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Abstract- For an improved QoS provisioning, operators are 

strongly concerned both with the availability and the reliability 
of their performance critical servers. Among these entities, we 
mention the firewalls used to filter the offered network traffic 
to the operator's information system as well as the end 
processing servers which service each incoming client request. 
In this work, we advocate and evaluate a full architecture for 
highly available services. Performance evaluations show that 
our proposed framework incurs a minimal overhead to the 
end-to-end communications during failsafe periods and 
performs well during failures. 

I.   INTRODUCTION 

Network operators have always been concerned both with 
the robustness and the security of the services they provide 
to the end clients. For an improved QoS provisioning, 
operators are strongly concerned both with the availability 
and the reliability of their performance critical servers. 
Among these entities, we mention the firewalls used to 
block and to monitor the offered network traffic to the 
operator's information system as well as the end servers 
which process each incoming client request. Firewalls are 
placed between the corporative network and the Internet. 
They apply filtering policies to determine which traffic is 
allowed in the network. Filtering policies are defined by 
means of a rule-set. A rule contains several descriptors that 
refer to packet header information. Modern firewalls go 
further and keep track of the evolution of a traffic flow to 
ensure that it evolves in a standard compliant way. This 
evolution is stored in a variable so-called state. The state 
information can be used to define more intelligent filtering 
policies that neutralize several attacks such as TCP reset. 

Firewalls and servers are single point of failures in the 
network since their failures lead to service disruptions or to 
the whole network isolation. Their availability is 
particularly important to guarantee that network services are 
properly rendered. Existent fault tolerant solutions are not 
suitable for stateful firewalls. First, these solutions are not 
tailored to the stateful devices. Second, most of them add 
severe delays to the client responses. 

On the other hand, most of the NGN services are based on 
a session model which involves different flows for the 
signalling and for the data exchange all along the session 

lifespan. Providing reliability means to the whole session 
requires providing reliability capabilities to every related 
flow.  

In this work, we advocate and evaluate a full architecture 
for highly available services illustrated in Fig. 1. 

 

Fig. 1. The highly available framework architecture. 
 
The framework replicates the critical components of the 

operator information system to provide high availability 
capabilities. It generalizes previous works [1,2] on high 
availability for Internet servers and stateful firewalls. 
Performance evaluations show that the framework incurs a 
minimal overhead to the end-to-end communications during 
failsafe periods and performs well during failures. 

The rest of this paper is organized as follows. In section II, 
we describe the related work to high availability. In section 
III, we give an overview on the framework components.  In 
section IV, we present the performance evaluation results. 
Finally, we conclude the paper by summarising its potential 
perspectives. 

II.   RELATED WORK 

Several research works have been proposed to provide 
service reliability support. This work focuses on the client 
transparent solutions. An efficient connection failover for 
web servers was detailed in [3]. Its main idea consists in a 
backup TCP (BTCP) stack implementation that is a silent 
version of TCP. The web servers are organized into a ring. 
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Each time a request is received, a balancer forwards it to the 
primary as well as to the backup servers. The backup keeps 
a backup socket structure that contains the request state. 
Since the BTCP stack never sees incoming traffic, some 
important information has to be inferred, so the authors 
propose a complete logic to infer such information. This 
solution requires however server side modifications. A 
similar solution is FT-TCP [4] which key concept are the 
loggers, a software component that stores in the backup 
replica all the packets processed by the primary replica via 
network tapping techniques. In case of failure of the primary 
node, the backup replays the complete communication until 
the last consistent state before the failure is reached. 
However, this solution does not scale well for long 
connections with high data exchange rates. Moreover, the 
authors of FT-TCP do not cover the loggers’ machine 
failure. In ST-TCP [5,6], the backup node relies on 
intercepting passively the traffic flowing between the 
primary node and the clients. The TCP layer receive queue 
on the primary node is modified such that it keeps a copy of 
any TCP segment already read by the application, unless an 
acknowledgment is sent back by the backup node to inform 
the primary that the segment has been successfully 
processed. The main disadvantage of ST-TCP is its cost 
during failsafe periods. In fact, when the backup is not as 
fast as the application server on the primary node, the ST-
TCP failover mechanism affects seriously the TCP flow 
control on the primary node. This latter would advertise a 
reduced congestion window which leads to a less end-to-end 
throughput. Moreover, ST-TCP leads to inconsistent 
connection states on the backup node when the primary 
node fails jointly with a TCP segment loss by the backup 
node. In [7], the authors discuss an architecture providing 
availability capabilities to stateful firewalls. The 
architecture is based on an event-driven model and 
describes a library baptized Stateful Networking 
Equipments (SNE) library, which allows the 
implementation of highly available firewalls and routers. 
However, the proposed work assumes server side 
dependencies. 

