
Towards a Dependable Architecture for Highly
Available Internet Services

Narjess Ayari1, Pablo Neira Ayuso2, Laurent Lefèvre3, Denis Barbaron1, Rafael M. Gasca2

1France Telecom R&D - 2, Avenue Pierre Marzin, 22307 Lannion, France, {narjess.ayari,denis.barbaron}@orange-ftgroup.com
2QUIVIR Research Group - Department of Languages and Systems, ETS Ingenieria Informatica - Avda. Reina Mercedes, s/n

41012 SEVILLA, Spain, {pneira.gasca}@lsi.us.es
3INRIA RESO - LIP - Université de Lyon, - Ecole Normale Supérieure de Lyon - 46, allée d'Italie - 69364 LYON, France,

laurent.lefevre@inria.fr

Abstract- For an improved QoS provisioning, operators are

strongly concerned both with the availability and the reliability
of their performance critical servers. Among these entities, we
mention the firewalls used to filter the offered network traffic
to the operator's information system as well as the end
processing servers which service each incoming client request.
In this work, we advocate and evaluate a full architecture for
highly available services. Performance evaluations show that
our proposed framework incurs a minimal overhead to the
end-to-end communications during failsafe periods and
performs well during failures.

I. INTRODUCTION

Network operators have always been concerned both with
the robustness and the security of the services they provide
to the end clients. For an improved QoS provisioning,
operators are strongly concerned both with the availability
and the reliability of their performance critical servers.
Among these entities, we mention the firewalls used to
block and to monitor the offered network traffic to the
operator's information system as well as the end servers
which process each incoming client request. Firewalls are
placed between the corporative network and the Internet.
They apply filtering policies to determine which traffic is
allowed in the network. Filtering policies are defined by
means of a rule-set. A rule contains several descriptors that
refer to packet header information. Modern firewalls go
further and keep track of the evolution of a traffic flow to
ensure that it evolves in a standard compliant way. This
evolution is stored in a variable so-called state. The state
information can be used to define more intelligent filtering
policies that neutralize several attacks such as TCP reset.

Firewalls and servers are single point of failures in the
network since their failures lead to service disruptions or to
the whole network isolation. Their availability is
particularly important to guarantee that network services are
properly rendered. Existent fault tolerant solutions are not
suitable for stateful firewalls. First, these solutions are not
tailored to the stateful devices. Second, most of them add
severe delays to the client responses.

On the other hand, most of the NGN services are based on
a session model which involves different flows for the
signalling and for the data exchange all along the session

lifespan. Providing reliability means to the whole session
requires providing reliability capabilities to every related
flow.

In this work, we advocate and evaluate a full architecture
for highly available services illustrated in Fig. 1.

Fig. 1. The highly available framework architecture.

The framework replicates the critical components of the

operator information system to provide high availability
capabilities. It generalizes previous works [1,2] on high
availability for Internet servers and stateful firewalls.
Performance evaluations show that the framework incurs a
minimal overhead to the end-to-end communications during
failsafe periods and performs well during failures.

The rest of this paper is organized as follows. In section II,
we describe the related work to high availability. In section
III, we give an overview on the framework components. In
section IV, we present the performance evaluation results.
Finally, we conclude the paper by summarising its potential
perspectives.

II. RELATED WORK

Several research works have been proposed to provide
service reliability support. This work focuses on the client
transparent solutions. An efficient connection failover for
web servers was detailed in [3]. Its main idea consists in a
backup TCP (BTCP) stack implementation that is a silent
version of TCP. The web servers are organized into a ring.

