TAMANOIR : A HIGH PERFORMANCE
ACTIVE NETWORK FRAMEWORK

Jean-Patrick Gelas and Laurent Lefevre

RESAM Laboratory - Université Claude Bernard Lyonl
Batiment ISTIL, 43 bd du 11 Novembre 1918

69622 Villeurbanne - France
jpgelas@resam.univ-lyonl.fr, llefevre@resam.univ-lyonl1.fr

Keywords: Active networks, performance, Tamanoir, mobile code, ANTS, Java

Abstract

The field of active and programmable networks is rapidly expanding.
These networks allow users and network designers to easily deploy new
services. While most of proposed systems deal with adaptability, flexi-
bility and new protocols only few systems focus on high performance.

We explore the design of intelligent network by proposing a new kind
of architecture dedicated to high performance active networking.

This paper presents the Tamanoir! system, a complete framework
that allows users to easily deploy and maintain distributed active routers
on wide area networks. A set of distributed tools is provided : routing
manager, active nodes and stream monitoring tool, web-based services
library... Based on JAVA/GCJ with multi-threading approach to com-
bine performance and portability of services, applications can easily
benefit of personalized network services. First experiments and com-
parisons with other systems will show the effectiveness and pertinence
of our approach.

I Tamanoir (great anteater) is one of the strangest animal of south America : living in savanna,
with an impressive tongue with a mouth of 2 centimeters diameter this animal only eats ants
(30000 daily). We choose this animal in reference to ANTS system.

Introduction

The field of active and programmable networks is rapidly expanding.
These networks allow users and network designers to easily deploy new
services. While most of proposed systems deal with adaptability, flexi-
bility and new protocols only few systems focus on high performance.

We explore the design of intelligent network by proposing a new
kind of architecture dedicated to high performance active networking.
Tamanoir framework is based on an architecture where active routers
are only deployed on network periphery while backbones remain passive
to guarantee performances. Active services can be easily deployed in
the network and are adapted to architecture, users and service providers
requirements. High performance aspects are also taken into account by
minimizing JAVA software latency with compilation approach. Our sys-
tem provides persistent active routers which manage multi-applications
and various data streams (audio, video...). The Tamanoir system is a
complete framework that allows users to easily deploy and maintain dis-
tributed active routers on wide area networks. A set of distributed tools
is provided : routing manager, active nodes and stream monitoring,
web-based services library... Based on compiled JAVA/GCJ with multi-
threading approach to combine performance and portability of services,
applications can easily benefit of personalized network services. Experi-
ments and comparisons with other active network systems will show the
effectiveness and pertinence of our approach.

This paper reports on our experience in implementing Tamanoir (sec-
tion 1) and designing a complete framework for active networks deploy-
ment (section 2). In section 3, we compare our work with other related
projects and experiment Tamanoir in section 4 . We conclude in section 5
and present our future works.

1. TAMANOIR ARCHITECTURE
1.1. ACTIVE ARCHITECTURE

Tamanoir active architecture is based on a virtual topology of active
nodes spread on programmable routers of the network. Tamanoir active
routers, called Active Nodes (AN), are deployed on network periphery.
Contrary to others approaches, we do not believe in the actual deploy-
ment of Gigabit active routers for backbones. If we consider that the
future of WAN backbones could be based on all-optical networks, no
dynamic services will be allow to process data packets. So, we prefer to

consider backbones like high performance well-sized passive networks.
We only concentrate active operations on routers/nodes at network pe-
riphery.

We implement applications typically composed of senders and re-
ceivers which exchange data streams (video, audio...). Data streams
cross various active nodes up to passive backbone and then cross an-
other set of active nodes up to receiver node (see figure 1). Tamanoir
architecture is based on Active Node approach : programs, called ser-
vices, are injected into active nodes independently of data stream. Active
nodes apply these services to process data streams packets. Services are
deployed on demand when streams arrive on an active node.

