Cross Layer Protocol Support for Live Streaming Media

Syed Hasan', Laurent Lefevre?, Zhiyi Huang! and Paul Werstein'

! Department of Computer Science
University of Otago,
Dunedin, New Zealand,
Email: {shasan|hzy|werstein}@cs.otago.ac.nz

2 INRIA RESO - LIP (UMR CNRS, INRIA, ENS, UCB)
Bureau 335, Ecole Normale Superieure,
46, allee d’Italie - 69364 LYON Cedex 07 - FRANCE ,
Email: laurent.lefevre@Rinria.fr

Abstract

Delivering live streaming content over the Internet re-
quires low delay and smooth packet transmission rate. TCP
introduces rate oscillations and requires more buffering and
bandwidth to sustain uninterrupted playback. In this paper
we propose a new framework which facilitates streaming
flows. Our solution provides a smoother rate control than
TCP and improves streaming performance based on cross
layer feedback between the transport protocol and stream-
ing server. We present our experimental results through sim-
ulation.

1. Introduction

There is a growing trend of streamed audio-video appli-
cations on the Internet. According to media research the
amount of streamed video increased by 39% in 2006 to
24.92 billion streams [2]. Faster and cheaper access band-
width is enabling various streamed audio-video services to
the end user. However the user experience of streaming me-
dia is not satisfactory always. Recent research shows that on
the Internet, about 13% home and 40% of business stream-
ing sessions suffer various quality degradation[8].

The smooth and flexible sending rate required for live
streaming is hard to achieve on the Internet which only pro-
vides ’best-effort’ delivery of packets. In times of conges-
tion, queues build up inside the routers delaying/dropping
incoming packets. In order to mitigate, this problem
streaming applications use techniques like client-side play-
out buffering and stream switching. The client-side play-
out buffer essentially borrows some current bandwidth to

pre-fetch packets for protection against future rate reduc-
tion. The buffer size has to be large enough to ensure that in
times of congestion it does not run out of packets and con-
tinues smooth playout. Stream switching allows changing
the streamed bit-rate depending on the significance of con-
gestion. Despite these techniques, many of the performance
issues for streaming depend on the underlying transport pro-
tocol. A transport protocol which provides a smooth low
delay transmission of packets is highly desirable.

The success of the Internet can be attributed to TCP’s
congestion control mechanisms [10]. TCP controls the
sending rate of the application in order to ensure fairness
and avoid congestion. This proactive rate control is at odds
with streaming applications as they cannot change or sus-
tain a particular transmission rate whenever they want to.
Unlike TCP, UDP is a fast, light weight protocol without
any congestion control or retransmission functionality. This
makes UDP an ideal protocol for transmitting audio-video
data which can tolerate a few packet losses. Applications
using UDP have complete control over their sending rates
and are responsible for avoiding congestion and ensuring
fairness so that other flows are not starved. However UDP
is a connectionless protocol and very often firewalls block
UDP traffic for security reasons. In that case applications
revert to TCP and sometimes use HTTP over TCP to pene-
trate firewalls. A study shows TCP is used by 66% to 72%
of all streaming sessions [8].

Datagram Congestion Control Protocol(DCCP) is a
newly proposed transport level protocol designed to over-
come the drawbacks of TCP [12]. DCCP is connection
oriented, unreliable and incorporates TCP-Friendly Rate
Control(TFRC) algorithm as an optional congestion con-
trol mechanism [9]. From the beginning, TFRC has been
designed to provide smoother transmission rate and ensure

fairness with other TCP flows. TFRC focuses on smooth
sending rate while avoiding any sharp rate change which is
often required by streaming applications. DCCP is still un-
der development and needs more testing. In an experimental
study on audio streaming, Balan et al. reported that quality
is not improved when TFRC is used for rate control [3].

