
ECOFIT: A Framework to Estimate Energy Consumption
of Fault Tolerance Protocols for HPC Applications

M. el Mehdi Diouri, Olivier Glück, Laurent Lefèvre
Laboratoire de l’Informatique du Parallélisme
CNRS, ENS Lyon, INRIA, Universite Lyon 1

{Mehdi.Diouri, Olivier.Gluck, Laurent.Lefevre}@ens-lyon.fr

Franck Cappello
Laboratoire de Recherche en Informatique - NCSA

INRIA and University of Illinois at Urbana-Champaign
cappello@illinois.edu

Abstract—Energy consumption and fault tolerance are two
interrelated issues to address for designing future exascale
systems. Fault tolerance protocols used for checkpointing have
different energy consumption depending on parameters like
application features, number of processes in the execution and
platform characteristics. Currently, the only way to select a
protocol for a given execution is to pre-execute the application
and monitor the energy consumption of different fault tolerance
protocols. This is needed for any variation of the execution
setting. To avoid this time and energy consuming process, we
propose an energy estimation framework. It relies on an energy
calibration of the considered platform and a user description
of the execution setting. We evaluate the accuracy of our
estimations with real applications running on a real platform
with energy consumption monitoring. Results show that our
estimations are highly accurate and allow selecting the best
fault tolerant protocol without pre-executing the application.

Keywords-Fault tolerance protocols, Checkpoint/Restart; En-
ergy Consumption; Performance; Estimation.

I. INTRODUCTION

Supercomputers are used to run a wide range of scientific
applications in many domains like the design of cars and
aircrafts, the prediction of severe weather phenomena and
seismic waves. In order to meet new scientific challenges
and address critical problems with high societal impact, the
HPC community has set a new performance objective for
the end of the decade: Exascale.

To achieve such performance, an exascale computer will
gather several millions of CPU cores running up to a billion
of threads. From the current knowledge and observations
of existing large systems, it is anticipated that exascale
systems will experience various kind of faults many times
per day [1]. In addition to the increase of errors and
failures, the electrical power consumption is considered as
a potentially limiting factor to the future growth in high
performance computing (HPC) [2]. For exascale systems,
the Defense Advanced Research Projects Agency (DARPA)
has set to 20MW the maximum power consumption. If we
compare it to the 8.21 MW consumed by the current fastest
supercomputer (17.59 PFlops Cray XK7 Titan in the USA),
it is clear that we need to improve the flops/watt by a
factor of 25 in less than 6 years. However, fault tolerance

and energy consumption are interrelated: fault tolerance
consumes energy and some energy reduction techniques can
increase error and failure rates [3].

Thus, to ensure the transition to the exascale era, we must
address both power/energy consumption and fault tolerance.
We know from [4] that the power consumption of fault
tolerant protocols depends on many execution parameters
(the number of processes used, the volume of message
exchanged in the application, characteristics of the execution
platform...) and may vary if even a single parameter differs.
We also know that none of the fault tolerant protocol
outperforms the other with respect to fault tolerance. The
best protocol depends on the execution configuration.

Currently, in order to evaluate the power consumption of
a fault tolerant protocol for any particular execution, the
only approach is to pre-execute the application and monitor
the energy consumption. This approach is not practical for
protocol selection since it does not allow to evaluate power
consumption before the execution. To address this problem,
this paper proposes an accurate estimator of the power
consumption for fault tolerant protocols. This estimator can
be used to estimate the power consumption of a particu-
lar fault tolerant protocol for a large variety of execution
configurations. It can also be used to compare fault tolerant
protocols from given execution configurations.

Our estimator considers the three main families of fault
tolerance protocols: coordinated checkpointing, uncoordi-
nated checkpointing with message logging and the recent
hierarchical protocols. Coordinated checkpointing protocols
are currently the most popular fault tolerant protocols used in
HPC. Coordination essentially consists in removing inflight
messages from the communication network before all pro-
cesses checkpoint [5]. In practice, the performance overhead
of coordination is considered negligible. One open question
is how the power consumption of coordinated checkpointing
protocols evolves with variations of execution parameters.
Another important aspect of coordinated checkpointing is
the need to restart globally the execution during the recovery
even if a single process fails. In principle, global restart
is not needed when processes form totally independent
clusters during the execution [6]. However, in practice, HPC



applications do not present such communication patterns. As
a consequence, global restart is the common case and it leads
to a huge waste of energy because it forces all non failed
processes to redo all their computations and communications
from the last checkpoint.

