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Abstract

Large scale e-Research environments face classical
distributed challenges: performance, heterogeneous
equipments and variable contexts. But, the users
of such infrastructures want to benefit from full in-
teractive environments based on multimedia streams
(voice, video, VR.) which are difficult to design and
support on a large scale basis. In this paper, we
present a new approach to efficiently support the
streaming of live flows between e-Researchers. We
show, that traditional techniques (using TCP-based
live streaming) are unsuitable for infrastructures with
long delay and high loss rate. TCP introduces rate os-
cillations and requires more buffering and bandwidth
to sustain a smooth playout. We propose a stream-
ing framework which provides a smoother rate con-
trol than TCP and improves streaming performance
based on cross layer feedback between the transport
protocol and streaming server. Our solution keeps the
buffer usage at the client and server to a minimum
level and provides quick rate adaptation. This paper
presents simulation results for streaming in different
eResearch scenarios.

Keywords: Live streaming, eResearch, Congestion
control, Multimedia communication, Streaming me-
dia,

1 Introduction

Many eResearch projects are large enough to require
skills and expertise of scientists distributed around
the world. Some of these eResearch problems are
based on regional and geographical contexts, in which
collaboration across distance is critical[3]. Recently
several projects have been undertaken to create col-
laborative eResearch tools and infrastructures[17][2].
These projects use the Internet as a viable platform
for long distance collaboration among eResearchers.
Live streaming is one of the key techniques for dis-
seminating lectures, tutorials and eLearning content
in such a collaborative research environment. How-
ever the user experience of streaming over the inter-
net is not always satisfactory. A recent measurement
study on Internet streaming has reported that about
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13% home and 40% of business streaming sessions
suffer various quality degradationes[9].

Historically the Internet does not provide any
Quality of Service (QoS) i.e guarantee in minimum
bandwidth and delay in packet transmission. De-
pending on the level of over provisioning the available
bandwidth may vary significantly at times of con-
gestion. In order to create high quality interactive
sessions the eResearch community must have access
to high bandwidth links which may not be always
available among all researchers even in today’s mod-
ern universities. This situation is more complicated
when the research project involves collaboration with
research facilities in developing countries with com-
paratively low bandwidth, high inter-link delay and
loss rate.

A recent measurement study have reported sig-
nificant disparity in end-to-end link delay between
different parts of the world[8]. According to that
report the minimum RTT between United States
and East-Asian or some African countries ranges be-
tween 250ms to 400ms. The minimum RTT between
United States and most European or Australasian
countries varies between 100 to 250ms.But in some
other African countries, where satellite link is still
prevalent, the minimum RTT is above 600ms. As
the delay between links increases interactive commu-
nication using traditional techniques becomes more
challenging.

In this paper we illustrate the performance of live
streaming in three different eResearch scenarios. The
scenarios were chosen to represent links with different
RTT groups:

• National eResearch infrastructure : links within
New Zealand.

• Large scale eResearch infrastructure : links be-
tween Australia/New Zealand and North Amer-
ican/European countries.

• Worldwide eResearch infrastructure : links
between Australia/New Zealand and East-
Asian/African Countries.

eResearch infrastructures can benefit from tradi-
tional group comunications in networks (like multi-
cast) to allow efficient delivery to large numbers of
clients (see Figure 1).

But, in contrast to traditional client-server based
live streaming methods, eResearch community needs
to establish point-to-point streaming session between
end hosts. The possible scenario is shown in figure 2.
In addition to regular PC based sessions there are
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Figure 1: Multicast supported e-Research scenario

ubiquitous computing devices like PDAs and hand-
held mobile devices connected through different ac-
cess links having different QoS. In many cases the
ubiquitous computing devices used in eResearch may
have limited memory and processing power. As a re-
sult the traditional streaming techniques which re-
quire significant computational ressources may ap-
pear to be insufficient in many occasions. A suitable
streaming framework for eResearch scenarios must
support devices with limited memory and processing
resources.
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Figure 2: Point-to-Point eResearch scenario

Streaming applications use a playout buffer at the
client side to hide the inter packet delay variation
from the playback process. The idea is to prefetch
some packets for future playback and thus protecting
the stream playback from stalling when the available
bandwidth drops below the application’s streamed bit
rate. Although this mechanism can protect playback
disruptions for a brief period of congestion, as the
inter-link delay/loss increases the amount of required
playout buffer also increases. For live streaming the
buffering adds delay in stream playback and this delay
is unacceptable beyond a certain range.