III.   GENERAL ARCHITECTURE 

This work generalizes previous works on the high 
availability of stateful firewalls [1] and connection oriented 
flows [2]. In the following, we give an overview of the 
building blocs of the proposed architecture. 

A.   FT-FW  
FT-FW is a complete solution for cluster-based fault 

tolerant stateful firewalls that keeps in mind simplicity, 
transparency, fast responses to clients and low cost. 
Basically, the solution must guarantee negligible delay in 
client responses so that bandwidth performance is not 
reduced. Our solution is composed of two parts: the 
hardware and the software architectures. The main idea of 
the hardware architecture is the firewall cluster. This cluster 

is composed of two or more firewalls replicas that are 
deployed in the local area network always coupled two by 
two. These replicas are connected through a dedicated link 
that is used to propagate state changes. We assume that, at 
least, one firewall replica acts as Primary, so that deploys 
the traffic filtering, and the other acts as Backup. 

On the other hand, the software architecture follows an 
event-driven model (EDM) whereby any change in the state 
variable is propagated through an event. These events are 
produced by the stateful firewall and consumed by the state 
proxy (SP). The SP is an application that propagates state 
changes to other replicas through the dedicated link. The 
EDM suits well for distributed systems since share many of 
the same characteristics such as modularity and loose-
coupling, and whose asynchronous nature suits well for the 
performance requirements of stateful firewalls. This 
architecture is not dependent of the failure detection schema. 
So, we assume a failure detection software, i.e. an 
implementation of VRRP, that works in cooperation with 
the SP.  

The stateful firewall provides a framework to subscribe to 
state change events, dump the state of all existent traffic 
flows, and inject states to the stateful firewall to implement 
state recovery during failures. The SPs use this framework 
to interact with the stateful firewall. 

At start-up, every SP dumps the existent states and stores 
them in a cache, so-called internal cache, and subscribes to 
events of state change to keep the cache up to date. The SP 
also maintains another cache to store foreign state changes 
that comes from other replicas. Once an event of state 
change occurs, the SP that runs in the Primary updates its 
internal cache and propagates the state change to the SP that 
runs in the Backup so that it updates its external cache. If 
the Primary fails, the failure software detection notifies the 
SP that invokes the inject method to insert the states stored 
by the external cache into the stateful firewall. We represent 
the FT-FW architecture and the information flow in Fig. 2. 

 

 
Fig. 2. The FT-FW architecture. 

 
In order to communicate, the SPs use a replication 

protocol which must guarantee high current state durability 
(CSD), which is the probability that current states can 
survive failures [8]. Nevertheless, the protocol must 



introduce a negligible delay in client responses. For that 
reason, we discard any synchronous replication protocol 
used in database environments that would guarantee CSD of 
1 but, in return, introduce a severe penalty in client 
responses. Therefore, the replication protocol must be 
asynchronous. However, the use of an asynchronous 
solutions does not guarantee that the firewall replicas 
contain the same set of states at any time, ie. we cannot 
guarantee that replicas are one-copy equivalences. 
Nevertheless, our target is to improve CSD without harming 
client responses. Therefore, the use of an asynchronous 
turns out the only feasible solution. We have already 
proposed a reliable UDP-based replication protocol that 
addresses the problems exposed above [1]. 

B.   The Active Replication Building Blocs 
The used active replication based framework is a 

generalization of a previous work on the reliability of 
connection oriented flows. It achieves its goals by providing 
particular processing during failure-free and during failure 
periods. First, during failure-free periods, it provides means 
to achieve a consistent and a transparent replication of every 
service state, be it kernel level or application level. The 
kernel level states include for instance the flow level states, 
the connection tracking states, etc. The application level 
states are however the states associated to the application 
running on the highly available node. 

Second, the framework guarantees service consistency 
during the active replication process by guarantying that 
only one replica is providing the service at once. All the 
other replicas are however silent. 

In case a failure occurs at the primary server, the replica 
first takes over its network level identity. Then it leaves the 
silent mode and enters the master mode where it fully 
provides the service to the end clients. 

The proposed framework assumes first the test bed 
illustrated by Fig. 3. According to it, a replica is able to non-
intrusively tap the traffic legitimately flowing between the 
primary node and the end clients. 

 
Fig. 3. The active replication infrastructure. 