In this paper we study the interaction of streaming ap-
plications with TFRC and propose a new framework which
facilitates streaming flows. In TCP based streaming tech-
niques application’s control loop is decoupled from TCP’s
control loop. The transport layer is not aware of the ap-
plication’s requirement and tries to control the application’s
sending rate only to avoid congestion and ensure fairness.
Our solution couples the application’s control loop with
transport protocol’s control loop through cross layer infor-
mation exchange. Cross layer information exchange breaks
away from traditional network design paradigm where each
layer of the protocol stack operates independently. In our
case, information is exchanged between the application
layer and transport layer. The application informs the trans-
port layer about its required average transmission rate and
the transport layer provides early congestion feedback to
the streaming application based upon send buffer queue
size. Experimental results show that this framework reduces
packet loss by avoiding unnecessary overshooting of band-
width, reduces the end-to-end streaming latency by keep-
ing the send buffer queue size at an optimum level and en-
ables the streaming application to adapt the sending rate fast
enough to avoid re-buffering event. We named the frame-
work as Dynamic Buffer Adaptive Technique(DBAT).

The paper is organized as follows. In Section 2, some
background on streaming techniques and the underlying
transport protocols are discussed. The proposed framework
is presented in Section 3. In Section 4 the experimental re-
sults are illustrated. Related work is discussed in Section 5
and Section 6 contains the conclusions and future work.

2. Background

Classical streaming applications support multiple level
of streamed bit-rates in order to match the available band-
width with the streamed bit-rate. Besides this, streaming
incorporates several quality adaptive techniques. We be-
gin this section with a brief discussion of the application
model for streaming and its key performance indicators
and present two protocols for the transmission of streaming
packets.

2.1 Streaming Application Model
In traditional streaming solutions, the client and server

exchange control packets to negotiate appropriate sending
rates. At the beginning of the session, the server uses some

packet pair based bandwidth probing technique to deter-
mine the available bandwidth and chooses the streaming bit
rate accordingly. A playout buffer is used at the client side
to reduce the effects of inter packet jitter. Playback starts as
soon as the buffer is fulled to a certain threshold.

A streaming system goes through three phases:

e Buffering: If the size of the playout buffer is large, the
initial buffering period is longer but it protects against
playback interruptions when the available bandwidth
briefly drops below streamed bit rate. For live stream-
ing, this delay in buffering should be low.

e Playback: As long as there are packets at the playout
buffer, the client keeps playing at the encoding rate.

o Re-buffering: If the buffer gets empty, playback stops
until the buffer is filled to the threshold level.

Server Client
It
Streaming <—‘Conlro—[mp‘—(> Streaming
Server Client
. Streaming
Streaming
Data Data
Data U

TCP /TFRC ‘ JepTFRC ‘ TCP / TFRC

? Control loop E

Figure 1. Classical streaming architecture
based on TCP / TFRC

The streaming client and server use a control loop to moni-
tor the packet loss rate and client side buffer’s status. When-
ever the packet loss rate crosses a pre-defined threshold or a
re-buffering event occurs, depending on the available band-
width, the streaming server might change the streamed bit-
rate and start streaming at the new rate. As shown in Fig-
ure 1 this loop is decoupled from the rate control loop of the
transport protocol, i.e there is no exchange of cross layer
information. TCP/TFRC exchange their own set of con-
trol packets in order to regulate application’s sending rate,
whereas the application uses another set of control mes-
sages to determine its appropriate sending rate. There is no
cooperation between these two loops which try to determine
the optimum sending rate independently.

2.2 Streaming Performance Metrics

Streaming performance can be evaluated in terms of re-
buffering event, packet loss rate, smoothness in achieved
throughput of streamed flows.

e Number of Packet lost in Burst: Streaming audio-video
applications are able tolerate a few packet losses but
streaming performance degrades if packets are lost in
burst.

e Number of Re-buffering Events: Every time the play-
out buffer gets drained below the threshold playback is
paused until the buffer becomes full again. This abrupt
interruption in playback drastically impacts the quality
of the streaming session. The number of re-buffering
events and the percentage of time spent for buffering
can be a good performance indication of streaming ser-
vice.

e Average Service Rate: If the application is able to
sustain to a high streamed bit rate for long time the
streamed content is of high quality and this improves
the users perception of streaming.