Uncoordinated checkpointing with message logging ad-
dresses this issue by restarting only the failed processes.
Thus, the power consumption in recovery is supposed to be
much smaller than for coordinated checkpointing. There are
several families of message logging protocols: optimistic,
pessimistic, causal [7]. However, all message logging pro-
tocols need to log all messages sent by all processes during
the whole execution. The performance impact is limited [8].
However, they are consuming more energy than coordinated
protocols for in free situations. How the energy cost of
message logging evolves with the execution parameters is
another open question.

A third family of fault tolerant protocols has been pro-
posed recently to address the limitations of coordinated pro-
tocols and message logging protocols: hierarchical protocols
[9], [10], [11] These protocols combine the advantages of
limited message logging in fault free situation and limited
restart during recovery. These protocols organize processes
of the execution in clusters and log only the inter cluster
messages. Intra cluster messages are not logged. There is no
global coordinated checkpointing but processes inside every
cluster do coordinate before checkpointing. The evolution
of the power consumption of hierarchical protocols with the
execution parameters in fault free and recovery situation is
an open question.

The ECOFIT framework proposed in this paper will help
to give answers to these open questions. This paper is
structured as follows. Section II describes related works.
The design of the energy estimation framework is detailed
in Section III. Section IV presents validation results. Section
V discusses how to choose the less energy consuming fault
tolerance protocol while section VI concludes the paper and
presents some future works.

II. RELATED WORKS

Monitoring energy consumption of large scale HPC sys-
tems still deals with precision, frequency and scalability
issues. Evaluating power consumption of one node or one
process has been extensively explored.

Hardware monitoring systems like Powermon [12] allows
a fine grain monitoring of one server by monitoring each of
the DC power rails supplying the motherboard at a high
frequency level. The Powerpac [13] framework allows a
precise energy monitoring of one HPC node. Based on
the energy profile and independent measures of one node
of an homogeneous cluster, authors emulate measurements
on several nodes. On the opposite side, software systems
like SoftPower [14] estimate the energy consumption by
observing the usage of internal resources. In [15], authors

present a way of evaluating application power consumption.
They describe a methodology for predicting the power
consumption of a computer, depending on performance
counters, and then use these counters to estimate the power
consumption of each single process.

For large scale precise energy monitoring, in works like
[16], [17], authors measure energy consumption of a full
site of the Grid5000 experimental testbed [18]. For their
energy measurements, they use a dedicated energy-sensing
infrastructure available on Grid5000 Lyon site. Authors
analyze information on the energy consumed by the nodes
and show the correlation between the energy logs collected
and the user resource reservation requests.

III. DESIGN OF THE ECOFIT FRAMEWORK

We propose the ECOFIT framework which estimates the
energy consumption due to fault tolerance protocols. In
[19], we describe some basics of this estimator. Our study
focuses on the coordinated, uncoordinated, and hierarchical
protocols. We identify the following high-level operations:

• Checkpointing: performed in both coordinated and un-
coordinated protocols, it consists in storing a snapshot
image of the current application state that can be later
on used for restarting the execution in case of failure.
In our study, we consider the system level checkpoint-
ing provided in the Berkeley Lab Checkpoint/Restart
library (BLCR), and available in the MPICH2 imple-
mentation.

• Message logging: performed in uncoordinated protocols,
it consists in saving on each sender process the mes-
sages sent on a specific storage medium (RAM, HDD,
NFS, ...);

• Coordination: performed in coordinated protocols, it
consists in synchronizing the processes before taking
the checkpoints. If some processes have inflight mes-
sages at the coordination time, all the other ones are
actively polling until these messages are sent. When
there is no more inflight message, all the processes
exchange a synchronization marker.

• Recovery: in case of failure, it consists of restarting the
execution of the application from the last checkpoint.
In uncoordinated protocols, only crashed processes are
restarted. At the opposite, in coordinated protocols, all
processes are restarted even if only one process crashes.

