
Distributed Operator Placement for IoT Data
Analytics Across Edge and Cloud Resources

Eduard Gibert Renart∗, Alexandre da Silva Veith†, Daniel Balouek-Thomert∗, Marcos Dias de Assunção†,
Laurent Lefèvre† and Manish Parashar∗
Rutgers University, Piscataway NJ, USA∗

Inria, LIP, ENS Lyon, France†

Corresponding Author: egr33@rutgers.edu

Abstract—The number of Internet of Things applications is
forecast to exponentially grow within the coming decade. Owners
of such applications strive to make predictions from large streams
of complex input in near real time. Cloud-based architectures
often centralize storage and processing, generating high data
movement overheads that penalize real-time applications. Edge
and Cloud architecture pushes computation closer to where the
data is generated, reducing the cost of data movements and im-
proving the application response time. The heterogeneity among
the edge devices and cloud servers introduces an important
challenge for deciding how to split and orchestrate the IoT
applications across the edge and the cloud. In this paper, we
extend our IoT Edge Framework, called R-Pulsar, to propose
a solution on how to split IoT applications dynamically across
the edge and the cloud, allowing us to improve performance
metrics such as end-to-end latency (response time), bandwidth
consumption, and edge-to-cloud and cloud-to-edge messaging
cost. Our approach consists of a programming model and real-
world implementation of an IoT application. The results show
that our approach can minimize the end-to-end latency by at
least 38% by pushing part of the IoT application to the edge.
Meanwhile, the edge-to-cloud data transfers are reduced by at
least 38%, and the messaging costs are reduced by at least 50%
when using the existing commercial edge cloud cost models.

Index Terms—Edge Computing, Stream Processing, Edge an-
alytics, Operator Placement

I. INTRODUCTION

The continued growth of Internet of Things (IoT) appli-
cations is generating massive amounts of data. There are 2.5
quintillion bytes of data created each day and by 2020, it is es-
timated that every person will create 1.7MB every second [1].
Under many frameworks, this data is handled continuously and
in real time, where the dataflows are structured as directed
graphs whose vertices are operators that execute a function
over the incoming data, and the edges define how data flows
between the operators. These dataflows have one or multiple
data sources (i.e., sensors or actuators), operators that perform
transformations on the data (e.g., filtering, and aggregation)
and sinks (i.e., queries that consume or store the data).

The conventional approach for implementing these IoT
applications is to send data from all sources to the cloud
and leverage its powerful resources to process the incoming
data streams and perform data analytics. However, is quickly
becoming unsustainable due to the resulting impact on latency,
network congestion, storage cost, and privacy. Moreover, cloud
infrastructures charge for computing, networking, storage re-

sources, and messages exchanged between the edge and the
cloud, making the cloud-centric approach expensive and can
even limit the potential impact that IoT can have.

In recent years, non-trivial computational capabilities have
proliferated across the computing service landscape [2]. In
particular, edge services are emerging close to the data sources
and can provide potential data-processing capabilities. There-
fore, the edge resources can be leveraged to complement
the computing capabilities of the cloud-centric approach and
reduce the overall latency and bandwidth requirements. Using
such architecture also allows for exploring different cost mod-
els in order to minimize the cost of performing data analytics.

The use of the edge and cloud architecture poses the
following challenges:

• Deciding how to split such IoT applications among the
edge and cloud resources;

• Exploring heterogeneous infrastructure for deploying
dataflow applications has proved to be NP-hard [3].

• Moving operators from cloud to edge devices is chal-
lenging due to the devices’ limitations with respect to
memory, CPU, and often network bandwidth [4].

Solving the challenges presented above in a correct manner
will allow for faster completion time, a reduction in edge
to cloud data transfers, costs, and ensure an efficient use of
the edge and cloud resources. Doing them incorrectly can be
detrimental to throughput and exacerbate the time for handling
data events.

Existing work has provided a range of solutions for placing
operators covering partial metrics such as end-to-end latency,
WAN traffic, and monetary cost. Some solutions consider
homogeneous computational resources [5], [6] while others
include certain application constraints [7], [8]. More recent
work tackles operator placement on edge infrastructure, but the
proposed techniques require user intervention [9] and do not
consider memory and communication constraints [10], [11].
Many solutions are either in the architectural level or evalu-
ate the proposed algorithms using discrete-event simulation.
Moreover, most work considers all data sinks to be located
in the cloud, with no feedback loop to actuators located at
the edge infrastructure [12], [13]. Furthermore, none of the
systems mentioned above offer a programming abstraction
with the flexibility to specify a set of dataflow constrains and

automatically deploy and orchestrate the dataflow between the
edge and the cloud.