Live streaming applications can tolerate few
packet drops but require in time delivery of pack-
ets. Although UDP is a preferable transport protocol
to most streaming applications, very often UDP is
blocked by Firewalls for security reasons. As a re-
sult TCP is used by almost 70% live streaming ses-
sions on the Internet[9]. TCPs congestion control
mechanism pro-actively controls the sending rate of
the application. On a single packet loss, TCP cuts
the transmission rate by half and blocks the deliv-
ery of packets to the receiving application until the

lost packet is received through retransmission. Real-
izing the limitations of TCP, the Internet Engineer-
ing Task Force(IETF) is designing a new transport
protocol named Datagram Congestion Control Proto-
col (DCCP)[7] which decouples reliability from con-
gestion control and incorporates TCP-Friendly Rate
Control(TFRC)[10] as a viable rate control algorithm
for multimedia applications. TFRC is a equation
based rate control algorithm which provides smoother
throughput while being friendly to TCP applications.
DCCP is still under development and requires more
testing.

In this paper we conduct experiments with TCP
and TFRC for streaming in different eReseacrh sce-
narios and propose a framework for Point-to-Point
streaming. Our approach makes the streaming ap-
plication more adaptive by providing fine grain cross
layer feedback between the application and the trans-
port protocol. We introduce Dynamic Buffer Ac-
tive Tuning (DBAT), which monitors the send buffer
queue size and provides feedback to the application
when the queue size increases beyond a threshhold.
Using network simulator ns-2[1] this paper illustrates
that the proposed framework requires less buffering
delay and improves streaming performance by reduc-
ing playback interruptions.

The paper is organized as follows. In section 2
some background on streaming techniques and the
underlying transport protocols are discussed. The
proposed framework is presented in section 3. In sec-
tion 4 the experimental results are illustrated. Some
related work is discussed in section 5 and section 6
contains the future work and conclusion.

2 Background

Classical streaming applications supports multiple
level of streamed bit-rate in order to match the avail-
able bandwidth with the streamed bit-rate.

2.1 Streaming Application Model

In traditional streaming solutions, the client and
server exchange control packets to negotiate appropri-
ate sending rates. At the beginning of the session the
server uses some packet pair based bandwidth prob-
ing technique to determine the available bandwidth
and chooses the streaming bit rate accordingly. A
playout buffer is used at the client side to reduce the
effects of inter packet jitter. Playback starts as soon
as the buffer is full upto a certain threshold.

A streaming server goes through three phases:

• Buffering: If the size of the playout buffer is
large, the initial buffering period is longer but it
protects playback interruptions when the avail-
able bandwidth briefly drops below streamed bit
rate. For live streaming this delay in buffering
should be low.

• Playback: As long as there are packets at the
playout buffer the client keeps playing at the en-
coding rate.

• Re-buffering: If the buffer gets empty playback
has to stop until the buffer is full upto the thresh-
old level.

Streaming client and server sit on a control loop to
monitor the packet loss rate and client side buffers
status. Whenever the packet loss rate crosses a
pre-defined threshold or a re-buffering event occurs,
depending on the available bandwidth the stream-
ing server might change streamed bit-rate and starts
streaming at the new rate. As shown in figure 3 this
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Figure 3: Classical streaming architecture based on
TCP / TFRC

loop is decoupled from the rate control loop of the
transport protocol i.e there is no exchange of cross
layer information.

2.2 Streaming Performance Metrics

Streaming performance can be evaluated in terms of
re-buffering event, packet loss rate, smoothness in
achieved throughput of streamed flows.

• Number of Packet lost in Burst: Streaming
audio-video applications are able tolerate few
packet losses but streaming performance de-
grades if packets are lost in burst.