A. Basic operations and associated parameters

Estimating the energy consumption of a given high-level
operation op (checkpointing, message logging, coordination,
or recovery) is really complex as it depends on a large
set of parameters. In checkpointing, the basic operation is
to write the checkpoint on a reliable media storage. For
our study, we consider only the HDD since RAM is not
reliable. In message logging, the basic operation is to write
the message on a given media storage. For our study, we



consider the RAM and the HDD. In coordination, the basic
operations are the active polling during the transmission of
inflight messages and the synchronization that occurs when
there is no more inflight message. In recovery, the basic
operations are the restarting and the application re-execution.
The restarting consists of reading the last checkpoint from a
reliable media storage. The application re-execution consists
of running the application from the checkpoint loaded until
the instant of failure. In this paper, ECOFIT do not consider
the application re-execution energy estimation but it will in
the next future.

These basic operations are associated to parameters that
depend not only on the protocols but also on the application
features, and on the hardware used. Thus, in order to
estimate accurately the energy consumption due to a spe-
cific implementation of a fault tolerance protocol, ECOFIT
needs to take into consideration all the protocol parameters
(checkpointing interval, checkpointing storage destination,
etc.), all the application specifications (number of processes,
number and size of messages exchanged, volume of data
written/read by each process, etc.) and all the hardware
parameters (number of cores per node, memory architecture,
type of hard disk drives, etc.).

We consider that a parameter is a variable of our estimator
only if a variation of this parameter generates a significant
variation of the energy consumption while all the other
parameters are fixed. In order to take into consideration all
the parameters, ECOFIT integrates an automated calibration
component. This calibrator is described in III-B.

B. Calibration approach

Energy consumption depends strongly on the hardware
used in the execution platform. The goal of the calibration
process is to gather energy knowledge of all the identified
basic operations according to the hardware used in the
supercomputer. At this end, we developed a set of simple
benchmarks that extracts the energy consumption ξop of the
basic operations encountered in fault tolerance protocols.
The goal of our calibration approach is to make our energy
estimations accurate on any supercomputer, regardless of its
size (exascale, for instance). Although this knowledge base
has a significant size, it needs to be done only occasionally.

In our calibrator component, the energy consumption of
a node i performing a basic operation op is:

ξiop = ρiop · tiop.

tiop is the time required to perform op by the node i. ρiop
is the power consumption of the node i during tiop. Thus,
for each node i, we need to get the power consumption ρiop,
and the execution time tiop of each operation. Therefore, our
energy calibrator integrates a power calibrator described in
III-B1 and an execution time calibrator described in III-B2.

1) Power consumption ρiop: In our power calibrator, the
power consumption of an operation op is:

ρiop = ρiidle + ∆ρiop

ρiidle is the power consumption when the node i is idle
(i.e. switched on but running only the operating system)
and ∆ρiop is its extra power cost due to the basic operation
execution. We showed in [4] that ρiidle may be different even
for identical nodes. Thus, we calibrate ρiidle by measuring
the power consumption of each node while it is idle. We
also showed in [4] that for a given operation, ∆ρiop depends
only on the hardware used on the node and is consequently
the same on identical nodes. Thus, for each type of nodes,
we measure ∆ρiop during each basic operation op.

In order to measure ∆ρiop experimentally, we isolate
each basic operation by instrumenting the implementation of
each fault tolerance protocol that we consider, and we use
OmegaWatt an external power meter 1. This external power
meter provides up to 1 measure each second with a precision
of 0.125W. We validated our external power measurements
thanks to Powermon 2 [12] which is an internal power meter
that provides up to 1000 power measurements per second.
We simultaneously performed a set of power measurements
with Powermon and OmegaWatt on a same monitored node.
We noticed that during a given operation, ∆ρiop is almost
constant. We can then consider that one power measurement
per second is enough to measure ∆ρiop. That is why we
make the choice in ECOFIT to measure ∆ρiop externally as
it is easier to plug an external power meter that furthermore
includes also the extra power consumption due to the fans
and to the power supply.

In order to take into account the impact of parallelism,
ECOFIT calibrates ∆ρiop by varying the number of cores that
perform the same op. Now that we know how to calibrate the
power consumption ρiop for each operation and for each node
of the supercomputer, we need to describe how to calibrate
the execution time tiop.

2) Execution time tiop: In this section, we describe the
execution time model that we consider for each high-level
operations of fault tolerance protocol. For each operation op,
tiop depends on different parameters.

Checkpointing, Message logging and Restarting: For a
given node i, the time required for checkpointing a volume
of data, for logging a message, or for restarting from a
checkpoint is:

tiop = tiaccess + titransfer = tiaccess + Vdata

ritransfer

tiaccess is the time needed to access the storage media
where the message will be logged, where the checkpoint
will be stored, or from where the checkpoint will be loaded.
titransfer is the time needed to write/read a data on/from a
given storage media. ritransfer is the transmission rate of
the storage media.
tiaccess and ritransfer are almost constant when we con-

sider volumes of data of the same order of magnitude.

