through scale-up and through scale-out 
techniques. While the scaling-up approach meets the 
increasing load constraint in the short run, it does, 
however, meet neither the transparency nor the availability 
and the scalability requirements for the long run. In fact, 
upgrading a server with more processing power may 
require service interruption while it doesn't prevent 
against the need for more processing resources in the long 
run. Thus, this approach has been rapidly replaced by 
cluster based architectures. 
A cluster consists of a set of networked off-the-shelf 
servers offering a single system image while providing 
additional processing capabilities. Cluster based 
architectures take advantage of resource redundancy to 
meet both scalability and high availability requirements. 
First, efficient load balancing algorithms are considered to 
achieve an improved throughput and end-to-end delay 
under regular load. Second, fault recovery models are 

invested to provide highly available execution 
environments, which enable to recover from the failure of 
a legitimate cluster resource on an available replica. 

Emerging NGN services as well as some of the already 
existing services involve multiple flows during the 
lifespan of a single end-to-end session. In this work, we 
grasp the need for session awareness to efficiently allocate 
the cluster resources to the offered network traffic and to 
provide a reliable execution of the handled IP services. 

The remainder of this article is organized as the 
following. In section 2, we provide an overview of the 
network load balancing mechanisms. We cover both of the 
flow level and application level routing mechanisms. In 
section 3, we analyze a set of load balancing scenarios for 
some representative IP services, including bulk file 
transfer using FTP, and emerging NGN services such as 
multimedia streaming using RTSP/RTP/RTCP, and Voice 
over IP using SIP. In section 4, we deal with the NAT and 
firewall traversal issues. Finally, we conclude 
summarizing the requirements of the next generation 
cluster based load balancing frameworks. 
 
2. Overview of the network traffic load 
balancing 
 

Different approaches have been proposed to allocate 
the available cluster resources to the offered network 
traffic. These approaches can be divided into (i) client 
based, (ii) server based, and (iii) dispatcher based 
approaches. This work focuses on the dispatcher based 
mechanisms, where a central load balancing engine 
operating at the entry point to the cluster allocates its 
available resources to the offered network traffic. 

Network traffic load balancing engines can be 
classified according to the TCP/IP layer at which they are 
operating to route the offered network traffic to an 
available server within the cluster. On the other hand, 
network traffic load dispatchers can be designed as 
stateful or as stateless engines. 

In the following we'll compare stateful and stateless 
designs and we'll cover both of the transport level and the 
application level load balancing frameworks. 

1801-4244-1031-2/07/$25.00©2007 IEEE



 

2.1. Statefull vs. stateless load balancing engines 
 

A stateless load balancing engine forwards each 
datagram regardless to its predecessors. Hence, it doesn't 
need to maintain any flow, session or server state in its 
memory. Instead, flow or session integrity is achieved by 
using a hash function which assigns all the datagrams 
pertaining to the same flow or session, to the same 
processing server in the cluster. For this reason, the choice 
of the hash function is crucial to achieve a minimal 
latency while avoiding collisions. 
Since a stateless design is unaware of the cluster servers 
states, it doesn't prevent neither against datagram loss in 
case of a node failure, nor against flow or session replay 
in case of a node addition. Moreover, it fails in achieving 
an optimal system throughput under normal load, as it is 
unaware of the resource requirements of the incoming IP 
sessions and has no means to achieve fairness in 
distributing the offered network traffic among the 
available cluster resources. 

A stateful load balancing engine provides however the 
framework to fulfil efficient and session aware 
distribution of the offered network load on the available 
cluster resources. This can be achieved by maintaining an 
in-memory mapping between the incoming flows and the 
available servers within the cluster.  