High Performance Back
\/ K

v

ne &tDC54~Q om|

Application Application

S e /
BRI Active Nodes

Figure 1 Heterogeneous Active Architecture with high performance passive backbone
and active nodes on periphery

1.2. CAPSULES

Tamanoir capsules are based on Active Network Encapsulation Pro-
tocol (ANEP) format defined by The Active Network Group [Alexander
et al.,]. Each ANEP packet is encapsulated in an UDP datagram.
A Marshalling operation is needed before each packet send or receive
operation. An ANEP packet is based on an header containing TLVs
(Type, length, Value) entities. These TLVs are decoded and interpreted
by active nodes to apply dynamic services on the packet. Most im-
portant TLVs are fixed : name of sending machine, name of receiving
machine... Tamanoir capsules use personalized TLVs like : service name,
last crossed active node...

1.3. OVERVIEW OF A TAMANOIR NODE

An active node is a router which can receive capsules of data, process
them and forward them to other active nodes.

A Tamanoir Active Node (TAN) is a persistent daemon acting like a
dynamic programmable router. Once deployed on a node, it is linked

to its neighbors in active architecture. A TAN receives and sends cap-
sules of data after processing them with user services. A TAN is also in
charge of deploying and applying services on capsules depending on ap-
plication requirements. When arriving in Tamanoir daemon, a capsule
is forwarded to service manager (figure 2). The capsule is processed by
service in a dedicated thread. Resulting capsule is then forwarded to
next active node or to receiver part of application according to routing
tables maintained in TAN.

Routing table
of active nodes

: Tamanoir Deamon Route From To Nxt

UDP port : ===
T - E=32)

i [Services
| — < >y

[
A =5

Figure 2 Tamanoir Active Node

1.4. SERVICE DEPLOYMENT

A Tamanoir service is a JAVA class (see Figure 3) containing generic
methods like :

m receive : used to specify the code applied to capsules received by
Tamanoir node;

m send : used to forward capsules to another active node or to the
receiving application;

m start/stop : useful for service initializing and service stop.

Each new service is directly derived from the generic service class.
This operation allows to dynamically load a service into TAN memory.
Each new service is deployed TAN after TAN, when the first capsule
which needs a new service is processed by the node. So the reduced cost
to deploy a new service consists of asking this new service to the last
active node crossed by the capsule. By this way, we limit the impact of
new service deployment.

Figure 3 Generic service class

public class Service {
UDPnetworkTools udp;

public Service() {
udp = new UDPnetworkTools(); 1}

public void recv(String srcld, destId, lastId, byte [] payload) {}
public void send(String srcld, destId, lastId, byte [] payload) {}
public void start() {}
public void stop() {}
public void process(byte [] payload) {}

} // class Service

2. TAMANOIR FRAMEWORK
2.1. ROUTING DAEMONS

A Tamanoir topology can be dynamically built by the user. Active
nodes can be add or remove during applications runs. Routing daemons
are linked to their neighbors and they propagate and update routing
tables in a non centralized server architecture.

2.2, SERVICES LIBRARY

We are also currently designing a web service broker where applica-
tions can decide to use generic Tamanoir services. By using an http
address in service name, applications deploy non-personalized services.
These services are then downloaded from a web server and implemented
on active nodes.

2.3. TAMT : TAMANOIR-ANTS
MONITORING TOOL

Active networks systems allow users to easily deploy services adapted
to their applications. In compensation, such systems often appear, from
the programmer point of view, as a “black box” since no information
about active architecture is available. Consequently, in the absence of
visualization and monitoring tools, optimizing, debugging or evaluating
the performance of applications is very difficult.

We are currently developing a monitoring tool, called TAMT (Tamanoir
Ants Monitoring Tool), dedicated to active networks. This tool has been
ported on top of Tamanoir and ANTS system.

Various kind of information are provided by TAMT (see figure 5) :

m active architecture : routing topology;

TAN | TAN — TAN |— TAN

en
ead
Tsten
Thread
Sten
Thread

Display

oDoooooo
ooooooo

Figure 4 Tamanoir Ants Monitoring Tool architecture : the Visualization Process
communicates with all active nodes involved in application

® active nodes information : address, name;
m capsule data streams : size, throughput, number of capsules

Monitoring features are embedded to ANTS or Tamanoir active node.
Information about node and capsules are collected, compacted and sent
periodically to TAMT server (see figure 4). Each active node is linked
to a dedicated thread running on the visualization console.