1http://www.omegawatt.fr/gb/index.php



Therefore, to calibrate tiop, ECOFIT automatically runs a
simple benchmark that measures the execution time for
different values of Vdata. In order to take into considera-
tion the eventual contention that may occur on the same
storage media, we also perform this calibration for different
numbers of processes per node which are logging messages,
checkpointing, or restarting at the same time. We perform
this calibration process for all the different storage medium
(RAM, HDD, SSD, NFS, ...) that are available in the
supercomputer.

Coordination: Since checkpointing is considered at the
system level in our study, the coordinated checkpointing that
we consider requires an extra synchronization between the
processes. The time required for a process coordination is:

tiop = tipolling + tsynchro = Vdata

ritransfer

+ tsynchro

tsynchro is the time needed to exchange a marker among
all the processes. tsynchro depends on the number of pro-
cesses to synchronize and the number of processes per node.
To calibrate tsynchro, ECOFIT measures the time required to
perform a synchronization barrier among processes that are
already synchronized meaning tipolling is equal to zero (the
best case). These measurements are performed by varying
the number of nodes and the number of processes per node.
tipolling is the time necessary to finish transfers of inflight
messages at the coordination time. In other words, tipolling is
equal to the time required to transfer the bulkiest message.
Thus, in order to calibrate tipolling , we measure for different
message sizes, the mean transfer time of this message. We
choose different message sizes Vdata in the same way as we
do for message logging and checkpointing.

These simple relationships used in our energy models
are not directly applicable since the energy consumption
of fault-tolerant protocols is highly dependent on the hard-
ware and the execution context used. In our approach, we
overcome this difficulty by running a complete calibration
process, which is the key point of our estimating approach.

C. Estimation methodology

We described previously how we perform the calibration
process in ECOFIT. This calibration needs to be done by
the administrator each time that a change occurs in the
hardware used in the supercomputer. Once this calibration
is completed, our energy estimator framework is able to
provide estimations of the energy consumption due to fault
tolerance protocols.

Figure 1 shows the components of ECOFIT and their
interactions. The user provides some information related to
the execution context and to the application he would like to
run. These information is taken as an input by the estimator
component. As an output, the calibrator component provides
the calibration data on which ECOFIT relies on to estimate
the energy consumption of fault tolerance protocols. In the
following subsections, we detail for each protocol phase, the

information collected from the user and the corresponding
calibration data transmitted to our estimator component. We
also detail how the energy consumption is computed thanks
to this calibration output and to the information provided by
the user.

Figure 1. ECOFIT components and interactions

1) Message logging: To estimate the energy consumption
of message logging, the estimator component collects from
the user the number of processes per node, the total number
and size of the messages sent during the application. From
this information, the estimator computes the mean volume of
data V mean

data sent (so logged) by each node. Besides, the es-
timator collects from the calibrator the logging time tilogging
corresponding to V mean

data for each node and according to the
number of processes per node.

If V mean
data is not a size recorded by the calibrator, the es-

timator computes the equation that gives tilogging according
to Vdata, and adjusts the equation using the method of least
squares [20]. We denote by ξilogging and ρilogging the energy
and the power consumption of each node i performing
a message logging. The estimated energy consumption of
message logging is:

Elogging =
∑N

i=1 ξ
i
logging =

∑N
i=1 ρ

i
logging · tilogging

where N is the total number of nodes, ρilogging is an output
of our calibrator and tilogging is computed by our estimator.

2) Checkpointing/Restarting: To estimate the energy con-
sumption of checkpointing or restarting, the estimator com-
ponent collects from the user the total memory size required
by the application to run, the total number of nodes and the
number of processes per node. From this information, the
estimator computes the mean memory size required by each
node. The estimator component collects also the number
of checkpoints to perform during the application execu-
tion. Besides, the estimator collects from the calibrator the
checkpoint and restart times corresponding to the calibrated
checkpoint sizes.