A streaming application is able to reduce the amount of
packet loss and/or the possibility of re-buffering events by
quickly adjusting the sending rate. The role of the under-
lying transport protocol is very important for such an ap-
plication. A send buffer is employed to deal with the rate
mismatch between the application’s sending rate and the
transport protocol’s allowed transmission rate. This buffer-
ing adds end-to-end delay and may become an obstacle for
achieving the new streamed bit-rate when stream switching
occurs. We call this stream switch response time.

A canonical streaming application emits packets at a
constant rate. The transport protocol is responsible for send-
ing the packets from the send buffer to the network inter-
face. Packets are queued at the send buffer when the ap-
plication’s packet generation rate is higher than the trans-
mission rate of the underlying transport protocol. As the
feedback delay between the client and the server increases,
the client’s feedback becomes outdated and the application
level rate adaptation mechanism fails to react soon enough
to reduce packet loss and re-buffering events. Some mech-
anism for reducing this feedback delay will be hugely ben-
eficial.

2.3 Transport Protocol for Streaming

231 TCP

It is well known that TCP’s congestion control mechanism
is vital for the scalability of the Internet [6]. In order
to avoid congestion and ensure fairness among competing
flows, TCP controls the sending rate of the application us-
ing an Additive-Increase-Multiplicative-Decrease (AIMD)
algorithm. TCP keeps an estimate of the available band-
width for the next RTT using a variable known as conges-
tion window.

Although UDP is preferable to most streaming applica-
tions, TCP is used more often. However the reliable, inorder
and congestion controlled service model of TCP is inappro-
priate for streaming flows which require more control and
flexibility over its flows. The main obstacles for streaming
using TCP are:

o Information Hiding: TCP hides the loss rate and RTT
information from the application.

e Buffering Delay: TCP’s window based congestion
control mechanism requires a send buffer at the appli-
cation to transport layer interface for briefly storing the
in flight packets as well as enough new packets to sat-
urate the congestion window in the next flight.

e Abrupt Rate Controlling: TCPs AIMD cuts down the
application’s sending rate by half on a single packet
loss. The application does not get enough time to adapt
the sending rate. As a result, a large number of packets
are buffered at the send buffer.

e Head-of-line Blocking: Whenever a packet loss is de-
tected, TCP’s in order delivery mechanism blocks the
delivery of received packets to the client until the lost
packet is delivered through retransmission.

The effects of TCP’s rate fluctuation due to congestion con-
trol can be reduced using the client side playout buffer.
However, as the link delay increases, the buffering becomes
insufficient to reduce the effects of rate variation. For live
streaming, it is challenging to stream on TCP if the link-
delay and/or loss rate is comparatively significant.

232 TFRC

TCP-Friendly Rate Control(TFRC) is a rate control al-
gorithm which provides smoother throughput by reacting
slowly on packet loss rate while being friendly to other
TCP flows [9]. Since most applications on the Internet are
TCP based, in order to be a good network citizen, a de-
ployable congestion control algorithm should be friendly to
TCP flows. A flow is TCP-friendly if its average sending
rate is no more than a TCP flow running between the same
links. A TFRC sender calculates TCP throughput using a
TCP equation based on receiver’s feedback on loss event
rate, received packet rate and the RTT information [16].
TFRC has been incorporated as an alternative conges-
tion control algorithm for the newly standardized Datagram
Congestion Control Protocol(DCCP)[12]. DCCP provides
an unreliable service with reliable connection establishment
and option negotiation states. Applications using DCCP has
the option to choose different congestion control mecha-
nism for each direction. Right now only two types of con-
gestion control has been standardized, TCP-like and TFRC.