  
2.2. Network traffic load balancing 
 

Network traffic load balancing frameworks fall into 
one-way and into two-way architectures. With two-way 
architectures, the full duplex network traffic flowing 
between the clients and the cluster servers crosses the 
entry point to the cluster. This means that the resources of 
the load balancing engine, as well as the cluster network 
bandwidth, will be kept busy with the processing of the 
outgoing traffic, even though this traffic does not 
necessarily need to be involved in the load balancing 
procedure. 
Since the outgoing traffic is typically more important than 
the incoming traffic, two-way architecture based clusters 
suffer a limited scalability and support less simultaneous 
sessions compared to the one-way based architectures. 
Hence, we believe that two-way architectures are 
inappropriate for the distribution of IP sessions involving 
heavy size outgoing traffic, such as multimedia sessions. 
On the other hand, one-way architectures provide the 
framework for a better usage of the processing 
capabilities inside, as well as at the entry point to the 
cluster (CPU, memory, etc.). In fact, they are designed 
such that the outgoing network traffic is directly sent 
from the cluster nodes to the clients, bypassing the cluster 
head. Thus, the cluster throughput, as well as its scaling 

factor, are no longer limited by the processing capacity of 
the entry point to the cluster. 
 
2.3. The transport level network load balancing 
mechanisms 
 

Transport level network load balancing mechanisms 
aim to provide flow level integrity while distributing the 
offered network traffic on the cluster resources. The basic 
idea is to prevent datagram losses, and consequent end-to-
end increasing delay, by assigning all the datagrams 
pertaining to the same flow to the same processing server 
inside the cluster. Hence, an incoming packet is routed to 
a backend server in three steps. First, the packet is 
captured. Then, its flow is looked up and its state is 
created or updated. Finally, the packet is forwarded to the 
right processing server inside the cluster. 

Transport level network load balancing mechanisms 
can follow the one-way approach or the two-way 
approach. The two-way approach includes the packet 
double rewriting mechanism. The one-way approach 
includes the packet forwarding mechanism and the packet 
tunnelling mechanism. 
 
2.3.1. The packet double rewriting mechanism. The 
packet double rewriting mechanism [1] is a NAT-friendly 
scheme, according to which the cluster is reached through 
the public virtual IP address of its head node. Every 
incoming packet is rewritten such that its source flow 
identifiers correspond to the cluster head node identifiers, 
and such that its destination flow identifiers correspond 
to the processing node identifiers. The outgoing packets 
are also rewritten accordingly. 

While being simple, this approach assumes that the 
cluster head and the cluster processing nodes belong to the 
same private network. Moreover, due to the double 
processing overhead, this mechanism allows only a 
bounded maximum number of nodes to be deployed inside 
the cluster. Hence, it suffers from performance limitations 
in terms of non-optimal throughput and reduced 
scalability. 
 
2.3.2. The packet forwarding mechanism. The basic 
idea here [1] is to build the cluster such that its head and 
its processing nodes share the same public virtual IP 
address. Each incoming packet is then forwarded to the 
right processing server inside the cluster by performing a 
link layer header rewriting. Hence, the link layer 
destination address of each incoming packet is rewritten 
to the corresponding processing server link layer address. 
Since the head and the cluster nodes share the same 
public IP address, there is no need to modify the TCP/IP 
headers, and the outgoing traffic will be directly sent to 
the clients. 

181



 

This technique applies to nodes clustered within a LAN 
and requires disabling the ARP modules at the processing 
nodes. However, it assumes that the dispatcher statically 
maintains in its ARP table the appropriate link layer 
address of each cluster node. 
 
2.3.3. The packet tunnelling mechanism. This approach 
[1,2] proposes to encapsulate each offered packet to the 
cluster in an IP packet which destination address 
corresponds to the IP address of the chosen processing 
server. At the receiver side, the processing server extracts 
the original packet and learns that its earlier destination 
IP address corresponds to its tunnel network level 
address. Hence, it processes the request and sends back 
the response directly to the client. 

While being more scalable, IP tunnelling incurs more 
processing overhead at both of the dispatcher and the 
processing server sides and assumes that both sides are IP 
tunnelling aware. 
 
2.4. The application level network load balancing 
mechanisms 

 
Application level network load balancing techniques 

aim to forward the datagrams belonging to the same 
application level session to the same processing node. The 
basic idea is to identify all the data pertaining to the same 
client session by inspecting the application level data of 
the traffic flowing between the clients and the servers. 
This is essential to enable the association of the data 
pertaining to a given session to the same processing node 
inside the cluster. Hence, the offered network traffic is 
routed in almost four steps. First, in case the incoming 
session involves a connection oriented signalling flow, a 
connection between the client and the load dispatcher is 
first established. Then, the data is buffered and its 
application level content is inspected. Third, the session 
states are created or updated. Finally, an appropriate 
processing node is chosen, and the data is sent to that 
node over a connection established between the dispatcher 
and that node. 