Similarly to message logging, the estimator calculates the
checkpoint and restart times tiop corresponding to the mean
memory size V mean

memory required by each node.
The estimated energy consumption of one checkpointing

or one restarting is:

Eop =
∑N

i=1 ξ
i
op =

∑N
i=1 ρ

i
op · tiop



In the previous equation, op is either ”checkpoint” or
”restart”. The total estimated energy consumption of
checkpointing is obtained by multiplying Echeckpoint by the
number of checkpoints C.

3) Coordination: To estimate the energy consumption of
coordination, the estimator component uses the mean mes-
sage size V mean

message as the total size of messages divided by
the total number of messages. The estimator component also
uses the number of checkpoints C, the total number of nodes
N and the number of processes per node that are provided
for message logging and checkpointing estimations.

From the calibration output, the estimator collects the syn-
chronization time tsynchro corresponding to the number of
processes per node and the total number of nodes specified
by the user. tsynchro corresponds to one synchronization
among all the processes. The estimated energy consumption
Esynchro of one synchronization is:

Esynchro =
∑N

i=1 ξ
i
synchro = tsynchro ·

∑N
i=1 ρ

i
synchro

Similarly to message logging and to checkpointing, the
estimator calculates the message transfer time tipolling corre-
sponding to the mean message size V mean

message. The estimated
energy consumption Epolling of one active polling is:

Epolling =
∑N

i=1 ξ
i
polling =

∑N
i=1 ρ

i
polling · tipolling

The estimator calculates the estimated energy consump-
tion of all coordinations as follows:

Ecoordinations = C · (Epolling + Esynchro)

C is the number of checkpoints and so the number of
coordinations.

IV. VALIDATION OF OUR ENERGY ESTIMATING
APPROACH

To apply our energy estimating approach, we calibrate and
run real HPC applications on a real homogeneous cluster
of the large scale experimental platform Grid5000 [18]. To
validate our approach and demonstrate the accuracy of our
energy estimations, we run the different fault tolerance pro-
tocols during real HPC application executions and compare
the measured energy consumption to the one we estimate
thanks to our energy estimating framework.

A. Experimental infrastructure

The cluster we used for our experiments offers 16 iden-
tical nodes Dell R720. Each node contains 2 Intel Xeon
CPU 2.3 GHz, with 6 cores each; 32 GB of memory; a 10
Gigabit Ethernet network; a SCSI hard disk with a storage
capacity of 598 GB. We monitor this cluster with an energy-
sensing infrastructure of external power meters from the
SME Omegawatt. This energy-sensing infrastructure, which
was also used in [16], enables to get the instantaneous con-
sumption in Watts, at each second for each monitored node
[17]. Logs provided by the energy-sensing infrastructure are

displayed lively and stored into a database, in order to enable
users to get the power and the energy consumption of one
or more nodes between a start date and an end date. We
ran each experiment 30 times and computed the mean value
over the 30 values.

B. Platform calibration

In this section, we calibrate our platform according to the
calibration process described in III-B. Since each node has
12 cores, we consider the cases of 1, 4, 8 or 12 processes
per node.

1) Power calibration: First, we measure the idle power
consumption ρiidle of each node i. If we were at extreme
scale, we would have determined the distribution of the idle
power of the nodes and pull estimates for each node from
the measured distribution. Then, we calibrate the extra power
consumption ∆ρiop of all the basic operations found in the
fault tolerance protocols (Figure 2). As each node has 12
cores each, we calibrated the extra power cost by assuming
that 1, 4, 8 or 12 processes are running the same operation
at the same time.

Figure 2. Extra power cost of basic operations per node

We show that the most power consuming operations are
the RAM logging and the active polling that occurs during
the coordination if processes are not synchronized. These
two operations require a more intensive use of the CPU.
We also notice that for these two basic operations, the extra
power consumption varies with the number of cores per node
that perform the same operation. This comes from the fact
that more cores are running intensively for these two basic
operations.

2) Execution time calibration: To calibrate the execu-
tion time, ECOFIT automatically runs the corresponding
benchmark for each basic operation. As we have announced
previously, this execution time for a same operation and with
the same parameters may vary from one node to another
even if we consider identical nodes. That is why we calibrate
this execution time for each operation and for each node
of our cluster. In order to take into account the possible
contention, we consider 1, 4, 8 or 12 cores of a same node
performing the same operation.

Message logging: We present our calibration results
for message logging on HDD in Figure 3. For different
message sizes, we measure the logging time for each node of



the cluster. For each message size, we represent in Figure
3, the mean logging time and the standard deviation over
all the nodes of our cluster. The standard deviations are
invisible since the differences between the logging times
all over the nodes are insignificant. We notice that when
several cores are logging at the same time, the execution
time is higher: simultaneous accesses on HDD create I/O
contentions. That’s why we need to calibrate our execution
time for different numbers of processes per node.