Primary FW
Primary Server

Clients
Backup FW

Backup Server

Active Replication Protocol

DMZ

INTERNET

Filtering, Routing, NAT Application Processing

FT-FW Protocol

Each time a request is received, a balancer forwards it to the
primary as well as to the backup servers. The backup keeps
a backup socket structure that contains the request state.
Since the BTCP stack never sees incoming traffic, some
important information has to be inferred, so the authors
propose a complete logic to infer such information. This
solution requires however server side modifications. A
similar solution is FT-TCP [4] which key concept are the
loggers, a software component that stores in the backup
replica all the packets processed by the primary replica via
network tapping techniques. In case of failure of the primary
node, the backup replays the complete communication until
the last consistent state before the failure is reached.
However, this solution does not scale well for long
connections with high data exchange rates. Moreover, the
authors of FT-TCP do not cover the loggers’ machine
failure. In ST-TCP [5,6], the backup node relies on
intercepting passively the traffic flowing between the
primary node and the clients. The TCP layer receive queue
on the primary node is modified such that it keeps a copy of
any TCP segment already read by the application, unless an
acknowledgment is sent back by the backup node to inform
the primary that the segment has been successfully
processed. The main disadvantage of ST-TCP is its cost
during failsafe periods. In fact, when the backup is not as
fast as the application server on the primary node, the ST-
TCP failover mechanism affects seriously the TCP flow
control on the primary node. This latter would advertise a
reduced congestion window which leads to a less end-to-end
throughput. Moreover, ST-TCP leads to inconsistent
connection states on the backup node when the primary
node fails jointly with a TCP segment loss by the backup
node. In [7], the authors discuss an architecture providing
availability capabilities to stateful firewalls. The
architecture is based on an event-driven model and
describes a library baptized Stateful Networking
Equipments (SNE) library, which allows the
implementation of highly available firewalls and routers.
However, the proposed work assumes server side
dependencies.

III. GENERAL ARCHITECTURE

This work generalizes previous works on the high
availability of stateful firewalls [1] and connection oriented
flows [2]. In the following, we give an overview of the
building blocs of the proposed architecture.

A. FT-FW
FT-FW is a complete solution for cluster-based fault

tolerant stateful firewalls that keeps in mind simplicity,
transparency, fast responses to clients and low cost.
Basically, the solution must guarantee negligible delay in
client responses so that bandwidth performance is not
reduced. Our solution is composed of two parts: the
hardware and the software architectures. The main idea of
the hardware architecture is the firewall cluster. This cluster

is composed of two or more firewalls replicas that are
deployed in the local area network always coupled two by
two. These replicas are connected through a dedicated link
that is used to propagate state changes. We assume that, at
least, one firewall replica acts as Primary, so that deploys
the traffic filtering, and the other acts as Backup.

On the other hand, the software architecture follows an
event-driven model (EDM) whereby any change in the state
variable is propagated through an event. These events are
produced by the stateful firewall and consumed by the state
proxy (SP). The SP is an application that propagates state
changes to other replicas through the dedicated link. The
EDM suits well for distributed systems since share many of
the same characteristics such as modularity and loose-
coupling, and whose asynchronous nature suits well for the
performance requirements of stateful firewalls. This
architecture is not dependent of the failure detection schema.
So, we assume a failure detection software, i.e. an
implementation of VRRP, that works in cooperation with
the SP.

The stateful firewall provides a framework to subscribe to
state change events, dump the state of all existent traffic
flows, and inject states to the stateful firewall to implement
state recovery during failures. The SPs use this framework
to interact with the stateful firewall.

At start-up, every SP dumps the existent states and stores
them in a cache, so-called internal cache, and subscribes to
events of state change to keep the cache up to date. The SP
also maintains another cache to store foreign state changes
that comes from other replicas. Once an event of state
change occurs, the SP that runs in the Primary updates its
internal cache and propagates the state change to the SP that
runs in the Backup so that it updates its external cache. If
the Primary fails, the failure software detection notifies the
SP that invokes the inject method to insert the states stored
by the external cache into the stateful firewall. We represent
the FT-FW architecture and the information flow in Fig. 2.

Fig. 2. The FT-FW architecture.

In order to communicate, the SPs use a replication

protocol which must guarantee high current state durability
(CSD), which is the probability that current states can
survive failures [8]. Nevertheless, the protocol must

introduce a negligible delay in client responses. For that
reason, we discard any synchronous replication protocol
used in database environments that would guarantee CSD of
1 but, in return, introduce a severe penalty in client
responses. Therefore, the replication protocol must be
asynchronous. However, the use of an asynchronous
solutions does not guarantee that the firewall replicas
contain the same set of states at any time, ie. we cannot
guarantee that replicas are one-copy equivalences.
Nevertheless, our target is to improve CSD without harming
client responses. Therefore, the use of an asynchronous
turns out the only feasible solution. We have already
proposed a reliable UDP-based replication protocol that
addresses the problems exposed above [1].

B. The Active Replication Building Blocs
The used active replication based framework is a

generalization of a previous work on the reliability of
connection oriented flows. It achieves its goals by providing
particular processing during failure-free and during failure
periods. First, during failure-free periods, it provides means
to achieve a consistent and a transparent replication of every
service state, be it kernel level or application level. The
kernel level states include for instance the flow level states,
the connection tracking states, etc. The application level
states are however the states associated to the application
running on the highly available node.