To address these limitations, we propose a programming
model to provide developers with the ability to define how
to automatically split the dataflow across the edge and the
cloud by specifying a set of dataflow constraints. Our approach
relies on an already existing programming system, R-Pulsar,
which enables developers to specify “What data need to
be processed?,” “Where to deploy the computations?,” and
“When to deploy the computations?” by using a content-based
programming abstraction [14], [15].

In this paper we extend our existing programming system
to address how to seamlessly split an IoT application among
the edge and cloud by presenting a distributed dataflow or-
chestrator that can obtain optimal operator placement. The
R-Pulsar orchestrator allows for minimizing the end-to-end
latency, bandwidth, and monetary cost and makes defining,
deploying, and orchestrating IoT applications across the edge
and the cloud a seamless task.

This paper hence makes the following contributions:
• A programming abstraction for specifying how to split a

given dataflow and place operators across edge and cloud
resources.

• An operator placement strategy that aims to minimize
an aggregate cost which covers the end-to-end latency
(time for an event to traverse the entire dataflow), the
data transfer rate (amount of data transferred between
the edge and the cloud) and the messaging cost (number
of messages transferred between edge and the cloud).

• An implementation of the above capabilities as part of
the R-Pulsar software stack and its evaluation using an
IoT application obtained from a data stream processing
benchmark [16] that resembles a real-world application
presenting a decision-making cycle.

II. CASE STUDY: OBSERVE ORIENT DECIDE ACT LOOP

The Observe Orient Decide Act (OODA) loop refers to
the decision-making cycle of observe, orient, decide, and act,
developed by military strategists and the United States Air
Force [17]. OODA is a decision-making cycle to process data
streaming from sensors in real time, becoming an essential
design characteristic for IoT applications.

Anshu et al. [18] offer a suite of IoT applications that fol-
lows the closed-loop OODA cycle. The applications are based
on common IoT patterns for data pre-processing, statistical
summarization, and predictive analytics. These are coupled
with workloads sourced from real IoT observations. A high-
level overview of the logical interaction of the IoT applications
is depicted in Figure 1.

Extract-Transform-Load (ETL) consumes data from hun-
dreds of thousands of edge sensors, and pre-processes, cleans,
and archives the data. Further, the results are published to an
edge broker so that clients interested in real-time monitoring
can subscribe to it, while a copy is forked to the cloud for
storage, and another to the next dataflow step.

TRAIN

PRED

STATS

ETL
1

2 2

2

2

3
4

65

3

7

T
B

B
MQTT

Fig. 1: RIoTBench IoT high-level logical interactions between dif-
ferent sensors, applications and users.

Statistical Summarization (STATS) performs higher order
aggregation and plotting operations, and stores the generated
plots into the cloud, from where webpages can load the
visualization files on browsers.

Model Training (TRAIN) periodically loads the stored data
from ETL step and trains forecasting models that are stored
in the cloud, and notifies the message broker of an updated
model being available.

The Predictive Analytics (PRED) subscribe to the message
broker and downloads the new models from the cloud, and
continuously operates over the pre-processed data stream
from ETL to make predictions and classifications that can
indicate actions to be taken on the domain. It then notifies the
message broker of the predictions, which can independently
be subscribed to by a user or device for action.

The ETL dataflow requires a low-latency cycle in order to
achieve real-time monitoring, in addition it also requires some
of its operators to be located in the cloud for storing messages
and others to be at the edge of the network. This makes the
ETL workflow the perfect candidate workflow for testing the
operator placement strategy proposed.

III. RELATED WORK

A. Operator Placement Problem

IoT applications have been deployed in multiple data cen-
ters and/or at the edge of the network (i.e., edge and fog
computing). Existing solutions introduce architectures which
place certain operators on micro data centers located closer to
where the data is generated [12] or employ mobile devices
for processing IoT applications. The problem with placing
IoT applications onto heterogeneous hardware is at least NP-
Hard as shown by Benoit et al. [3]. To simplify the placement
problem, communication is often neglected [10], although it is
a relevant cost in geo-distributed infrastructure [19]. Likewise,
the operator behavior and requirements are oversimplified
using static splitting decisions as proposed by Sajjad et al. [9].

Meanwhile, many efforts have been made towards modeling
the placement problem of IoT application on heterogeneous
infrastructure [13] using Petri nets to formalize the application
regions and the multiple response times that they produce.

On the other hand, Eidenbenz et al. [20] evaluated Series-
Parallel-Decomposable Graphs (SPDG) from its parallelism
degree to decompose the application graph and by an approxi-
mation algorithm to determine the placement. Cloud and edge
have been explored to supply application requirements. For
instance, Taneja et. al. [21] offer a naive approach deploying
the application graph across cloud and edge using a constraint-
sensitive approach.

Most of the existing work investigates solutions to improve
the end-to-end latency, whereas Cardellini et al. [22] and Chen
et al. [23] consider the monetary cost. The former approach
introduces a model considering monetary price as the cost
per unit of data transmitted along the network path between
two machines. The latter covers prices for the IoT application
placement using VMs, however, they create a uniform pricing
model to VMs given that the cost of electricity, infrastructure,
personnel, and taxes are similar within the same region.