When we plotted the same figure for message logging on
RAM, the only difference that we observed is that logging
time does not vary when the number of cores per node is
changed. Indeed, there is no contention when several cores
do RAM access simultaneously.

Figure 3. Calibration of the HDD logging time in our cluster

Checkpointing/Restarting: To calibrate time check-
pointing on HDD, we consider a variable number of cores
per node checkpointing at the same time and we measure
the checkpointing time for different checkpoint sizes for
each node of the cluster. We represent in Figure 4 the mean
checkpointing time and the standard deviation over all the
nodes of our cluster.

Figure 4. Calibration of the HDD checkpoint time in our cluster

The results lead to the same conclusions that we had
previously for HDD logging. When we plot the same figure
for restarting from HDD, the only difference is that the
restarting time is a little less important than the check-
pointing time. Indeed, restarting do read accesses on HDD
whereas checkpointing do write accesses.

Coordination: As concerns the coordination, we need
to calibrate the synchronization time and the transfer time

of a message. As we explained in III, the active polling
time is correlated to the transfer time of an inflight message.
Figure 5 presents the synchronization time measured by our
calibrator. For instance, the point 4 cores / 8 nodes is the
time of a synchronization barrier between 32 processes.

First, we show that the synchronization time is slightly
higher if we consider more processes per node. Indeed,
synchronizing processes that are on the same node requires
much less time than processes on distinct nodes (the network
transmission rate is much lower than the transmission rate
within a same node).

Figure 5. Calibration of the synchronization time in our cluster

Moreover, we notice that the curve shape in Figure 5 is not
linear but logarithmic. Hence, in our estimator, we consider
the following model for tsynchro:

tsynchro = αln(N) + β

N is the number of nodes involved in the synchronization.
α and β are two constants that depend on the supercomputer
features and on the number of processes per node.

We measure tsynchro for different number of nodes, N .
We determine the corresponding α and β and we adjust the
model thanks to the method of least squares [20]. Then, for
a given number of nodes, we can estimate tsynchro.

The last time to calibrate is the transfer time. We measure
the time necessary to transfer a message on our platform
by varying the message size. The transfer times measured
depend linearly on the message size to transfer.

C. Validation of the estimation framework

In this section, we want to compare the energy con-
sumption obtained by our estimator once the calibration
done (but before running the application) to the real energy
consumption measured by our energy sensors during the
application execution. We consider 4 HPC applications:
CM1 with a resolution of 2400x2400x40 2 and 3 NAS 3

in Class D (SP, BT, and EP) running over 144 processes
(i.e. 12 nodes with 12 cores per node). For each application,
we measure the total energy consumption of one applica-
tion execution with and without the high-level operations

2Cloud Model 1: http://www.mmm.ucar.edu/people/bryan/cm1/
3NAS: http://www.nas.nasa.gov/publications/npb.html



Figure 6. Estimated energy consumption (in kJ) of high-level
operations

Figure 7. Relative difference (in %) between the estimated and the
measured energy consumption

activated in the fault tolerance protocols. To do that, we
have instrumented the code of fault tolerance protocols in
MPICH2. Thus, we obtain the energy consumption of each
high-level operation. Each energy measurement is done 30
times and we compute the average value. For checkpointing
measurements, we consider a checkpoint interval of 120
seconds. For recovery measurements, processes are restarted
just after the checkpoint ends. This allows us to measure the
energy consumption of restarting only (i.e. recovery without
application re-execution).

In Figure 6, we plot the estimated energy consumption
computed by our estimator for each high-level operation
and for each HPC application considered. In Figure 7, we
plot the relative differences (in percentage) between the
estimated and the measured energy consumption. Figure 7
shows that our energy estimations are accurate: the relative
difference between the estimated and the measured energy
consumptions are low. The worst estimation is 7.6 % for
coordination with EP. These results allow us to give answers
to some of the open questions announced at the introduction.

Figure 6 shows that energy consumption of the high-level
operations are not the same from one application to another.
For instance, the energy consumption of RAM logging in SP
is more than 10 times the one in CM1. This is because CM1
exchanges much less messages compared to SP. Another
example is that checkpointing in CM1 is more than 20
times the one in EP. Indeed, the execution time of CM1
is much higher than EP so the number of checkpoints is
more important in CM1. Moreover, the volume of data to
checkpoint is more important in CM1 as it involves a more
important volume of data in memory.