Monitoring data can be visualized online during capsules transport.
Off-line summarized views are also provided.

3. RELATED WORKS

Interest in active networks is really active since 1996 [Tennenhouse
and Wetherall, 1996]. We have specially focus on two well-known active
networks approaches : ANTS [Wetherall et al., 1998] and PAN [L.Nygren
et al., 1999].

ANTS is one of the first and standard implementation of active ar-
chitecture. Completely written in Java, ANTS nodes are executed on
each router in a Java Virtual Machine. Focusing on security aspects,
ANTS nodes check and validate each bytecode services before running
on active nodes. Most of persistent and multi-applications aspects are
not available and the intensive use of interpreted JAVA services limits
high performance capsules transport and processing.

PAN is the first active network system dealing with performance is-
sues. The development of PAN drew heavily of on many of the ideas

Eg"g'Mnnitoring d'un reseau Actif AHTS [configuration:"abone.config"
128.0.160.168 IP Address:
Host Name:
128 81B0170
i~
18.31.0.36 18.31.0.46
i
! nb capsules:
158.130.6.144 128.59.22.28
X/ avy time trtmnt.:
' ' E. throughput:
) / * R throughput:
18510 49 / 5073730162 || foutines: availables: used:
18.31.0.35 ' 18.31.0.34
18310135
capsules size:
192.12.69.230

Figure 5 View of TAMT framework with routing topology of active nodes and mon-
itoring information on nodes, capsules and services

developed in ANTS. PAN is completely written in C and provides good
raw performances. Two implementations are available : in user-space
or in kernel space. No portability and security issue are taken into ac-
count in PAN but all developments are dedicated to performance with
intensive use of zero-copy protocols. A qualitative comparison of ANTS,
PAN and Tamanoir is summarized in table 1.

Another approaches on high performance active networks are also
currently explored like ANN [Decasper et al., 1999] and CANEs [Merugu
et al., 1999] projects.

Table 1 Qualitative aspects of ANTS, PAN and TAMANOIR implementations

| ANTS | PAN | TAMANOIR
open source yes no yes
portability yes (Java) | no (C) | yes (Java+GCJ)
performance aspects no yes yes
security yes no no
dynamic service load yes yes yes
multi-services no yes yes
dynamic topology no yes yes

implementation 3 years 3 years 5 months

4. EXPERIMENTS

We based our experiments on Pentium IT 350 MHz linked with Fast
Ethernet switches (100 Mb/s) and JDK 1.1.7 on Linux Debian distribu-
tion.

After first experiments of ANTS, this system really shows a lack of
performance. Between ANTS choice of Java bytecode (portable and
slow) and PAN choice of C native code (non portable and fast), we prefer
to choose an hybrid approach. We combine Java language to provide
portability to services and active nodes with compiled running to obtain
performances. Our choice was influenced by the Jaguar [Welsh, 1999]
environment which focus on high performance Java. We based Tamanoir
implementation on GNU Compiler for Java (GCJ [GCJ,]), a recent Java
code compiler generating native machine language.

4.1. COMBINING PERFORMANCE AND
PORTABILITY

Our first experiments are based on a ping application, useful to check
a distant active router. We use this application to compare Tamanoir
running with JVM versus GCJ compiled version.

Experiments (in figure 6 and 7) show that implementing Tamanoir
with GCJ increases performances by 2 times (300 ms needed to cross 3
active nodes in both way with GCJ while JVM version requires 600 ms).

Tamanoir Ping - JVM Tamanoir Ping - GCJ

700 700 T T
1TAN —— 1TAN ——
2TAN % 2TAN %
3TAN %

400 T 4 a0l

“
time (ms)

300 -

100 |- o 4 10l

e

. . . == . . .
0 5000 10000 15000 20000 0 5000 10000 15000 20000
size (bytes) size (bytes)

Figure 6 Ping Service with Figure 7 Ping Service with
Tamanoir/JVM Tamanoir/GCJ

4.2. COMPARISON WITH ANTS

Performance comparisons with ANTS (version 1.2) have been made
by using on a 3-nodes topology : one active node, one sender and one re-
ceiver node. We compare both systems by sending long capsule streams

ondes

time (microsec

trough active node. These capsules are processed by active node which
receives them, applies ForwardService and forwards capsules to receiver
node.