This work considers operator placement of IoT applications
across edge and cloud, and the restrictions created by their in-
teractions. The target scenario includes real-time analytics, and
our solution exploits the construction of the paths to optimize
the end-to-end application latency, bandwidth consumption,
and monetary costs by decomposing the dataflow and defining
the operator’s placement dynamically across edge and cloud.
Furthermore, this work introduces a new model to control data
transfers across the edge and cloud leading to monetary costs
by applying the cost model of two major actors, AWS and
Microsoft.

B. Programming model

Most of the existing programming models focus on support-
ing batch and real-time data processing efficiently in a cloud
environment. For instance, MapReduce has become the de
facto standard for batch data processing in the Apache Hadoop
framework [24]. Apache Spark [25] is a distributed batch-
processing framework but it also supports stream processing
based on micro-batching. Other frameworks involve Apache
Storm [26], which supports event-based stream processing,
and Apache Flink [27], which enables batch and stream
processing with its unified APIs. All of these frameworks are
tailored to the cloud environment. Furthermore, none of these
programming models allow developers the ability to decide
how to split a dataflow, by specifying a set of constraints
and automatically split the dataflow between the edge and the
cloud of the network.

IV. PROBLEM DESCRIPTION

We focus on three performance metrics for placing Internet
of Things (IoT) applications across edge and cloud resources,
i.e., the end-to-end application latency [28], the WAN traffic,
and the messaging cost (messages exchanged between the edge
and the cloud). The IoT operator placement problem consists
of defining how to accommodate the application components
(i.e., operators) on the available resources of the network
topology to optimize one or more performance metrics.

Table I summarizes the notation used throughout the paper.

TABLE I: Main notation adopted for the problem description.

Symbol Description

R Set of cloud and edge resources
L Set of network links
i↔j A link connecting resources i and j
cpuri , memri CPU and memory capacities of resource i
lati↔j ,bdwi↔j Latency and bandwidth of link i↔j
O Set of stream processing operators
S Set of event streams between operators
fi Function to determine if the operator is a source, sink

and transformation
cpuoi , memoi CPU and memory req. of operator i
ψoi Selectivity of operator i
ωoi Data compression rate of operator i
sρi→j Probability that a message emitted

by operator i will flow to j
λini , λ

out
i Input/output event rate of operator i

ςini , ςouti Input/output event size of operator i
stime〈i,k〉 Service time of operator i at resource k
ctime〈i,k〉〈j,l〉 Communication time from operator i

at resource k to j at l
mem〈i,k〉 Overall memory required by operator

i when deployed at resource k
pi, lpi A graph path and its end-to-end latency
P The set of all paths in an application graph
µ〈i,k〉 The rate at which operator i

can process events at resource k

We define a computational resource (i.e., cloud server or
edge device) as a triple rk = 〈cpurk,memr

k, f
r
k 〉 ∈ R,

where cpurk is the CPU capability in Millions of Instruc-
tions per Second (MIPS), memr

k is the memory capability
in bytes, and frk ∈ {0, 1} signals whether rk is a cloud
resource. Similarly, the network link is drawn as a triple
lk↔l = 〈bdwk↔l, latk↔l, fk↔l〉 ∈ L, where k ↔ l represents
the interconnection between resource k and l, bdwk↔l the
bandwidth capability in bits per second (bps), latk↔l the
latency in seconds, and fk↔l signals whether the link is part
of a WAN. We consider the latency of a resource k to itself
(i.e latk↔k) to be 0.

Each operator of the IoT application is a quintuple oi =
〈cpuoi ,memo

i , ψ
o
i , ω

o
i , fi〉 ∈ O, where cpuoi is the CPU

requirement in Instructions per Second (IPS) to handle an
individual event, memo

i is the memory requirement in bytes to
load the operator, ψoi is the ratio of number of input events to
output events (i.e., selectivity), ωoi is the ratio of the size of in-
put events to the size of output events (i.e., data compression/-
expansion factor), and fi ∈ {source, sink, transformation}
signals whether oi is a source, sink/output, or transformation.
The rate at which operator i can process events at resource k
is denoted by µ〈i,k〉 and is essentially µ〈i,k〉 = cpurk ÷ cpuoi .
An event stream sρk→l ∈ S connects operator k to l with
a probability ρ that an output event emitted by k will flow
through to l.

The rate at which operator i produces events is denoted
by λouti and is a product of its input event rate λini and its
selectivity (ψoi). The output event rate of a source operator
(fk = source) and depends on the number of measurements

Resource 1
Operator 1

Message
Queue

Data transfer
service

Operator 2

Dispatching
service

Resource 2
Operator 3

Operator 4

Messages
Network

Fig. 2: Example of four operators and their respective queues placed
on two resources.

it takes from a sensor or another monitored device. Likewise,
we can recursively compute the average size ςini of events
that arrive at a downstream operator i and the size of events it
emits ςouti by considering the upstream operators’ event sizes
and their respective compression/expansion factors (i.e., ωoi).