Content inspection is achieved by parsing the 
application layer data using a specific application protocol 
parser. Typical parsers are implemented in the user-space, 
hence, session awareness through deep packet inspection 
(DPI) incurs an additional latency compared to the 
transport level routing mechanisms. This overhead is due 
to the several user-space to kernel-space context 
switching, consequent to calling the several parsing 
functions, as well as to the data copies needed between the 
client socket, the dispatcher socket and the processing 
node socket. 

When the involved flows are TCP based, TCP splicing 
and TCP handoff mechanisms have been provided to 
reduce this overhead. 

Application level routing techniques can follow the 
one-way approach or the two-way approach. The two-way 
approach includes the TCP Gateway and the TCP splicing 
variants. The one-way approach includes the TCP handoff 
variants. 
 
2.4.1. TCP Gateway. The TCP gateway approach is the 
standard mechanism, where the entry point to the cluster 
operates as a proxy. It establishes connexions with the 
clients on the one hand, and with the processing nodes on 
the other hand. Then, it relays the data sent by the clients 
on the appropriate server side sockets. 
 
2.4.2. TCP splicing variants. The TCP splicing approach 
[3] is a NAT-friendly mechanism which reduces the 
number of user-space to kernel-space context switches by 
splicing the client side and the server side connexions 
[Figure 1]. 

 
Figure 1. TCP splicing based routing 

 
Hence, once the data flowing on the client side 
connection is inspected (1,2), the appropriate server is 
chosen and the server side connection is established (3). 
Finally, a splicing kernel module is involved in rewriting 
the IP and the TCP headers of both of the incoming and 
the outgoing traffic (4,6). The header fields concerned by 
the splicing operation include the source and the 
destination addresses and port numbers, the TCP 
sequence and acknowledgment numbers, as well as the 
corresponding checksum values. 

In order to reduce the end-to-end delay, fully pre-
splicing [4] proposes to pre-establish a pool of TCP 
connexions between the dispatcher and the processing 
nodes and to keep these server side connections alive for 
further splicing processes. 

Connection binding [5] improves fully pre-splicing by 
un-splicing the server side connections and by keeping 
them alive after the corresponding sessions terminate. The 
dispatcher splices any new incoming client side 
connection with the fastest opened server side connexion, 
which it identifies as the connection holding the smallest 
RTT value in its TCP control block structure. 

182



 

Other alternatives have been proposed to reduce the 
splicing overhead and to improve the cluster throughput as 
well. SpliceNP [6,7] is an implementation of the TCP 
splicing mechanism on an IXP2400 network processor 
Intel chip. The experiments, conducted on a Xeon 3.0 Ghz 
Dual processor using a 1Gbps Intel Pro 1000 (88544GC) 
NIC, show that the process latency is reduced by up to 
83%, and that the dispatcher throughput is improved by 
up to 5.7 times [Figure 2] [6]. 

 
Figure 2. Linux versus NP based splicing latency for 

various request sizes 
 
2.4.3. TCP handoff variants. The main goal of the TCP 
handoff protocol [8] is to reduce the resource usage at the 
entry point to the cluster and to provide the processing 
servers with the capability to send back the outgoing 
traffic directly to the clients. The basic idea is to handoff 
each client side connexion to the chosen processing 
server. The handoff mechanism requires that the TCP/IP 
stack at the dispatcher and at each processing node is 
handoff aware. In a load balancing scenario, the TCP 
handoff protocol operates as the following [Figure 3]. 

 
Figure 3. TCP Handoff based load balancing 

 
Once the client side connexion is established, its state is 
captured and a handoff request is sent to the receiver side, 
where a faked three-way handshake is performed to 
reconstruct the socket soft structure inside the kernel of 
the processing node. If the socket handoff procedure 
succeeds, the receiver side builds an acknowledgment 
message and sends it back to the dispatcher. This latter 
enters then to the forwarding mode so as to be able to 
route the packets belonging to each forwarded flow to the 
appropriate processing node. 