• Number of Re-buffering Events: Every time the
playout buffer gets drained below the threshold
playback is paused until the buffer becomes full
again. This abrupt interruptions in playback
drastically impacts the quality of the streaming
session. The number of re-buffering events and
the percentage of time spent for buffering can be
a good performance indication of streaming ser-
vice.

• Average Service Rate: If the application is able
to sustain to a high streamed bit rate for long
time the streamed content is of high quality and
this improves the users perception of streaming.

A streaming application is able to reduce the num-
ber of packet loss and/or the possibility of re-buffering
events by quickly adjusting the sending rate. The role
of the underlying transport protocol is utmost impor-
tant for such an application. A send buffer is required
to deal with the rate mismatch between the applica-
tions sending rate and the transport protocols allowed
transmission rate. This buffering adds end-to-end de-
lay and may become an obstacle for achieving the new
streamed bit-rate when stream switching occurs. We
call this stream switch response time.

A canonical streaming application emits packets
at a constant rate. The transport protocol is respon-
sible for sending the packets from the send buffer to
the network interface. When the applications packet
generation rate is less than the transmission rate of
the underlying transport protocol packets are queued
at the send buffer. But as the feedback delay be-
tween the client and server increases the client’s feed-
back becomes outdated and the application level rate
adaptation mechanism is unable to react soon enough
to reduce packet loss and re-buffering events. Some
mechanism for reducing this feedback delay will be
hugely beneficial.

2.3 Transport Protocol for streaming

2.3.1 TCP

It is well known that TCP’s congestion control[11]
mechanism is vital for the scalability of the Inter-

net. In order to avoid congestion and ensure fair-
ness among competing flows TCP controls the send-
ing rate of the application using an Additive-Increase-
Multiplicative-Decrease (AIMD) algorithm. TCP
keeps an estimate of the available bandwidth for the
next RTT using a variable known as congestion win-
dow.

Although UDP is preferable to most streaming
applications, TCP is often used more often. How-
ever the reliable, in ordered and congestion controlled
service model of TCP is inappropriate for streaming
flows which require more control and flexibility over
its flows. Following are the main obstacles for stream-
ing using TCP:

• Information Hiding : TCP hides the loss rate
and RTT information from the application.

• Delay Buffering : TCP’s window based conges-
tion control mechanism requires a send buffer at
the application to transport layer interface for
briefly storing the in flight packets as well as
enough new packets to saturate the congestion
window in the next flight.

• Abrupt Rate Controling : TCPs AIMD cuts down
the applications sending rate by half on a single
packet loss. The application does not get enough
time to adapt the sending rate. As a result a
large number of packets are buffered at the send
buffer.

• Head-of-line Blocking Introducing : Whenever a
packet loss is detected TCPs in order delivery
mechanism blocks the delivery of received pack-
ets to the client until the lost packet is delivered
through retransmission.

Although the effects of TCP’s rate fluctuation due
to congestion control can be reduced using the client
side playout buffer, as the link delay increases the
buffering becomes insufficient to reduce the effects of
rate variation. For live streaming it is challenging to
stream on TCP if the link-delay and/or loss rate is
comparatively significant.

2.3.2 TFRC

TCP-Friendly Rate Control(TFRC)[10] is a rate con-
trol algorithm which provides smoother throughput
by reacting slowly on packet loss rate while being
friendly to other TCP flows. Since most applications
on the Internet are TCP based, in order to be a good
network citizen, a deployable congestion control al-
gorithm should be friendly to TCP flows. A flow is
TCP-friendly if its average sending rate is no more
than a TCP flow running between the same links. A
TFRC sender calculates the TCP throughput using
a TCP equation[16] based on receiver’s feedback on
loss event rate, received packet rate and the RTT in-
formation.

TFRC has been incorporated as an alterna-
tive congestion control algorithm for the newly
standardized Datagram Congestion Control
Protocol(DCCP)[7]. DCCP provides an unreli-
able service with reliable connection establishment
and option negotiation states. Applications using
DCCP has the option to choose different congestion
control mechanism for each direction. Right now
only two types of congestion control has been
standardized, TCP-like and TFRC.