Due to the smoother rate control TFRC requires less
playout buffer space than TCP. But various studies have re-
ported poor performance of TFRC based audio-video trans-
mission. For streaming application even though TFRC re-
acts slowly on congestion events the sender can only reacts
based on receivers feedback. An early feedback on con-
gestion events will give more time to the sender for rate
adaptation.

3 Dynamic Buffer Active Tuning (DBAT)

In this section we discuss our active queue management
mechanism named Dynamic Buffer Active Tuning(DBAT).
The goals of DBAT are as follows:

e Reduce buffering delay: DBAT keeps the send buffer
queue at a minimum level.

e Provide feedback to application: DBAT sends feed-
back to the application depending on the send buffer
queue size.

e Preferential treatment of marked packets: When the
send buffer queue size increases beyond a certain
threshold, DBAT only sends marked packets.

3.1 Motivation

The motivation for designing DBAT is to make the
streaming application more adaptive and reactive. The tra-
ditional method of changing streamed bit-rate based upon
packet loss rate and client side buffer underflow is ineffi-
cient. By the time the application reacts to the changing
available bandwidth it might be too late due to the delay
in the feedback loop and send buffer. The idea behind

Adaptive Streaming

Application
Supply Tank DBAT
Ball
Regulating float Transport Protocol
ank = —
Time
Scale
Main Tank | ﬂ L1

Figure 2. Water Clock Model

DBAT can be easily understood by looking at the water
clock model shown in the Figure 2 [15]. In order to main-
tain a constant flow rate into the main tank of the clock,

the water level at the regulating tank is held nearly con-
stant. This constant level is achieved through a float valve,
which is essentially a feedback mechanism. Water from an
external supply enters the regulating tank through a pipe.
When the water level at the regulating tank rises, it forces
the floating ball to close against the pipe opening, reducing
the input supply rate. When the level drops, the input rate
increases. In our streaming architecture, DBAT plays the
role of the regulating tank to keep the packet transmission
rate at a constant level.

3.2 DBAT Architecture

As shown in Figure 3, DBAT couples the application’s
control loop with the transport protocol’s control loop.
Upon connection establishment, the application informs the
transport protocol about its streamed bit-rate, and the trans-
port protocol tries its best to sustain that rate. It is noted
that streaming applications are data limited and as such can-
not grab the available capacity. Knowing the applications
desired rate, the transport protocol keeps its sending rate
within a certain range. = DBAT monitors the send buffer

Server Client
Streaming Streaming
Server Client
. Streaming)
Streaming Streamin: Glient
Feedback Rate Data Data || Loss Feedback

DBAT

Clienf& TFRC Streaming|
Feedback Data Streaming

Data

L
TFRC \
Client& TFRC Feedback

Figure 3. DBAT Architecture

Drop Unmarked
Packets
Max_Th
Send Feedback
Sen
Bufer !
Queue .
Min_Th

Figure 4. DBAT Queue

Min_Th = streamed_bit-ratexdelay
Max_Th = 2+Min_Th

On Each Packet Arrival
weighted avg queue length, Qavg

If Qavg > Max_Th
preferentially drop unmarked packets
else if (Qavg > (Max_Th + Min_Th)/2 &&
last_feedback_time > RTT)
send feedback

Figure 5. DBAT Algorithm

queue size and sends up call feedback to the sender appli-
cation when the queue size is increased beyond a threshold.
As shown in Figure 4, DBAT keeps a minimum threshold
(Min_Th) and a maximum threshold (Max_Th) for control-
ling the send buffer queue size. Minimum threshold is cal-
culated by multiplying the streamed bit-rate with the delay.
The maximum threshold is set to twice the minimum thresh-
old in order to accommodate some packets while the appli-
cation takes time to react on sending rate. On each packet
arrival, the weighted queue length, Qavg is calculated. If
the average queue length increases beyond the mid point of
minimum and maximum threshold a feedback is sent to the
sender. The amount of feedback is limited to at most one per
RTT. If Qavg grows beyond the maximum threshold, only
marked packets are transmitted. The algorithm is given in
Figure 5.