For a reduced latency, the handoff messages are 
exchanged over a UDP channel, assuming the reliability 
of the underlying infrastructure. 

To achieve a better performance, the handoff 
operations can be offloaded on specialized network 
processor chips. 

 
2.4.5. Application aware routing using MPLS. Multi-
Protocol Label Switching is a protocol designed for 
connection oriented routing. Packets having the same 
label share the same Forwarding Equivalent Class (FEC), 
and are routed the same way in the network. The MPLS 
labels are injected in the link layer and in the network 
layer headers. In a load balancing scenario, it is assumed 
that all the intermediate routers, as well as all the cluster 
nodes, support the MPLS protocol. The idea [9], hence, is 
to provide all the datagrams pertaining to the same 
session with the same label. 
 
3. Session aware network traffic load 
distribution 
 
3.1. Sessions versus flows 
 

An application typically manages several client 
sessions. A session is an association between two 
communicating end points, and is related to an activity 
undertaken by a user, such as web browsing, e-mail 
consulting, networked game playing, file transfer, and so 
on. 
A given session can span over a single, or over multiple 
connection-oriented and/or connectionless flows [Figure 
4]. 

 
Figure 4. Flows versus Sessions 

 
NGN services as well as some of the already familiar 

services are multiple-flow based. They first involve an 
opening flow to establish the end-to-end session. This 
signalling flow is then used to negotiate the identifiers and 
the parameters of the subsequent flows pertaining to that 
same session. 

The association of the flows pertaining to the same IP 
session to different processing servers inside the cluster 
leads to a possible interruption of the session or to its QoS 
degradation. On the other hand, the state of the art 

183



 

network load balancing frameworks, such as LVS [10] 
and IBM Network Dispatcher [11], are exclusively flow-
aware. In order to ensure the reliable execution of 
services, these frameworks need to provide application 
level integrity. LVS provides a client based persistency 
model, by which all the data issued from a given client is 
marked at the IP level, and assigned to the same 
processing node inside the cluster. 
While providing session integrity, this approach fails to 
achieve an optimal throughput because it doesn't 
efficiently spread the offered network load among the 
available cluster resources. Hence, this solution doesn't 
truly meet the session awareness requirements, especially, 
when the clients generate unequal traffic volumes. In the 
following, we'll analyse some load balancing scenarios of 
representative IP services. We'll argue for the use of deep 
packet inspection (DPI) techniques to provide a fine 
grained distribution of the offered sessions on the 
available cluster resources. 
 
3.2. Distributing the offered FTP sessions in a 
cluster of servers 
 

FTP [12] is a typical example of a multiple flow based 
service. An FTP signalling flow is first established 
between a client and a server. Then one or more distinct 
flows are established to carry the bulk data from the server 
to the client. 
In a basic flow aware load balancing scenario, the control 
and the data flows pertaining to the same incoming 
passive FTP session are assigned independently to the 
available processing servers. Client persistency based 
schemes can help solving this issue, but still provide no 
means to fairly allocate the cluster resources to the 
incoming sessions. 
Fine grained distribution of the offered FTP sessions can 
be achieved by identifying every FTP session through 
inspecting the PASV responses flowing from the FTP 
servers to the FTP clients on the signalling flow [Figure 
5]. 

Figure 5. Passive FTP sessions load balancing scenario 
 

3.3. Distributing multimedia streaming sessions 
in a cluster of servers 
 

Video streaming is a typical example of a multiple and 
heterogeneous flow based service. The delivery of 
continuous media involves three protocols. First the RTSP 
protocol [13] is used to establish a connexion oriented 
control flow between a client and the streaming server. 
Then, the video streaming server wraps the requested 
media into RTP [14] datagrams and sends them to the 
client over a UDP channel. RTCP datagrams [15] provide 
flow control like functions and are periodically exchanged 
between the transmitter and the receiver of the media. The 
following illustration shows how RTSP, RTP and RTCP 
are typically involved in a unicast streaming session 
[Figure 6]. 