A computational resource can host one or more operators;
operators within a same host communicate directly whereas
inter-node communication is done via a communication ser-
vice as depicted in Figure 2. Events are handled in a First-
Come, First-Served (FCFS) fashion both by operators and the
communication service that serialises messages to be sent to
another host. Both operators and the communication service
follow an M/M/1 model for their queues which allows for
estimating the waiting and service times for computation and
communication. The computation or service time stime〈oi,rk〉
of an operator i placed on a resource k is hence given by:

stime〈i,k〉 =
1

µ〈i,k〉 − λini
(1)

while the communication time ctime〈i,k〉〈j,l〉 for operator i
placed on a resource k to send a message to operator j on a
resource l is:

ctime〈i,k〉〈j,l〉 =
1(

bdwk↔l

ςout
i

)
− λinj

+ lk↔l (2)

A mapping function M : O → R, S → L indicates the
resource to which an operator is assigned and the link to which
a stream is mapped. The function mo〈i,k〉 returns 1 if operator i
is placed on resource k and 0 otherwise. Likewise, the function
ms〈i→j,k↔l〉 returns 1 when the stream between operators i
and j has been assigned to the link between resources k and
l, and 0 otherwise.

A path in the IoT application graph is a sequence of
operators from a source to a sink. A path pi of length n is a
sequence of n operators and n−1 streams, starting at a source
and ending at a sink:

pi = o0, o1, . . . , ok, ok+1, . . . , on−1, on (3)

Where o0 = source and on = sink. The set of all possible
paths in the application graph is denoted by P . The end-to-
end latency of a path comprises the sum of the computation
time of all operators along the path and the communication
time required to stream events on the path. More formally, the
end-to-end latency of path pi, denoted by Lpi , is:

Lpi =
∑
o∈O
r∈R

mo〈o,r〉 × stime〈o,r〉

+
∑
r′∈R

ms〈o→o+1,r↔r′〉 × ctime〈o,r〉〈o+1,r′〉

(4)

The WAN traffic accumulates the sizes of messages that
cross the WAN network where 1{fk↔l=1} is the indicator that
the link between the resource k and l is on a WAN. The WAN
traffic of path pi is calculated as:

Wpi =
∑

si→j∈S
k↔l∈L

1{fk↔l=1} ×ms〈i→j,k↔l〉 × ςouti (5)

Likewise, the messaging cost is calculated by the number of
messages that reaches the cloud from the edge and vice versa.
The indicator 1{fr

pi−1
=0 and fr

pi
=1} indicates that the previous

operator pi−1 is placed on edge (frpi−1
= 0) and it sends

messages to operator pi in cloud (frpi = 1). The number of
messages in pi is given as:

Cpi =
∑
o∈O
o′∈O
r∈R

1{fr
o′=0 and fr

o=1} ×mo〈o,r〉 × λino (6)

The parameters latency (Parlat), WAN traffic (Parwan),
and monetary cost (Parcost) receive the current values of
the running application. A single aggregate cost metric uses
the parameters and Simple Additive Weighting method [29]
(normalized in the interval [0,1]) offers a unified metric where
wl, ww and wc, with wl + ww + wc = 1, are non-negative
weights for the different costs. Each metric of path pi is
divided by its corresponding parameters and is then multiplied
by its weight. The sum of the three metrics in the path pi
results in the aggregate cost. Formally, the AggregateCost in
pi is determined as:

AggregateCostpi = wl ×
Lpi

Parlat
+

ww ×
Wpi

Parwan
+ wc ×

Cpi
Parcost

(7)

The problem of placing a distributed IoT application con-
sists of finding a mapping that minimizes the aggregate cost.

min
∑
pi∈P

AggregateCostpi (8)

Subject to:

λino < µ〈o,r〉 ∀o ∈ O,∀r ∈ R|mo〈o,r〉 = 1 (9)

λino <
(bdwk↔n

ςouto−1

)
∀o ∈ O,∀k↔n ∈ L|mo〈o,k〉 = 1

(10)∑
o∈O

mo〈o,r〉 × λino ≤ cpur ∀r ∈ R (11)

∑
o∈O

mo〈o,r〉 ×mem〈o,r〉 ≤ memr ∀r ∈ R (12)

∑
si→j∈S
k↔l∈L

ms〈i→j,k↔l〉 × ςouti ≤ bwdk↔l ∀k ↔ l ∈ L

(13)∑
r∈R

mo〈o,r〉 = 1 ∀o ∈ O (14)

∑
k↔l∈L

ms〈i→j,k↔l〉 = 1 ∀si→j ∈ S (15)

Constraint 9 guarantees that a resource can provide the ser-
vice rate required by its hosted operators whereas Constraint
10 ensures that the links are not saturated. The CPU and
memory requirements of operators on each host are ensured by
Constraints 11 and 12 respectively. Constraint 13 guarantees
the data requirements of streams placed on links. Constraints
14 and 15 ensure that an operator is not placed on more than
a resource and that a stream is not placed on more than a
network link respectively.