4. Experimental Evaluation

In this section, we present the experimental results. We
use network simulator, ns-2 as our preferred vehicle for
simulation [1]. Currently the standard ns-2 distribution does
not have any streaming module included. However we have
found a streaming module named Goddard [5] which is
suitable for our experiments. We integrated Goddard in ns-
2 and conducted experiments using it. Goddard is based
on the studied behaviors of Real Networks and Windows
Streaming Media [4]. During streaming the Goddard client
and server re-select the streamed bit-rate in response to net-
work packet loss or re-buffering events that occur when the
client’s playout buffer gets emptied. The Goddard server
supports multi bit-rate streaming. For ease of simulation,
we only vary the inter-packet gap to stream at the rate of 80,
120, 240, 320, 640, 960 and 1920 kbps.

Goddard does not have any support for TFRC. We mod-
ified the code so that we can use TFRC as a transport proto-
col for streaming. We found that the TFRC implementation
in ns-2 does not have any real data transmission capability
which is required by the streaming module. We changed the
interface of this implementation so that data can be trans-
mitted with each packet enabling Goddard client and server
to exchange media frames. By default the ns-2 implemen-
tation of TFRC has an infinite send buffer. We introduced
a send buffer with adjustable size into TFRC. As for TCP
we modified the full-TCP implementation of ns-2 to sup-
port adjustable send buffer size. To the best of our knowl-
edge we are the first to conduct experiments involving the
interaction of streaming application with TFRC in ns-2. We

TCP Background
Traffic Sender

TCP Background
Traffic Receiver [N

Figure 6. Live streaming simulation topology

use the dumbbell topology for simulating (Figure 6) stream-
ing client server communication. The bottleneck link is of
1 Mbps. In all cases, one streaming flow is competing with
a background FTP flow and some HTTP traffic. The HTTP
traffic is generated using empirical data provided by ns-
2. The background FTP and HTTP traffic simulates a real
world scenario where most streaming flows compete with
web and FTP flows. The FTP application starts at 0.1 sec-
onds and stops at 200 seconds. The streaming flow starts at
30 seconds and stops at 240 seconds. The bottleneck router
queue size is set to twice the bandwidth and delay prod-
uct of the link. Due to the randomness of the background
HTTP traffic the loss rate of the bottleneck link may vary.
Therefore, for each scenario we run the experiment several
times and plot the average values only. The client side play-
out buffer holds 1 second of media data before its playback.
The server side send buffer size for TCP and TFRC based
streaming is set to a fixed value of 64 packets. This is in line
with the existing configurations in widely deployed Linux
and Windows systems where the default send buffer is set to
64KB (64 1KB packet). We assume that for live streaming
application blocking socket mode is not feasible. Instead
in order to reduce the latency non-blocking mode socket
is used and arriving packets at the send buffer are dropped
when the send buffer is full.

We illustrate the throughput, end-to-end application level
latency, packet loss and time spend in buffering phase. We
set the RTT of the link as 150ms for measuring through-

put, latency and packet loss events. We demonstrate the
total buffering times in links with 20ms, 150ms and 450ms
RTTs. The throughput is calculated with one second gran-
ularity. The latency is calculated by measuring the delay
between the time when the streaming sender sends a packet
to the transport layer and the time when that packet arrives
at the streaming receiver for playback. In all cases, DBAT
is used on top of TFRC.