Second, the framework guarantees service consistency
during the active replication process by guarantying that
only one replica is providing the service at once. All the
other replicas are however silent.

In case a failure occurs at the primary server, the replica
first takes over its network level identity. Then it leaves the
silent mode and enters the master mode where it fully
provides the service to the end clients.

The proposed framework assumes first the test bed
illustrated by Fig. 3. According to it, a replica is able to non-
intrusively tap the traffic legitimately flowing between the
primary node and the end clients.

Fig. 3. The active replication infrastructure.

The backup is engineered such that it actively replicates
the primary's states. In order to our infrastructure to cope
with a wide range of applications and services, we opted to
let both the primary and the backup nodes share the same
virtual IP address of the service. This approach is
particularly interesting in case we want to actively replicate
a server which explicitly involves network level identifiers
at the upper layer protocols during the regular processing of
the offered requests. This is typically the case of network
address translation (NAT) devices and application level
gateway (ALG) devices which handle signaling traffic. The
effective association between the virtual IP address of the
service and the link level identifier of the node is provided
by means of ARP gratuitous flooding. Indeed, during
failure-free periods, the primary node initiates the flooding.
The backup node is on the other hand engineered such that
it ignores any ARP request. Static entries are however
required in its ARP table. Once a failure occurs, the backup
node performs gratuitous ARP flooding in order to take over
the network level identity of the service. Finally, a
consistent end-to-end service is provided during failure-free
periods by dropping the outgoing traffic generated by the
backup consequently to the active replication.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the FT-
FW and the active replication based protocols.

Since firewalls are subject to a heavy load, we choose to
evaluate FT-FW using an AMD Opteron dual core 2.2GHz
hosts connected to an 1G Ethernet network. The active
replication framework is however evaluated using less
powerful machines.

A. FT-FW protocol Results
The schema is composed of four hosts: Host A and B that

act as workstations and FW1 and FW2 that are the firewalls
(Fig. 1). We have adopted a Primary-Backup configuration
for simplicity. Thus, FW1 acts as Primary and FW2 acts as
Backup. In order to evaluate the solution, we reproduce a
very hostile scenario in which one of the hosts generates lots
of short connections. Thus, generating loads of state change
messages. Specifically, the host A requests HTML files of 4
KBytes to host B that runs a web server. We created up to
2500 GET HTTP requests per second (maximum
connections rate reached with the test bed used). For the test
case the Apache web server and a simple client HTML suite
have been used.

To evaluate FT-FW, we have implemented a state proxy
daemon for stateful firewalls so-called conntrackd
(connection tracking daemon) [9]. This software is a user-
space program written in C that runs on Linux. We did not
use any optimization in the compilation.

Backup

Client #1

Client #n

PM Switch

Incoming Traffic

Outgoing Traffic

Heartbeat

VIP

VIP

Gratuitous ARP
(1)

Gratuitous ARP
(2)

(1) During failure free
 periods

(2) During failures

(1) ARP Disabled

Primary

Fig. 4. CPU overhead.

We have measured CPU usage in FW1 and FW2 with and

without full state replication. The tool cycle soak has been
used to obtain accurate CPU consumption measurements.
For the sake of simplicity, we use a reduced version of the
graph of TCP states that consists of six states: syn_sent,
syn_recv, established, time_wait, fin_wait, close. This
means that we have generated up to 6 * total number of
requests. The results obtained in the experimentation has
been expressed in a graph (Fig.~\ref{load}). The full state
replication is CPU consuming, reaching up to 42.7\% of
CPU load. Not surpringsly, the full replication of short
connection is costly due to the amount of states propagated.

Fig. 5. Time required to inject objects

In order to obtain the delay that FT-FW introduces in
client responses, we have created up to 1700 HTTP GET
requests per second while measuring the round trip time of
an ICMP echo request/reply (ping pong time) with and
without replication enabled. The results have been
expressed in the following table (in milliseconds) (Tab. 1).

 TABLE I
HTTP GET rps w/o replication replication
1500 238.5 246
1700 243 247

As we can observe, the increment in the round trip time is

between 4 and 7 milliseconds so that we can say that the
delay introduced in client's responses is negligible.

We have also measured the time to inject state objects
that represents connections from the proxy daemon external
cache to the in-kernel CTS. The results (Fig.. 5) show that
the injection of 20000 state objects is close to 180 ms, that
is an affordable delay. Another obvious conclusion
extracted from the results obtained is that the time required
to inject objects increases linearly.