V. R-PULSAR FRAMEWORK

R-Pulsar is a data analytics software stack for collecting,
processing, and analyzing data at the edge and/or at the cloud.
R-Pulsar has been extended to allow developers the ability to
decide how to split the application operators between the edge
and the cloud, by specifying a set of constraints.

R-Pulsar consists of the associative rendezvous program-
ming model(AR), an abstraction for content-based decoupled
interactions (interactions defined in terms of semantic profiles
instead of names) and rendezvous points [30]. The rendezvous
point (RP) is a node where the dataflow computations occur,
and it can be a gateway located at the edge of the network
or a server in the cloud. R-Pulsar uses a peer-to-peer (P2P)
network to connect and communicate with all the RP nodes.

A. R-Pulsar Layers

R-Pulsar has been extended with the following three lay-
ers in order to automatically split and orchestrate dataflows
between the edge and the cloud.

R-Pulsar Infrastructure Controller: Designed to act sim-
ilarly to software-defined networking (SDN) controllers, this
layer keeps track of the network resources available in real
time. Some of the basic tasks include inventorying devices
within the R-Pulsar P2P network, their capabilities, locations,
and network statistics.

R-Pulsar Plan Finder: This layer computes the most opti-
mized operator placement plan. It uses a three-step approach
for calculating the optimal operator placement plan for deploy-
ing dataflows between the edge and the cloud. Section V-C
presents the three-step operator placement strategy developed
for R-Pulsar.

R-Pulsar Executor/Monitor: The primary responsibility is
to monitor dataflows running on the R-Pulsar P2P network,
including dataflow deployment, task assignment, and task
reassignment in case of failure.

B. R-Pulsar Nodes

Each rendezvous point (RP) in the R-Pulsar P2P network
can be elected as a master or as a worker. R-Pulsar differs
from other master/slave clusters such as Apache Storm [26]
in the sense that R-Pulsar master and worker node roles are
assigned dynamically every time a dataflow is deployed.

Master RP: The master RP’s primary responsibility is
to manage, coordinate, and monitor a dataflow running on the
R-Pulsar P2P network, including dataflow deployment, task
assignment, and task reassignment in the event of a failure.
Each time a new dataflow is deployed in the P2P network a
new master RP for that dataflow is elected.

Deploying a topology to the R-Pulsar P2P network involves
submitting the pre-packaged dataflow file along with topology
configuration. Then the information will be routed to the
responsible RP using the content-based interactions [30]. The
content-based interactions allow users to route dataflows to
unknown RPs; the RP who receives the message will be
automatically elected as the master RP for that dataflow. Once
the master RP has been elected, it then uses the infrastructure
controller layer to collect the network information of all the
worker RPs. That information is then passed to the operator
placement algorithm to generate a placement strategy. Once
the operator placement algorithm has an efficient operator
placement plan, then the master RP distributes the tasks to
the worker RPs.

The master RP tracks the status of all worker nodes and
the tasks assigned to each one. If the master RP detects that a
specific worker node has failed to heartbeat or has become
unavailable, it will reassign that worker RP tasks to other
worker RP nodes in the federation.

The master RP is not a single point of failure in the strictest
sense. This quality is because the master RP does not take part
in the dataflow data processing, rather it merely manages the
deployment, task assignment, and monitoring of the dataflow.
In fact, if the master RP dies while a dataflow will continue
to process data as long as the worker RPs assigned with tasks
remain healthy.

Worker RP: Each worker node is responsible for creating,
starting, and stopping worker tasks assigned to that node.
Worker RPs are also responsible for once the master RP has
died to perform a master RP election.

C. Placement Strategy

The strategy for operator placement on R-Pulsar applies
statistics collected by profiling the application and the loca-
tion of sinks and sources. The operator placement aims to
minimize the AggregateCost (Equation 8) by splitting the IoT
application across edge and cloud by considering priorities of
operators according to the infrastructure to which the sinks
are assigned. The operator placement strategy comprises three
phases: (i) application profiling; (ii) candidate placement and
(iii) final placement.