We can obtain the overall energy estimation of the entire
fault-tolerant protocols by summing the energy consump-
tions of the high-level operations considered in each proto-
col. For fault free uncoordinated checkpointing, we add the
energy consumed by checkpointing to the energy consump-
tion of message logging. For fault free coordinated check-
pointing, we add the energy consumed by checkpointing to
the energy consumption of coordinations. Lastly, to estimate
the energy consumption of hierarchical checkpointing, we
need the user to provide our estimator the composition of

each cluster (i.e the list of processes in each cluster).

V. CHOOSE THE LESS ENERGY CONSUMING FAULT
TOLERANCE PROTOCOL

The results we presented in section IV allow us to address
the following question: how ECOFIT can help to select the
less energy consuming fault tolerance protocol ?

Both of uncoordinated and coordinated protocols rely on
checkpointing. To obtain a coherent global state, checkpoint-
ing is combined with message logging in uncoordinated
protocols and with coordination in coordinated protocols.
Therefore, to compare coordinated and uncoordinated proto-
cols from an energy consumption point of view, we compare
the energy cost of coordinations to message logging. In our
experiments we considered message logging either in RAM
or in HDD.

Figure 6 shows that from one application to another the
less energy consuming protocol is not always the same.
Indeed, the less energy consuming protocol for BT, SP
and CM1 is the coordinated protocol whereas it is the
uncoordinated one for EP. In general, determining the less
consuming protocol depends on the trade-off between the
volume of logged data and the coordination cost. For BT,
SP and CM1, the less energy consuming protocol is the
coordinated protocol since the volume of data to log for
these applications is relatively important and leads to a
higher energy consumption. Thus, by providing such energy
estimations before executing the HPC application, we can
select the best fault tolerant protocol in terms of energy
consumption.

The energy consumption is one of the main criteria for
the choice of fault-tolerant protocols but it is not the only
one. Depending on the user need, we may establish a
multi-criteria decision that takes into account the energy
consumption, the performance and the level of resilience
of the fault-tolerant protocols.

VI. CONCLUSION

This paper presents a framework that estimates the energy
consumption of fault tolerance protocols. In our study, we
consider the three families of fault tolerance protocols:



coordinated, uncoordinated and hierarchical protocols. To
provide accurate estimations, ECOFIT relies on an energy
calibration of the execution platform and a user description
of the execution settings. Thanks to our approach based
on a calibration process, this framework can be used in
any energy monitored supercomputer. We showed in this
paper that the energy estimations provided by ECOFIT are
accurate. Indeed for the applications we considered in our
experiments, the relative difference between these energy
estimations and the measured energy consumption are equal
to 4.9 % in average and do not exceed 7.6 %.

By estimating the energy consumption of fault toler-
ance protocols, ECOFIT allows selecting the best fault
tolerant protocol in terms of energy consumption without
pre-executing the application. A direct application of our
energy estimating framework is the energy consumption
optimization of fault tolerance.

As a future work, we will investigate energy efficient
solutions for fault tolerance protocols. We also plan to extend
ECOFIT to more protocols that are needed at extreme-scale
such as data management protocols.

ACKNOWLEDGMENT

Some experiments of this article were performed on the
Grid5000 platform, an initiative from the French Ministry of
Research through the ACI GRID incentive action, INRIA,
CNRS and RENATER and other contributing partners. This
research is partially supported by the INRIA-Illinois Joint
laboratory on Petascale Computing.

REFERENCES

[1] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and
M. Snir, “Toward exascale resilience,” Int. J. High Perform.
Comput. Appl., vol. 23, no. 4, pp. 374–388.

[2] H. D. Simon, “Is HPC Going Green ?” ScientificComput-
ing.com, May/June 2008.

[3] E. N. M. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. John-
son, “A Survey of Rollback-Recovery Protocols in Message-
Passing Systems,” ACM Computing Surveys, vol. 34, no. 3,
pp. 375–408, 2002.

[4] M. Diouri, O. Gluck, L. Lefevre, and F. Cappello, “Energy
considerations in checkpointing and fault tolerance protocols,”
in 2nd Workshop on Fault-Tolerance for HPC at Extreme
Scale (FTXS), co-located with DSN., Boston, USA, jun 2012.