 
Figure 6. A streaming media session using RTSP, RTP 

and RTCP 
 
Unless a persistency scheme is used, a basic flow aware 
load balancing scenario distributes the RTCP control 
packets independently from their corresponding RTSP 
signalling flow, leading to the QoS degradation of the 
rendered service. Hence, fine grained load balancing 
needs to identify the RTCP and the RTSP flows 
pertaining to the same streaming session. To achieve this 

184



 

goal, there is a need to inspect the content of the SETUP 
responses flowing from the streaming server to the clients 
on each RTSP signalling flow at the entry point to the 
cluster. 
 
3.4. Distributing SIP based VoIP sessions in a 
cluster of servers 
 

The Session Initiation Protocol [16] has been chosen 
by 3GPP as the signalling protocol for the IP Multimedia 
Subsystem architecture. Scalability is an issue of a great 
importance for operators providing Voice over IP services 
using SIP, because SIP proxies are expected to handle 
heavy load. 
The SIP signalling architecture is built around SIP user 
agents and SIP servers. SIP servers include (i) a SIP 
registrar, with which client user agents register at their 
bootstrap, (ii) SIP proxy servers, which handle SIP 
requests, (iii) SIP redirection servers, which redirect a 
SIP request to an available SIP user location, and (iv) SIP 
location servers, which resolve the SIP user location. 
SIP signalling messages can be wrapped into TCP or into 
UDP datagrams. Most of the current implementations are 
UDP based. 
Unless DPI mechanisms are called at the entry point to 
the cluster, a basic flow level load balancing scenario 
may route the SIP signalling messages pertaining to the 
same SIP session to different SIP proxies [Figure 7]. 

 
Figure 7. A SIP session load balancing scenario 

 
The inspection of the content of each incoming SIP 
message at the entry point to the cluster allows the 
association of the messages pertaining to the same SIP 
call to the same SIP proxy. 
 
4. Specific Scenarios: DPI for NAT and 
firewall traversal 
 

Session awareness through content inspection is also 
useful to solve both of the NAT and firewall traversal 
issues. 

 
4.1. The NAT traversal issues 
 

NAT issues arise when the communicating user agents 
are behind NAT devices. For instance, SIP INVITE 
responses, as well as RTP packets are miss-routed to the 
source user agent, when the IP address specified in the 
SDP offer corresponds to a private IP address. 

The SIP specifications use content inspection to solve 
the SIP NAT issue. Each SIP proxy needs to compare the 
Via header field value of the handled message with the 
originating IP address. When these values differ, the 
public address is added to the received field in that 
message SDP header. Nonetheless, this solution remains 
limited to solve the static NAT traversal issue. 
Other solutions have been proposed to address the 
general case SIP NAT traversal issues [17,18,19,20]. 
 
4.2. The Firewall traversal issues 
 

Firewalls maintain security rules reflecting the operator 
security policy. The TCP/IP header of each incoming 
datagram is checked against these rules in order to decide 
to accept or to reject the incoming datagram. Typical 
firewalls prohibit all but the legitimate UDP traffic, such 
as DNS and NTP messages. 
On the other hand, while most of the standard services 
use well known ports, typical NGN services such as peer-
to-peer and streaming video involve flows which 
identifiers are negotiated on the fly over the 
corresponding opening flow. Hence, in order to allow the 
operator to better control the traffic generated by such 
services, DPI techniques must be used to inform the 
firewall to dynamically open the legitimate ports. 
 

Secondly, firewalls are sensitive devices which may be 
offered a heavy network load. In order to reliably scale 
firewalls, we need to ensure that datagrams related to the 
same flow as well as flows pertaining to the same session 
are safely forwarded to the same firewall [Figure 8]. 

 
Figure 8. Firewall load balancing 

 

185



 

Hence, the use of DPI techniques is a must to reliably 
scale firewalls by preventing the interruption of the 
legitimate sessions. 
 
5. Conclusion and lessons learned 
 

In this paper, we questioned the appropriateness of 
using flow aware network load balancing frameworks to 
distribute the offered network traffic among the cluster 
available resources. We showed that multiple flow based 
sessions require fine grained load balancing, through deep 
packet inspection, to achieve session integrity while 
efficiently spreading the offered network load among the 
cluster available resources. 