Due to the smoother rate control TFRC requires
less playout buffer space than TCP. But various stud-
ies have reported poor performance of TFRC based
audio-video transmission. For streaming application
even though TFRC reacts slowly on congestion events



the sender can only reacts based on receivers feed-
back. An early feedback on congestion events will
give more time to the sender for rate adaptation.

3 Proposed Framework : Dynamic Buffer
Active Tuning (DBAT)

In this section we discuss our active queue manage-
ment mechanism named Dynamic Buffer Active Tun-
ing(DBAT). The goals of DBAT are as follows:

• Reduce buffering delay: DBAT Keeps the send
buffer queue at a minimum level.

• Provide feedback to application: DBAT sends
feedback to the application depending on the
level of send buffer queue size.

• Preferential treatment of marked packets: When
the send buffer queue size increases beyond a
certain threshold DBAT only sends the marked
packets.

3.1 Motivation

The motivation for designing DBAT is to make the
streaming application more adaptive and reactive.
The traditional method of changing streamed bit-rate
based upon packet loss rate and client side buffer un-
derflow is inefficient. By the time the application re-
acts to the changing available bandwidth it might be
too late due to the delay in the feedback loop and
send buffer.
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Figure 4: Water Clock Model

The idea behind DBAT can be easily understood
by looking at the water clock model as shown in the
figure 4[5]. In order to maintain a constant flow rate
into the main tank of the clock, the water level at the
regulating tank is held nearly constant. This constant
level is achieved through a float valve, which is essen-
tially a feedback mechanism. Water from an exter-
nal supply enters the regulating tank through a pipe.
When the water level at the regulating tank rises it
forces the floating ball to tighten against the pipe
opening, reducing the input supply rate. When the
level drops, the input rate increases. In our stream-
ing architecture, DBAT plays the role of the regulat-
ing tank to keep the packet transmission rate at a
constant level.

3.2 DBAT Architecture

As shown in figure 5, DBAT couples the applica-
tions control loop with the transport protocols control
loop. Upon connection establishment the application

informs the transport protocol about its streamed bit-
rate and the transport protocol tries its best to sus-
tain that rate. It is noted that streaming applications
are data limited and as such cannot grab the avail-
able capacity. Knowing the applications desired rate,
the transport protocol limits its sending rate up to a
certain range.
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Figure 5: DBAT Architecture

DBAT monitors the send buffer queue size and
sends upcall feedback to the sender application when
the queue size is increased beyond a threshold. As
shown in Figure 6, DBAT keeps a minimum threshold
and a maximum threshold for controlling the send
buffer queue size. Minimum threshold is calculated by
multiplying the streamed bit-rate with the delay and
the Maximum threshold is set to twice the minimum
threshold.
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Figure 6: DBAT Queue

On each packet arrival the weighted queue length,
Qavg is calculated. If the average queue length in-
creases beyond the mid point of Minimum and Maxi-
mum threshold a feedback is sent to the sender. The
number of feedback is limited to at most one per RTT.
If Qavg grows beyond the maximum threshold then
only marked packets are transmitted. The algorithm
is quickly presentd in Figure 7.

4 Experimental Results

In this section we present the experimental results
for different representative eResearch scenarios. We
use network simulator, ns-2 [1] as our preferred ve-
hicle for simulation. Currently the standard ns-2
distribution does not have any streaming module in-
cluded. However we found a streaming module named
Goddard [12] which is suitable for our experiments.
We integrated Goddard in ns-2 and conducted ex-
periments using it.Goddard is based on the behaviors
of Real Networks and Windows Streaming Media[6].
During streaming Goddard client and server re-select



Min_Th = streamed_bit-rate*delay
Max_Th = 2*Min_Th

On Each Packet Arrival
calculate weighted avg queue length, Qavg

If Qavg > Max_Th
preferentially drop unmarked packets
else if Qavg > (Max_Th + Min_Th )/2
if last_feedback_time > RTT
send feedback

Figure 7: DBAT Algorithm

the streamed bit-rate in response to network packet
loss or re-buffering events that occur when the client
playout buffer get emptied. Goddard server supports
multi bit-rate streaming. For ease of simulation we
only vary the inter-packet gap to stream at the rate
of 80,120,240,320,640,960 and 1920 kbps.