[5] R. H. B. Netzer and J. Xu, “Necessary and sufficient condi-
tions for consistent global snapshots.” IEEE Transactions on
Parallel and Distributed Systems, vol. 6, no. 2, pp. 165–169,
1995.

[6] R. Koo and S. Toueg, “Checkpointing and rollback-recovery
for distributed systems.” in FJCC. IEEE Computer Society,
1986, pp. 1150–1158.

[7] L. Alvisi and K. Marzullo, “Message logging: Pessimistic,
optimistic, causal, and optimal,” IEEE Transactions on Soft-
ware Engineering, vol. 24, no. 2, pp. 149–159, 1998.

[8] A. Bouteiller, G. Bosilca, and J. Dongarra, “Redesigning the
message logging model for high performance,” Concurrency
and Computation: Practice and Experience, vol. 22, no. 16,
pp. 2196–2211, 2010.

[9] A. Guermouche, T. Ropars, M. Snir, and F. Cappello,
“HydEE: Failure Containment without Event Logging for
Large Scale Send-Deterministic MPI Applications,” in Pro-
ceedings of IEEE IPDPS 2012. IEEE CS Press, to appear.

[10] C. L. M. Esteban Meneses and L. V. Kalé, “Team-based
message logging: Preliminary results,” in 3rd Workshop on
Resiliency in High Performance Computing (Resilience) in
Clusters, Clouds, and Grids (CCGRID 2010)., May 2010.

[11] A. Bouteiller, T. Hérault, G. Bosilca, and J. J. Dongarra,
“Correlated set coordination in fault tolerant message logging
protocols,” in 17th The International Conference on Parallel
Processing (Euro-Par), ser. Lecture Notes in Computer Sci-
ence, vol. 6853. Springer, September 2011, pp. 51–64.

[12] D. Bedard, M. Y. Lim, R. Fowler, and A. Porterfield, “Pow-
erMon: Fine-grained and integrated power monitoring for
commodity computer systems,” in Proceedings Southeastcon
2010. Charlotte, NC: IEEE, Mar. 2010.

[13] R. Ge, X. Feng, S. Song, H.-C. Chang, D. Li, and K. W.
Cameron, “Powerpack: Energy profiling and analysis of high-
performance systems and applications,” IEEE Transactions on
Parallel and Distributed Systems, vol. 99, pp. 658–671, 2009.

[14] M. Y. Lim, A. Porterfield, and R. Fowler, “SoftPower: Fine-
Grain Power Estimations Using Performance Counters,” in
The ACM International Symposium on High Performance
Distributed Computing (HPDC). Chicago: ACM, Jul. 2010.

[15] G. Da Costa and H. Hlavacs, “Methodology of measurement
for energy consumption of applications,” in The IEEE Energy
Efficient Grids, Clouds and Clusters Workshop (E2GC2), co-
located with GRID, Brussels, Belgium, October 2010.

[16] M. Dias de Assuncao, A.-C. Orgerie, and L. Lefèvre, “An
analysis of power consumption logs from a monitored grid
site,” in IEEE/ACM International Conference on Green Com-
puting and Communications (GreenCom-2010), Hangzhou,
China, Dec. 2010, pp. 61–68.

[17] M. Dias de Assuncao, J.-P. Gelas, L. Lefèvre, and A.-C.
Orgerie, “The green grid5000: Instrumenting a grid with
energy sensors,” in 5th International Workshop on Distributed
Cooperative Laboratories: Instrumenting the Grid (INGRID
2010), Poznan, Poland, May 2010.

[18] F. Cappello et al, “Grid’5000: A large scale, reconfigurable,
controlable and monitorable grid platform,” in 6th IEEE/ACM
International Workshop on Grid Computing, Grid’2005, Seat-
tle, Washington, USA, Nov. 2005.

[19] M. Diouri, O. Gluck, L. Lefevre, and F. Cappello, “Towards
an energy estimator of fault tolerance protocols,” in 18th ACM
SIGPLAN Symposium on Principles and Practice of Parallel
Programming PPoPP (poster paper), Shenzhen, China, Feb
2013 (to appear).

[20] C. Rao, H. Toutenburg, A. Fieger, C. Heumann, T. Nittner,
and S. Scheid, “Linear models: Least squares and alterna-
tives.” Springer Series in Statistics, 1999.