We can conclude from the results that FT-FW requires
extra CPU power in order to improve CSD of CBSF but
have negligible impact in terms of client response time.

B. Active replication results
We run our experiments using three separate machines,

one each for the client, the server and the replica as shown
in Fig. 3. On the backup server, we installed the active
replication user and kernel space modules. The primary and
the backup are 2089 MHz AMD Athlon XP 2800+ PCs with
512 KB of cache and an SDRAM 512 MB memory. On
both machines, the Linux 2.6.18 kernel is running. The
client is a 1.60 GHz Pentium(R) Laptop with 512 MB of
memory and also running Linux, although it could be
running any other OS and TCP/IP stack. The client used a
Broadcom NetXtreme Gigabit Ethernet card. Each replica
uses three 100/1000 Ethernet PCI cards. The three machines
are connected to the same LAN using a 100 Mb Ethernet
port mirroring capable Catalyst 3500 series XL CISCO
switch.

All the active replication modules are required on the
backup node during failure-free periods and no
modifications are required either to the client or to the
legitimate server to achieve state replication. As a result, no
active replication overhead is incurred to the active sessions
during failure-free periods. During failure-free periods, we
evaluated the active replication process performance based
on measures conducted at the backup node. The first metric
we considered is consistency. First, we checked that the
infrastructure correctly rewrites the incoming traffic to the
backup's NIC. We checked also that this traffic is properly
delivered to the upper layers which consequently generate
an outgoing traffic destined to the legitimate client. We
checked that the legitimate outgoing traffic, used to build
consistent TCP states is also correctly intercepted and
analyzed (Tab. 2).

TABLE II
STATE ACTIVE REPLICATION CONSISTENCY EXPERIMENT

Application Traffic Interception and
Rewriting at the Backup

Outgoing Traffic
Generation at the Backup

Echo Correct frames
(Headers + Data)

Correct replies
(Headers + Data)

In order to provide service consistency, the duplicated

outgoing traffic generated by the backup node is however
dropped at the backup's network layer using Iptables based
rules.

The next dimension of the active replication process cost
during failure-free periods is expressed in terms of the
latency overhead incurred both to the incoming and the
outgoing traffic. A run of the application sending 100
messages of 100 bytes each to the legitimate server provides
us with a mean latency overhead of about 1,5 ms in a 100
Mb LAN. The following illustration describes the latency
overhead incurred to the incoming and to the outgoing
frames (Fig. 6).

We can observe that the packet rewriting incurs a fairly
minimal overhead to the incoming traffic. The gap
experienced by the outgoing traffic depends however on the
hardware and on the software tuning as well as on the
possible network congestion.

Fig. 6. Packet rewriting and packet generation latency overhead.

Second, we evaluated the resource's usage overhead due

to the active replication at the backup node during failure-
free periods in terms of overhead on the CPU, memory and
network buffers occupancy.

Following are the illustrations of this overhead in time for
a run of 100 sec. Fig. 7 depict the CPU usage at both
replicas during failure-free periods.

Fig. 7. CPU usage during failure-free periods.

Fig. 8 describes however the network buffer's usages at
both nodes during failure-free periods.

Fig. 8. Network buffer's usage during failure-free periods.

These illustrations show that the active replication

resource's usage overhead is fairly minimal during failure-
free periods, meaning that an active/active replication
scenario would require no more than optimized hardware
and software tunings of the replicas.

Next, we evaluated the effectiveness of the described
setup in providing availability capabilities to a simple
stateless service. Failure period tests are based on two
components, which are the failure detection and the failure
recovery modules. The failure recovery time is indeed
defined as the sum of the failure detection and the traffic
takeover latencies. A measure of the takeover latency
advocates a mean value of 360 ms. This value depends
basically on the processing capabilities of the backup node.
Next, we measured the partaking of the failure detection
granularity on the average recovery time. The following
table gives the average recovery time for a failure detection
interval (FDI) of 1, 3 and 5 sec respectively (Tab. 3). One
hundred packets of 100 bytes each were exchanged over a
network having a mean RTT of 69 ms.