The backup is engineered such that it actively replicates 
the primary's states. In order to our infrastructure to cope 
with a wide range of applications and services, we opted to 
let both the primary and the backup nodes share the same 
virtual IP address of the service. This approach is 
particularly interesting in case we want to actively replicate 
a server which explicitly involves network level identifiers 
at the upper layer protocols during the regular processing of 
the offered requests. This is typically the case of network 
address translation (NAT) devices and application level 
gateway (ALG) devices which handle signaling traffic. The 
effective association between the virtual IP address of the 
service and the link level identifier of the node is provided 
by means of ARP gratuitous flooding. Indeed, during 
failure-free periods, the primary node initiates the flooding. 
The backup node is on the other hand engineered such that 
it ignores any ARP request. Static entries are however 
required in its ARP table. Once a failure occurs, the backup 
node performs gratuitous ARP flooding in order to take over 
the network level identity of the service. Finally, a 
consistent end-to-end service is provided during failure-free 
periods by dropping the outgoing traffic generated by the 
backup consequently to the active replication. 

IV.   PERFORMANCE EVALUATION 

In this section, we evaluate the performance of the FT-
FW and the active replication based protocols.  

Since firewalls are subject to a heavy load, we choose to 
evaluate FT-FW using an AMD Opteron dual core 2.2GHz 
hosts connected to an 1G Ethernet network. The active 
replication framework is however evaluated using less 
powerful machines. 

A.    FT-FW protocol Results 
The schema is composed of four hosts: Host A and B that 

act as workstations and FW1 and FW2 that are the firewalls 
(Fig. 1). We have adopted a Primary-Backup configuration 
for simplicity. Thus, FW1 acts as Primary and FW2 acts as 
Backup. In order to evaluate the solution, we reproduce a 
very hostile scenario in which one of the hosts generates lots 
of short connections. Thus, generating loads of state change 
messages. Specifically, the host A requests HTML files of 4 
KBytes to host B that runs a web server. We created up to 
2500 GET HTTP requests per second (maximum 
connections rate reached with the test bed used). For the test 
case the Apache web server and a simple client HTML suite 
have been used. 

To evaluate FT-FW, we have implemented a state proxy 
daemon for stateful firewalls so-called conntrackd 
(connection tracking daemon) [9]. This software is a user-
space program written in C that runs on Linux. We did not 
use any optimization in the compilation. 
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Fig. 4. CPU overhead. 

 
We have measured CPU usage in FW1 and FW2 with and 

without full state replication. The tool cycle soak has been 
used to obtain accurate CPU consumption measurements. 
For the sake of simplicity, we use a reduced version of the 
graph of TCP states that consists of six states: syn_sent, 
syn_recv, established, time_wait, fin_wait, close. This 
means that we have generated up to 6 * total number of 
requests. The results obtained in the experimentation has 
been expressed in a graph (Fig.~\ref{load}). The full state 
replication is CPU consuming, reaching up to 42.7\% of 
CPU load. Not surpringsly, the full replication of short 
connection is costly due to the amount of states propagated. 

Fig. 5. Time required to inject objects 
 

In order to obtain the delay that FT-FW introduces in 
client responses, we have created up to 1700 HTTP GET 
requests per second while measuring the round trip time of 
an ICMP echo request/reply (ping pong time) with and 
without replication enabled. The results have been 
expressed in the following table (in milliseconds) (Tab. 1). 

  
 
 
 
 

                      TABLE I 
HTTP GET rps w/o replication replication 
1500          238.5 246 
1700          243   247 

 
As we can observe, the increment in the round trip time is 

between 4 and 7 milliseconds so that we can say that the 
delay introduced in client's responses is negligible. 

We have also measured the time to inject state objects 
that represents connections from the proxy daemon external 
cache to the in-kernel CTS. The results (Fig.. 5) show that 
the injection of 20000 state objects is close to 180 ms, that 
is an affordable delay. Another obvious conclusion 
extracted from the results obtained is that the time required 
to inject objects increases linearly. 

We can conclude from the results that FT-FW requires 
extra CPU power in order to improve CSD of CBSF but 
have negligible impact in terms of client response time. 

B.   Active replication results 
We run our experiments using three separate machines, 

one each for the client, the server and the replica as shown 
in Fig. 3. On the backup server, we installed the active 
replication user and kernel space modules. The primary and 
the backup are 2089 MHz AMD Athlon XP 2800+ PCs with 
512 KB of cache and an SDRAM 512 MB memory. On 
both machines, the Linux 2.6.18 kernel is running. The 
client is a 1.60 GHz Pentium(R) Laptop with 512 MB of 
memory and also running Linux, although it could be 
running any other OS and TCP/IP stack. The client used a 
Broadcom NetXtreme Gigabit Ethernet card. Each replica 
uses three 100/1000 Ethernet PCI cards. The three machines 
are connected to the same LAN using a 100 Mb Ethernet 
port mirroring capable Catalyst 3500 series XL CISCO 
switch. 