Next generation load balancing frameworks require to 
follow a one-way architecture, in order to achieve an 
optimal resource usage at the entry point to the cluster on 
the one hand, and to provide a better scaling factor inside 
the cluster on the other hand. These factors, as well as 
investing adaptive resource allocation methods, are 
essential to provide an improved throughput under normal 
load. This approach reduces also the probability that an 
accepted session at the cluster head gets refused by the 
chosen processing server, due to its instantaneous 
bottleneck. 

The QoS of the rendered service under heavy load is 
also a relevant issue for the next generation load balancing 
frameworks. Hence, we believe that session awareness 
should be considered while admitting or rejecting the 
offered network traffic to the cluster. 

Session awareness is quite relevant when scaling 
firewalls as well. We believe that the use of DPI 
techniques is a must to reliably scale sensitive network 
devices by preventing the interruption or the QoS 
degradation of the legitimate sessions. The DPI 
techniques are also useful to allow the traversal of specific 
NAT devices. 

 
6. References 
 
[1] C.Z. Xu, "Scalable and secure Internet services and 
architectures", Chapman & Hall, 2005. 
[2] C. Perkins, "IP Encapsulation within IP", Internet RFC, 
October 1996. 
[3] D. A. Maltz and P. Bhagwat, "TCP Splicing for Application 
Layer Proxy Performance", IBM research report, March 1998. 
[4] W. H. Cheng, "Design and implementation of a web switch", 
research report, National Cheng Kung University, 2004. 
[5] M-Y. Luo, C-S. Yang, "Persistent Connections Management 
in Web Server Cluster", Proceeding of the IEEE International 
Conference on Web Technologies, Applications, and Services, 
2005. 
[6] L. Zhao, Y. Luo, L. Bhuyan, "SpliceNP: A TCP Splicer 
using a Network Processor", Proceedings of the symposium on 
Architecture for networking and communications systems, 
ANCS 2005. 

[7] W. Tang, L. Cherkasova, M.W. Mutka, "Modular TCP 
Handoff Design in STREAMS based TCP/IP Implementation", 
Proceedings of the First International Conference on 
Networking, 2001. 
[8] J. Lu, J. Wang, "Analytical Performance Analysis of 
Network-Processor-Based Application Designs", Proceedings of 
the 15th International Conference on Computer Communications 
and Networks, Oct. 2006. 
[9] R. Dragos, S. Dragos, M. Collier, "Design and 
implementation of an MPLS based load balancing architecture 
for Web switching", Internet draft, 2002. 
[10] W. Zhang, "Linux virtual server for scalable network 
services", 2000. 
[11] G. Goldszmidt, G. Hunt, "Netdispatcher: A TCP connection 
router", IBM research report, 1997. 
[12] J. Postel, J. Reynolds, "File Transfer Protocol (FTP)", 
Internet RFC 959, October 1985. 
[13] H. Schwarzbauer, Q. Xie, K. Morneault, T. Taylor, I. 
Rytina, M. Kalla, L. Zhang, V. Paxson, "Stream Control 
Transmission Protocol", Internet RFC 2960, October 2000. 
[14] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, 
"RTP: A Transport Protocol for Real-Time Applications", 
Internet RFC 1889, January 1996. 
[15] H. Schulzrinne, S. Casner, R. Frederick, V. Jacobson, "RTP 
Control Protocol", Internet RFC 3550, July 2003. 
[16] J. Rosenberg, H. Schulzrinne, U. G. Camarillo, A. Johnston, 
J. Peterson, R. Sparks, M. Handley, E. Schooler "Session 
Initiation Protocol (SIP)", Internet RFC 3261, June 2003. 
[17] J. Rosenberg, J. Weinberger, C. Huitema, R. Mahy, "STUN 
- Simple Traversal of User Datagram Protocol (UDP) Through 
Network Address Translators (NATs)", Internet RFC 3489, 
March 2003. 
[18] Rosenberg, Weinberger, Huitema, Mahy, "Traversal Using 
Relay NAT (TURN)", Internet Draft, March 2003. 
[19] NewPort Networks white paper, "NAT Traversal for 
Multimedia over IP", August 2005. 
[20] P. Mächler, "SIP Network Address Translation (NAT), SIP 
Architecture with NAT", Siemens white paper, 2004. 

186