4.1 Throughput

Figure 7 shows the streaming throughput when TCP is
used. In this case, the streaming flow gets less than its fair
share. The streaming flow is continuously beaten by the
competing FTP and background web traffic. Whenever a
packet is lost other packets from the TCP receive buffer are
not delivered to the client side playout buffer. As the play-
out buffer size is set to 1 seconds, it runs out when packets
are lost in burst. This temporarily pauses media playback.
Packet transmission is stopped until a new streamed bit-
rate is decided through bandwidth probing technique. Dur-
ing this brief pause other competing TCP flows grabs the
available bandwidth and the streaming flow loses its share.
Moreover since TCP hides the packet loss information, the
streaming application has no way of adjusting the sending
rate before the playout buffer runs out. It is noted that due
to the background web traffic the FTP flow could not grab
the available bandwidth during the first 30 seconds. Fig-

1400 TCPflow ——
streaming(TCP) -------

1200 |
1000 |

800

600

Througput (kbps)

"'"- A H
400 YA L mha o
o LAY

200 i

L 1 1
0 50 100 150 200 250
Time (seconds)

Figure 7. Streaming (TCP) throughput

ure 8 illustrates the streaming throughput when TFRC is
used as a rate control protocol. As soon as the streaming
flow starts, the FTP flow slows down and starts to share
the bottleneck link equally with the TFRC based streaming
flow. Since TFRC does not introduce head-of-line blocking
packet losses does not cause re-buffering events and trans-
mission never pauses.

Figure 9 shows the throughput for DBAT enabled
streaming. In this case, streaming flow gets higher service
rate. DBAT keeps the send buffer queue size at an opti-
mal level and provides feedback before the send buffer over
flows. This reduces the number of lost packets due to send

1400 | ' TCPflow ——
streaming(TFRC) =-==---

1200 |- 1
1000
800

600

Througput (kbps)

400

200 H |
i

. L L L
0 50 100 150 200 250
Time (seconds)

Figure 8. Streaming (TFRC) throughput

1400 - ' TCP flow ——
streaming(DBAT) ==-----

1200 |- b

1000 [RN

Througput (kbps)

0 50 100 150 200 250
Time (seconds)

Figure 9. Streaming (DBAT) throughput

buffer over flow and improves overall throughput.

The above results show that TCP performs poorly for
streaming applications. One way to improve the perfor-
mance of TCP based streaming is to use more client side
buffer so that it does not runs out frequently. But for live
streaming the buffering delay should be kept minimum.

4.2 Latency
Figures 10, 11 and 12 show the application level one

way latency for TCP, TFRC and DBAT based streaming re-
spectively. In case of TCP based streaming (Figure 10) the

25 T T

S1reami:19 (TCP) \a1elcy

2| ,
1.5 1

1 4

Latency in seconds

0.5 ,

0 L L L L L
0 2000 4000 6000 8000 10000 12000

Packet Sequence Number

Figure 10. Streaming (TCP) latency

latency between consecutive packets sometimes varies al-
most by two seconds. This is mostly due to the head-of-line
blocking introduced by TCP’s in order delivery mechanism.

Although there is some oscillations in TFRC based stream-
ing (Figure 11), the pattern of variation is much regular than
TCP based one. Unlike TCP which cuts the sending rate by
half on a single packet loss, TFRC reacts much slowly based
on average packet loss event. The 64 KB server side send
buffer adds additional delay on top of the one second buffer-
ing delay at the client side. For DBAT based streaming jit-

4 T T T

Streaming (TFRC) latecy -

Latency in seconds

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
Packet Sequence Number

Figure 11. Streaming (TFRC) latency

25 T T T — T
Streaming (TFRC) latecy

Latency in seconds

0 L L L L L
0 5000 10000 15000 20000 25000 30000

Packet Sequence Number

Figure 12. Streaming (DBAT) latency

ter is the minimum. DBAT reduces latency by keeping the
send buffer queue size at an optimal level. The above Fig-
ures also show that more packets are transmitted with DBAT
based streaming as DBAT attains a higher packet rate than
TCP or TFRC based streaming. Although streaming audio-
video applications may tolerate a few packet