Phase 1 – Application Profiling:. In the first phase the
worker RPs and the master RPs using the infrastructure

Initial
setup

Pattern
recognition

Transfrom into
series regions

Series
hierarchy

11

2 10

1

7

6

4

930

58

101
112
76 49

10 5
35

1110
11 08

05
40

101

112

76
49

10 5

35

1110

11
08 05

40

11

2 10

1

7

6

4

930

58

Fork

Jo
in

Candidate
placement

11

2 10

1

7

6

4

930

58

Final
placement

Phase 2 Phase 3

10

101

112

76
49

5

35

1110

11
08 05

40

Fig. 3: Phases to determine the final placement using split points,
where red means placed on edge, blue represents placed on cloud,
and green delimits forks and joins.

controller layer continuously collects statistics [31] from the
running dataflow. The collected data includes the following
information about the operators:
• The arrival rate of events.
• Processing time per event.
• Number of MIPS required to process a tuple.
• Memory to run the operator.
• Arrival message size.
• Outcome message size.

This information is used to establish the selectivity, data
compression/expansion factor, as well as, the CPU and
memory requirements.

Phase 2 – Candidate Placement: In phase two, the
user-predefined locations of sinks and sources are used to
identify patterns in the dataflow (Section V-D). As depicted
in Figure 3, a dataflow can comprise multiple patterns such
as (i) forks, where messages can be replicated to multiple
downstream operators or scheduled to downstream operators
in a round-robin fashion, using message key hashes, or
considering other criteria [13]; (ii) parallel regions that
perform the same operations over different sets of messages
or where each individual region executes a given set of
operations over replicas of the incoming messages; and (iii)
joins, which merge the outcome of parallel regions.

We consider that an IoT dataflow is a Series-Parallel-
Decomposable Graphs which either consists of a series of
linearly dependent operators, or operators that can be ex-
ecuted independently in parallel, or a combination thereof.
Phase 2 uses related techniques to identify graph regions
that present these patterns [20]. This information is used to
build a hierarchy of region dependencies (i.e. downstream
and upstream relations between regions) and assist in placing
operators across cloud and edge resources. The streams in the
graph paths that separate the operators are hereafter called the
split points. Figure 3 illustrates the phases of the method to
determine the split points (green circles), where red circles
represent operators placed on edge resources whereas blue
ones are on the cloud: (i) The method starts with sources
and sinks whose placements are predefined by the user; (ii)
split points are discovered (green circles) as well as sinks that

correspond to actuators that can be placed on the edge; (iii) the
branches between the existing patterns (green, red, and blue
circles) are transformed into series regions; (iv) a hierarchy
following the dependencies between regions is created; and (v)
the regions provide information to split the operators on edge
candidate placement evaluating if the operator flows events to
actuators.

Algorithm 1 describes the function GetCandidates used
to identify the patterns and obtain the series regions. First,
the function adds two virtual vertices to the graph: virt src
connected to all data sources and virt sink to which all
sinks are connected (line 2-4). The virtual vertices allow
for recognizing all paths between sources and sinks. Second,
each path is iterated moving operators to a temporary vector
and classifying the operators as upstream and downstream
according to the number of input and output edges (lines 5-
8). If the operator is a split point, the temporary vector is
converted into a subset of regions set, and the temporary
vector receives the current operator (lines 9-10). Third, the
function removes the redundant values (line 11). Fourth, the
region set is iterated comparing the regions by the first and the
last position values (equal values represent a connection) and
consequently, they are stored in the hierarchy set (lines 12-16).
At last, using the hierarchy and the placement of the sinks, the
function evaluates if the operator flows events to sinks placed
on edge device then the operators is added to the candidate
lines 17-23).

Phase 3 – Final Placement: Once phase two has completed
and the profiling phase and has established the requirements
from the different operators, an operator placement strategy is
created and deployed. The strategy reduces the combinatorial
space by estimating only once the computation (Equation 1)
and communication (Equation 2) overheads to operators tar-
geted to cloud (Phase 2). Otherwise, operators to edge have
their overheads estimated for all edge devices evaluating their
constraints. The strategy gives high priority to edge since cloud
sinks often stores messages for batch processing, whereas the
edge side hosts actuators. If edge devices cannot meet all
operator requirements then the operator is moved to the cloud,
hence, the cloud hosts its operator candidates and those that
do not meet the constraints on edge. For instance, Operator
5 in Figure 3 was reallocated since the edge does not respect
the resource constraints.

D. R-Pulsar API

In this section we present the API examples uses for eval-
uating and deciding how to split the ETL dataflow presented
in section II, between the edge and the cloud resources.

Listing 1 is for specifying the operator constraints. In our
case some of the operators need to be placed at the cloud
and some others need to be placed at the edge. Note that
if the wildcard or no placement is specified R-Pulsar will
automatically decide the best placement for the operator.
CloudTableInsert, MQTTPublish, and BloomFilterTask are
tasks used in the ETL dataflow.

Algorithm 1: Algorithm to get the candidate placement.