Failure Free Period Replication Cost - Latency Overhead
per Frame

0
0,0005
0,001
0,0015
0,002
0,0025
0,003
0,0035
0,004

0 20 40 60 80 100 120
Frame Identifier

La
te
nc
y
O
ve
rh
ea
d

(m
ic
ro
se
c.
)

Incoming T raf ic Overhead
Outgo ing T raf ic Overhead

P acket size 100 bytes
mean RTT ~ 1,29 ms

Failure Free Period Active Replication Cost - % CPU Usage

0

0,005

0,01

0,015

0,02

0,025

0 10 20 30 40 50
Time (sec)

%
 C
PU
 L
oa
d

Backup

Primary

Failure Free Period Active Replication Cost - Network
Buffer's Usage

0

5000000

10000000

15000000

0 10 20 30 40 50 60
Network Buffer's Usage (bytes)

Ti
m
e
(s
ec
.)

B ackup received bytes

Backup sent bytes

P rimary received/ sent bytes

TABLE III
SERVER SIDE AVERAGE RECOVERY TIME FOR DIFFERENT FAILURE

DETECTION TUNINGS.

As shown above, the failure detection procedure should
be fine grained enough to detect a failure as soon as it
occurs so as to incur a minimal overhead to the failure
recovery latency. On the other hand, the mean packet loss
under the above conditions has been evaluated to 1%.

Next, we measured the service throughput in bytes per
seconds before and following an injected failure, as shown
in the Figure 9.

Fig. 9. Throughput of the highly available session.

The failure was injected 25 sec after the service starts
running. The results show that no service degradation
should be perceived by client following a failure recovery.

V. CONCLUSION AND FUTURE WORKS

In this work, we have proposed a complete architecture
for the availability of Internet services that concerns both
the firewall and the servers. This architecture is suitable for
low cost off-the-shelf equipments. The conducted
experiments show that the solution provides a sustained
performance both during failure-free and failure periods.
Also fast client responses and quick recovery are guaranteed.
As future works, we plan to provide more integrated
evaluation of both approaches and study multi-primary
scenarios in which more than one replica deploys the
service at the same time.

REFERENCES
[1] P.Neira, R.M.Gasca, L.Lefevre. "FT-FW: Efficient Connection Failover
in Cluster-based Stateful Firewall". In 16th Euromicro International
Conference on Parallel, Distributed and network-based Processing,
Toulouse, France, feb 2008. Available: http://dune.lsi.us.es/~pablo/fw.pdf

[2] N. Ayari, D. Barbaron, L. Lefèvre, P. Primet, "T2CPAR: A system for
Transparent TCP Active Replication", The IEEE 21st International
Conference on Advanced Information Networking and Applications
(AINA-07), 20th-24th May 2007.
[3] N. Aghdaie and Y. Tamir, “Client-transparent fault-tolerant web
service,” in 20th IEEE International Performance, Computing, and
Communication conference, 2001, pp. 209–216.
[4] Dmitrii Zagorodnov, Keith Marzullo, Lorenzo Alvisi, Thomas C.
Bressoud, "Engineering Fault-Tolerant TCP/IP Servers Using FT-TCP",
Proceedings of the International Conference on Dependable Systems and
Networks, DSN 2003.
[5] M. Marwah, S. Mishra, C. Fetzer, "TPC server fault tolerance using
connection migration to a backup server", Proceedings of the International
Conference on Dependable Systems and Networks, DSN 2003.
[6] Manish Marwah, Shivakant Mishra, Fetzer, C., "A system
demonstration of ST-TCP", Proceedings of the International Conference on
Dependable Systems and Networks, DSN 2005.
[7] P. Neira, L. Lefevre, and R. M. Gasca, “High availability support for
the design of stateful networking equipments,” in IEEE proceeding
ARES’06: The First International Conference on Availability, Reliability
and Security, Vienna, Austria, apr 2006.
[8] X. Zhang, M. A. Hiltunen, K. Marzullo, and R. D. Schlichting,
Customizable service state durability for service oriented architectures, in
IEEE Proceedings of EDCC-6: European Dependable Computing
Conference, Coimbra, Portugal, oct 2006.
 [9] P. Neira, conntrack-tools: The netfilter's connection tracking userspace
daemon, http://people.netfilter.org/pablo/conntrack-tools/.

FDI (sec)
Average Failure

Detection Latency
(micro sec)

Avg
Takeover
Latency

(micro sec)

Avg
Recovery

Time
(micro sec)

1 2 153 039 0 359 052 2 512 091
3 3 655 465 0 371 398 4 026 863
5 5 141 020 0 374 115 5 515 135

Failure Period Active Replication Cost - Perceived
Throughput of the Active Session at the Backup

0
1000
2000
3000
4000
5000

0 5 10 15 20 25 30
Time (sec)

Th
ro
ug
hp
ut
 (b
ps
ec
)

Failure time