4.3 Packet Loss

One of the motivations behind introducing DBAT is that
it should reduce the packet loss in burst. losses, the quality
of perceived stream playback is unacceptable when packets
are lost in burst. Figures 13, 14 and 15 show the amount
of lost packets for TCP, TFRC and DBAT based stream-
ing. In case of TCP, a large number of packets are lost in
burst. This is due to the inability of the streaming applica-
tion to adjust sending rate quickly when TCP is used. TFRC
improves this situation significantly(Figure 14). For DBAT
based streaming the amount of lost packets is the minimum.
Since DBAT provides feedback to the application before the

90 r r r r T — T
Cummulative Loss ~ +
80 f+ m
70 | B
@ 60 | B
$ w0 1
©
S a0 b i
1]
= 30% Hf FrEiEs i
i Lt]
. i—? 1++
S +++ i
207 $$+ %n Hiitiiin
10 R
4
e b a4

o Lomsmrar s wow ow e iy o
40 60 80 100 120 140 160 180 200 220
Time (seconds)

Figure 13. Streaming (TCP) lost packets

send buffer queue over flows, the application gets some time
to adjust its sending rate. This reduces the number of pack-
ets lost due to send buffer overflow.

25 T T T T T T T

T T
Loss +

20 - g

lost packets

+

+ oA+

o
T
gttt

o+
b b

¥ ¥
20 40 60 80 100 120 140 160 180 200 220 240
Time (seconds)

Figure 14. Streaming (TFRC) lost packets

T T
Loss +

35 1
3r + B
@ L i
2 25
S
g 2 F FH b + 4+ o+ A+ + B
8 1sp g
1F ++ -
0.5 - 1
0 1 1 1 1 1 1 1 1 1

20 40 60 80 100 120 140 160 180 200 220
Time (seconds)

Figure 15. Streaming (DBAT) lost packets

4.4 Buffering Time

The amount of time spent in buffering state is the most
important performance indicator for streaming sessions.
The playback remains paused during this period and this
is unacceptable for users’ perception. Table 1 shows the
amount of time spent for buffering with different proto-
cols in three representative scenarios having 20ms, 150ms
and 450ms RTTs. We choose these three RTTs to repre-
sent national(20ms RTT), international (150ms RTT) and

satellite links (450) for streaming. For scenario with 450ms
RTT, TCP based streaming flow spends 37.80% of its total
streaming time in re-buffering state. In the scenario with
150ms RTT 10.46% is spent in buffering state. TCP shows
good performance in the scenario where the link delay is
only 20ms. This is because in low delay links TCPs ac-
knowledge based feedback mechanism is effective. TFRC
and DBAT reduces the re-buffering period significantly.

20ms 150ms | 450ms

TCP | 0.39% | 10.46% | 37.80%
TFRC | 0.84% | 1.12% 4.44%
DBAT | 0.43% | 1.01% 4.13%

Table 1. Total buffering time

5. Related Work

Wang et al. developed an analytical model for TCP
based streaming and concludes that TCP generally provides
a good streaming performance when the achievable TCP
throughput is roughly twice the media bit-rate with only a
few seconds of start up delay [17]. Luo et al. presented the
result of measurement study based on large streaming me-
dia work load and shows that the median time to change to a
lower bit-rate stream was around 4 seconds [8]. Krasic et al.
presented a framework for adaptive video streaming based
on priority dropping [13]. Chung et al. developed a trans-
port level protocol named Media Transport Protocol(MTP)
which removes the burden of inorder delivery from TCP [5].
Goel et al. proposed a dynamic send buffer tuning approach
where the buffer size is kept slightly larger than the TCP
congestion window for TCP-based media streaming [7].
Unlike their work we focus on media streaming on TFRC.