1 Function GetCandidates(G = (O,S))
2 O ← O ∪ virt src ∪ virt sink
3 S ← S ∪ svirt src→o,∀o ∈ O and fo = source
4 S ← S ∪ so→virt sink,∀o ∈ O and fo = sink
5 for p ∈ GetAllPaths(G, virt src, virt sink)

do
6 for o ∈ p do
7 temp← temp ∪ {o},∀o 6∈

{virt src, virt sink}
8 ups← |〈∗, o〉 ⊂ S|, downs← |〈o, ∗〉 ⊂ S|
9 if ups > 1 or downs > 1 and

o 6∈ {virt src, virt sink} then
10 regions← regions ∪ temp,

temp← {o}

11 Delete duplicate regions
12 for src ∈ regions do
13 for dst ∈ regions do
14 if src 6= dst then
15 if src[|src| − 1] = dst[0] then
16 hierarchy ← hierarchy∪{src, dst}

17 for operators ∈ regions do
18 for o ∈ operators do
19 if fo 6∈ {source, sink} then
20 for sink ∈ GetSinks(o) do
21 if GetLocation(sink) = edge

then
22 candidate = candidate ∪ o
23 Break

24 return candidate

op1 . map (C l o u d T a b l e I n s e r t ()) . p l a c e m e n t (c l o u d) ;
op2 . map (MQTTPublish ()) . p l a c e m e n t (edge) ;
op3 . map (B l o o m F i l t e r T a s k ()) . p l a c e m e n t (*) ;

Listing 1: User specified operator physical placements constraints.

Listing 2 is for specifying the optimizations to apply to the
dataflow. The R-Pulsar operator placement algorithm offers
three optimizations: minimize end-to-end latency, bandwidth,
or messaging cost. Each of the functions requires a weight
normalized in the interval [0,1]; the sum of all three weights
must be one. By doing so, users have the ability to optimize
the latency, data transfer rate and messaging cost at the same
time.

t o p o l o g y . minEndToEndLatency (0 . 4) ;
t o p o l o g y . m i n D a t a T r a n s f e r R a t e (0 . 3) ;
t o p o l o g y . minMessagingCos t (0 . 3) ;

Listing 2: User specified dataflow optimizations (latency, data trans-
fer rate and cost).

By specifying physical dataflow constraints and the opti-
mizations desired R-Pulsar can obtain an optimal operator
placement plan.

VI. EVALUATION

This section presents an experimental evaluation of our
system. First, we present the setup and the other approaches
in which the experiments will be evaluated and compared
against. Second, we present an evaluation of our system based
on latency, data transfer rate, and messaging cost.

A. Setup

Our experiments are performed using the following edge
and cloud setup:
• We used an experimental edge testbed developed by the

authors, inspired by Hu et. al. [32] that consists of 13
Raspberry Pis; 5 Raspberry Pis model 3 (4x ARM Cortex-
A53 1.2GHz, 1GB of RAM and 10/100 Ethernet), and 8
Raspberry Pis model 2 (4x ARM Cortex-A7 900MHz,
1GB of RAM and 100 Ethernet).

• For the cloud we used the Chameleon cloud [33] with 5
instances of type m1.medium (2 CPU and 4 GB RAM).

The 13 Raspberry Pis are connected to the same LAN. The
Raspberry Pis use the external WAN [34] (the Internet) for
connecting to cloud. The LAN has a latency 0.523 ms and a
bandwidth of 15 Mbits/sec. The WAN has latency 66.75 ms,
and bandwidth of 87.0 Mbits/sec.

In addition to the setup, each of our experiments is evaluated
using three other strategies. We compared our system with the
following approaches:
• Cloud: deploys all operators in the cloud, apart from

operators provided in the initial placement.
• LB (Taneja et. al. [21]): iterate a vector containing

the application operators, gets the middle host of the
computational vector, and evaluates CPU, memory, and
bandwidth constraints to obtain the operator placement.

• Random: simulates the user trying to guess the best
placement for the dataflow between the edge and the
cloud. Random is the average of 15 different dataflow
deployments between the edge and the cloud resources.

All the tests are evaluated using the ETL dataflow. The ETL
dataflow is an implementation of the ETL RIoTBench topol-
ogy, it consists of: a single data source outputting data every 5
seconds, 2 sinks one located at the edge and one located at the
cloud, and 7 tasks that need to be deployed between the edge
and the cloud of the network. The experiments were conducted
using Sense Your City dataset1 which consists of transmitting
data each minute from sensors in 7 cities across 3 continents,
with about 12 sensors per city. The data content includes
metadata on the sensor ID, geolocation, and five timestamped
observations (outdoor temperature, humidity, ambient light,
dust, and air quality).