All the active replication modules are required on the 
backup node during failure-free periods and no 
modifications are required either to the client or to the 
legitimate server to achieve state replication. As a result, no 
active replication overhead is incurred to the active sessions 
during failure-free periods. During failure-free periods, we 
evaluated the active replication process performance based 
on measures conducted at the backup node. The first metric 
we considered is consistency. First, we checked that the 
infrastructure correctly rewrites the incoming traffic to the 
backup's NIC. We checked also that this traffic is properly 
delivered to the upper layers which consequently generate 
an outgoing traffic destined to the legitimate client. We 
checked that the legitimate outgoing traffic, used to build 
consistent TCP states is also correctly intercepted and 
analyzed (Tab. 2). 

 
 
 
 



TABLE II 
STATE ACTIVE REPLICATION CONSISTENCY EXPERIMENT 

Application Traffic Interception and 
Rewriting at the Backup 

Outgoing Traffic 
Generation at the Backup 

Echo Correct frames  
(Headers + Data) 

Correct replies 
(Headers + Data) 

 
In order to provide service consistency, the duplicated 

outgoing traffic generated by the backup node is however 
dropped at the backup's network layer using Iptables based 
rules. 

The next dimension of the active replication process cost 
during failure-free periods is expressed in terms of the 
latency overhead incurred both to the incoming and the 
outgoing traffic. A run of the application sending 100 
messages of 100 bytes each to the legitimate server provides 
us with a mean latency overhead of about 1,5 ms in a 100 
Mb LAN. The following illustration describes the latency 
overhead incurred to the incoming and to the outgoing 
frames (Fig. 6).  

We can observe that the packet rewriting incurs a fairly 
minimal overhead to the incoming traffic. The gap 
experienced by the outgoing traffic depends however on the 
hardware and on the software tuning as well as on the 
possible network congestion. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 6. Packet rewriting and packet generation latency overhead. 
 
Second, we evaluated the resource's usage overhead due 

to the active replication at the backup node during failure-
free periods in terms of overhead on the CPU, memory and 
network buffers occupancy. 

Following are the illustrations of this overhead in time for 
a run of 100 sec. Fig. 7 depict the CPU usage at both 
replicas during failure-free periods. 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7. CPU usage during failure-free periods. 
 

Fig. 8 describes however the network buffer's usages at 
both nodes during failure-free periods.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Network buffer's usage during failure-free periods. 
 
These illustrations show that the active replication 

resource's usage overhead is fairly minimal during failure-
free periods, meaning that an active/active replication 
scenario would require no more than optimized hardware 
and software tunings of the replicas. 

Next, we evaluated the effectiveness of the described 
setup in providing availability capabilities to a simple 
stateless service. Failure period tests are based on two 
components, which are the failure detection and the failure 
recovery modules. The failure recovery time is indeed 
defined as the sum of the failure detection and the traffic 
takeover latencies. A measure of the takeover latency 
advocates a mean value of 360 ms. This value depends 
basically on the processing capabilities of the backup node. 
Next, we measured the partaking of the failure detection 
granularity on the average recovery time. The following 
table gives the average recovery time for a failure detection 
interval (FDI) of 1, 3 and 5 sec respectively (Tab. 3). One 
hundred packets of 100 bytes each were exchanged over a 
network having a mean RTT of 69 ms. 
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TABLE III 
SERVER SIDE AVERAGE RECOVERY TIME FOR DIFFERENT FAILURE 

DETECTION TUNINGS. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

As shown above, the failure detection procedure should 
be fine grained enough to detect a failure as soon as it 
occurs so as to incur a minimal overhead to the failure 
recovery latency. On the other hand, the mean packet loss 
under the above conditions has been evaluated to 1%. 

Next, we measured the service throughput in bytes per 
seconds before and following an injected failure, as shown 
in the Figure 9. 

Fig. 9. Throughput of the highly available session. 
 

The failure was injected 25 sec after the service starts 
running. The results show that no service degradation 
should be perceived by client following a failure recovery. 

 

V.   CONCLUSION AND FUTURE WORKS 

In this work, we have proposed a complete architecture 
for the availability of Internet services that concerns both 
the firewall and the servers. This architecture is suitable for 
low cost off-the-shelf equipments. The conducted 
experiments show that the solution provides a sustained 
performance both during failure-free and failure periods. 
Also fast client responses and quick recovery are guaranteed. 
As future works, we plan to provide more integrated 
evaluation of both approaches and study multi-primary 
scenarios in which more than one replica deploys the 
service at the same time. 
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