6. Conclusions and Future Work

In this paper we investigated the performance of live
streaming. We showed that TCP performs poorly, but TFRC
based streaming improves the performance. We proposed
a cross layer protocol support framework named Dynamic
Buffer Active Tuning (DBAT). DBAT relies on information
exchanged between the application layer and the transport
layer. We showed that DBAT improves the service rate of
streaming, reduces jitter and packet loss. Our next steps will
concern the exploration of router assisted approach to en-
sure fairness (like XCP[11] needs in terms of fairness with
TCP[14]). In addition to that we will investigate the perfor-
mance on DBAT supported streaming for variable bit rate
flows. DBAT can easily be tailored to streaming in multi-
cast scenarios by using layered media encoding format.

References

(1]
(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

[13]

(14]

[15]

[16]

(17]

ns-2 network simulator. http://www.isi.edu/nsnam/ns/.
Streaming media growth and content category share:2006-
2010. http://www.accustreamresearch.com.

V. Balan, L. Eggert, S. Niccolini, and M. Brunner. An exper-
imental evaluation of voice quality over the Datagram Con-
gestion Control Protocol. In IEEE Infocom, Anchorage, AL,
USA, May 2007.

J. Chung and M. Claypool. Empirical Evaluation of the
Congestion Responsiveness of RealPlayer Video Streams.
Kluwer Multimedia Tools and Applications, 31(2), Novem-
ber 2006.

J. Chung, M. Claypool, and R. Kinicki. MTP: A streaming-
friendly transport protocol. Technical report, Technical Re-
port Oregon Graduate Institute School of Science and Engi-
neering, 2002.

S. Floyd and K. Fall. Promoting the use of end-to-end
congestion control in the Internet. Networking, IEEE/ACM
Transactions on, 7(4):458-472, 1999.

A. Goel, C. Krasic, K. Li, and J. Walpole. Supporting low la-
tency TCP-based media streams. Technical report, Worces-
ter Polytechnic Institute, May 2002.

L. Guo, E. Tan, S. Chen, Z. Xiao, O. Spatscheck, and
X. Zhang. Delving into Internet Streaming Media Delivery:
A Quality and Resource Utilization Perspective. In ACM
Internet Measurement Conference(IMC), Rio de Janeiro,
Brazil, October 2006.

M. Handley, S. Floyd, J. Padhye, and J. C. Widmer. TCP
Friendly Rate Control (TFRC): Protocol Specification. In-
ternet Engineering Task Force, RFC 3448, January 2003.

V. Jacobson. Congestion avoidance and control. In ACM
SIGCOMM, pages 314-329, Stanford, California, United
States., 1988.

D. Katabi, M. Handley, and C. Rohrs. Congestion control
for high bandwidth-delay product networks. In ACM SIG-
COMM, 2002.

E. Kohler, M. Handley, and S. Floyd. Designing
DCCP:Congestion control without reliability. In ACM SIG-
COMM 2006, pages 27-38, Pisa, Italy, 2006.

C. Krasic, J. Walpole, and W.-c. Feng. Quality-adaptive me-
dia streaming by priority drop. In 13th International Work-
shop on Network and Operating Systems Support for Digital
Audio and Video (NOSSDAV), June 2003.

D. M. Lopez Pacheco, L. Lefevre, and C.-D. Pham. Fairness
issues when transferring large volume of data on high speed
networks with router-assisted transport protocols. In High
Speed Networks Workshop 2007, in conjunction with IEEE
INFOCOM 2007, Anchorage, Alaska, USA, May 2007.

D. Luenberger. Introduction to Dynamic Systems, chapter 8,
page 297. Wiley New York, 1979.

J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling
TCP throughput: A simple model and its empirical valida-
tion. In ACM SIGCOMM, pages 30-314, 1998.

B. Wang, J. Kurose, P. Shenoy, and D. Towsley. Streaming
via TCP: An analytic performance study. In ACM Multime-
dia, New York City, NY, October 2004.