Goddard does not have any support for TFRC.
We modified the code so that we can use TFRC as
a transport protocol for streaming. We found that
the TFRC implementation in ns-2 does not have any
real data transmission capability which is required by
the streaming module. We changed the interface of
this implementation so that data can be transmit-
ted with each packet enabling Goddard client and
server to exchange media frames. By default the ns-2
implementation of TFRC has a infinite send buffer.
We introduced a send buffer with adjustable size into
TFRC. As for TCP we modified the full-TCP imple-
mentation of ns-2 to support adjustable send buffer
size. To the best of our knowledge we are the first
to conduct experiments involving the interaction of
streaming application with TFRC in ns-2.
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Figure 8: Live streaming simulation topology

We use the dumbbell topology for simulat-
ing Point-to-Point live streaming in eReseach ses-
sions(Figure 8). Depending on the scenario, we set
the link delay. But in all cases our streaming flow
competes with a TCP flow and 20 short TCP flows
representing FTP and the web traffic respectively.
The FTP flow starts at 0.1 sec and stops at 200the

The bottleneck link is 1 Mbps and we vary the
link delay depending 200ms delay. The various. In
all cases one streaming flow is competing with a back-
ground FTP flow and HTTP flows. The HTTP traf-
fic is generated using empirical data provided by ns.
The FTP application starts at 0.1 seconds and stops
at 200 seconds. The streaming flow starts at 30 sec-
onds and stops at 240 seconds. The bottleneck router
queue size is set to twice the bandwidth and delay
product of the link. Due to the randomness of the
background HTTP traffic the loss rate of the bottle-
neck link may vary. Therefore, for each scenario we
run the experiment several times and plot the average
values only.

4.1 Scenario 1: National eResearch infras-
tructure : links within New Zealand.
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Figure 9: Streaming throughput with 20ms RTT
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Figure 10: Streaming latency with 20ms RTT

4.2 Scenario 2: Large scale eResearch infras-
tructure : links between Australia/New
Zealand and North American/Europian
countries
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Figure 11: Streaming throughput with 150ms RTT

4.3 Scenario 3: Worlwide eResearch infras-
tructure : links between Australia/New
Zealand and East-Asian/African Coun-
tries

5 Related Work

In an experimental study Balan et al.[18] reports that
voice quality is not improved when TFRC is used for
rate control. Wang et al.[19] developed an analyt-
ical model for TCP based streaming and concludes
that TCP generally provides a good streaming per-
formance when the achievable TCP throughput is
roughly twice the media bit-rate with only a few sec-
onds of start up delay. Luo et al.[9] presents the re-
sult of measurement study based on large streaming
media work load taken from thousands of broadband
home users and business users hosted by a major ISP.
It shows that the median time to change to a lower
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Figure 12: Streaming latency with 150ms RTT

bit-rate stream was around 4 seconds and proposes
coordinated streaming, a mechanism that coordinates
client side buffering and rate adaptaton to reduce the
stream switching delay. Krasic et al.[14] presents a
framework for adaptive video streaming based on pri-
ority dropping. Chung et al.[12] developed a trans-
port level protocol named Media Transport Proto-
col(MTP) which removes the burden of in order de-
livery from TCP. Goel et al.[4] proposed a dynamic
send buffer tuning approach where the buffer size is
kept slightly larger than the TCP congestion window
for TCP-based media streaming. Unlike their work
we focus on media streaming on TFRC.

6 Future Work and Conclusion

Our next steps will concern the exploring of router
assistance approach (like XCP[13] needs in terms of
fairness with TCP[15]) and investigate the impact
on DBAT in terms of responsiveness and reactivity.
Morevoer, we will focus on live streaming in group
communication (multicast support, see Figure 1) and
solve some scalability issues (in terms of memory /
buffer usage) by deploying DBAT solutions in clients.
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