Results presented in figure 8 show the delay needed to cross an active
node (latency). While ANTS needs 3 ms and is dependent of capsule
payload size; Tamanoir time remains constant with a latency of 750 us.
Meanwhile, ANTS process capability is weak with an average number of
350 capsules/sec (figure 9). Tamanoir goes 3 times faster and processes
up to 1350 capsules per second (depending of payload size).

ANTS / Tamanoir Latency ANTS/ Tamanoir Throughput
T T T T

ANTS-1.2 —— ANTS-12 ——
TAMANOIR —x— 1400 | TAMANOIR —x— -

,,
1200 -

1000 -

% 800

2500 | 1% ool

400 -

1500 - 4 h’\o\
200 -

L L L L 0 L L L L
200 400 600 1000 1200 1400 200 400 600 1000 1200 1400

800 800
payload size (bytes) payload size (bytes)

Figure 8§ Latency : cost to cross an ac- Figure 9 Number of capsules processed
tive node by an active node

No comparisons with PAN system were possible due to lack of system
availability.

5. CONCLUSION AND FUTURE WORKS

By combining compiled implementation with Java portability; we try
to develop a high performance portable active network system with
multi-applications persistent routers and dynamic services. We also pro-
pose a complete framework to easily deploy, manage, evaluate and mon-
itor active network architecture. Our Tamanoir framework is the first
step to fully understand how high performance active networks can be
designed.

Further experimentations are needed to fully understand the impact
of JAVA/GCJ design on Tamanoir implementation. We are currently
implementing new Tamanoir services for distributed QoS servers and
optimized active multicast services. We would also like to benchmark
our work with other high performance active networks framework like
PAN, ANN and CANEs.

We will also go further in high performance active network designing
by implementing an active node based on Myrinet [Boden et al., 1995]

cluster. More information on Tamanoir project can be obtained on
http : | [resam.univ — lyonl.fr/ llefevre/TAMANOIR

Acknowledgments

We would like to thank Matt Welsh for his help in understanding
high performance Java with his Jaguar tool [Welsh, 1999]. We would
also like to thank Arnaud Mergey for his help in designing Tamanoir
Ants Monitoring Tool.

References

Alexander, D., Braden, B., A.Gunter, C., W.Jackson, A., D.Keromytis,
A., and andDavid Wetherall, G. J. Active network encapsulation pro-
tocol (ANEP). RFC Draft, Category : Experimental,
http://www.cis.upenn.edu/switchware/ANEP /.

Boden, N., Cohen, D.,; Felderman, R., Kulawik, A., Seitz, C., Seizovic,
J., and Su, W.-K. (1995). Myrinet : a gigabit per second local area
network. IEEE-Micro.

Decasper, D., Parulkar, G., Choi, S., DeHart, J., and Wolf, T.and Plat-
tner, B. (1999). A scalable, high performance active network node. In
IEEE Network, volume 13.

GCJ. The gnu compiler for the java programming language.
http://sourceware.cygnus.com/java/.

L.Nygren, E., J.Garland, S., and Kaashoek, M. (1999). Pan: A high
performance active network node supporting multiple mobile code
systems. In IEEE OPENARCH ’99.

Merugu, S., Bhattacharjee, S., Chae, Y., Sanders, M., Calvert, K., and
Zegura, E. (1999). Bowman and canes: Implementation of an active
network. In 37th Annual Allerton Conference, Monticello, IL.

Tennenhouse, D. and Wetherall, D. (1996). Towards an active network
architecture. Computer Communications Review, 26(2):5-18.

Welsh, M. (1999). A system supporting high-performance communica-
tion and i/o in java,. Master’s thesis, University of California, Berke-
ley.

Wetherall, D., Guttag, J., and Tennenhouse, D. (1998). ANTS : a toolkit
for building and dynamically deploying network protocols. In IEEE
OPENARCH ’98.