1http://map.datacanvas.org

B. End-to-end Tuple Latency Evaluation

The end-to-end tuple latency corresponds to the sum of
the mean times from the two paths in ETL dataflow (cloud
and edge). The conducted experiment evaluates the end-to-
end tuple latency using Equation 7 where wl is equal to
1, and ww and wc are equal to 0. The experiment aims to
evaluate how efficient the cloud, Random, and LB approaches
are at minimizing the end-to-end tuple latency and compare
the R-Pulsar operator placement approach approach. In addi-
tion, three failures were manually injected to showcase the
dynamicity and flexibility to recover from node failures. The
first failure makes 38% of the edge cluster unavailable (100
ms). The second failure affects the remaining 62% of the nodes
(300 ms). Before the 62% of the nodes fail, the 38% of the
nodes are back online. The third and last failure affects 50%
of the cloud instances (505 ms).

100 200 300 400 500
Latency (Milliseconds)

200

300

400

500

600

700

800

Ti
m

e
(M

illi
se

co
nd

s)

Failure 1 Failure 2 Failure 3

 Cloud Random LB R-Pulsar

Fig. 4: End-to-end tuple latency optimization with 3 self injected
failures affecting edge and cloud nodes, while comparing it with
Cloud, Random and LB approaches.

Figure 4 shows that on average tuples are computed 31%
faster when compared to the traditional cloud setup, and 38%
faster than Random and the LB placement approaches. The
reason why the Random failures recover much faster than LB
when compared to R-Pulsar is because Random is the average
of multiple different deployments and in some cases the first
failure is not affected. Figure 4 demonstrates that R-Pulsar
operator placement strategy is capable of splitting the dataflow
efficiently between the edge and the cloud and reduce the end-
to-end tuple latency.

The second experiment aims to evaluate how efficient the
Cloud, Random, and LB approaches are at minimizing end-
to-end tuple latency and compare it with R-Pulsar approach.
In this experiment no failures were injected.

Figure 5 shows that when R-Pulsar operator placement
approach is used 80% of the tuples see a reduction in the end-
to-end tuple latency by 44% compared to the LB and Random
approaches and 38% compared to the cloud approach.

C. Data Transfer Rate Evaluation

The Data transfer rate consists of the sum of all message
sizes that traverse a WAN link per second. The values for

200 300 400 500 600 700 800
Response Time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Cloud Random R-Pulsar LB

Fig. 5: End-to-end tuple latency optimization cumulative distribution
function (CDF) comparison with Cloud, Random and LB approaches.

500 600 700 800 900
Data Transfer Rate (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Cloud Random R-Pulsar LB

Fig. 6: End-to-end data transfer rate optimization cumulative dis-
tribution function (CDF) comparison with cloud, Random and LB
approaches.

Equation 7 are ww equal to 1, and wl and wc equal to 0.
This third experiment aims to evaluate how efficient are the
cloud, Random, and LB approaches at minimizing the transfer
rate between the edge and the cloud and compare the results
with R-Pulsar operator placement approach. Minimizing the
transfer rate between the edge and the cloud is a critical point
in order to achieve real-time analytics.

Figure 6 shows that 80% of the time R-Pulsar reduces the
transfer rate between the edge and the cloud on average 35%
when compared to the LB approach. And it reduces the data
transfer rate by 45% when compared to the cloud and Random
approaches.

This next experiment aims to evaluate the efficiency of
minimizing the transfer rate and the end-to-end latency at the
same time (ww = .5, wl = .5, and wc = 0). This experiment was
also carried out using the cloud, Random, and LB approaches.

Figure 7 shows that the R-Pulsar operator placement ap-
proach can also optimize the data transfer rate and the end-to-
end latency by 46% and 38% respectively when compared to
the cloud, 36% and 45% respectively when compared to the
LB, 38% and 44% respectively when compared to the Random

Cloud Random LB R-Pulsar
40

50

60

70

80

90

100

110
Da

ta
 T

ra
ns

fe
r R

at
e

(K
B)

20

25

30

35

40

45

50

55

60

La
te

nc
y

(S
ec

on
ds

)

Bandwidth
Latency

Fig. 7: Multi optimization evaluation, end-to-end tuple latency and
data transfer rate comparison with cloud, Random, and LB ap-
proaches.

approach.

D. Messaging Cost Evaluation

The last two experiments aim to calculate the messaging
cost of running the dataflow for a month using the cost models
of two major actors, AWS and Microsoft, in a real life edge
and cloud scenario. For this reason, we setup Equation 7 with
wc equal to 1, and wl and wl equal to 0. The goal of this
optimization is to reduce the number of messages that reach
the cloud servers.

TABLE II: Azure IoT Hub and Amazon IoT Core messaging pricing.

Microsoft IoT Hub Pricing AWS IoT Core Pricing

Free Tier - 8,000 messages/day
$0

Every 1 million messages/day
$1.00

Tier 1- 400,000 messages/day
$25

Up to 1 billion messages/day
$1.00

Tier 2 - 6,000,000 messages/day
$250

Next 4 billion messages/day
$0.80

Tier 3 - 300,000,000 messages/day
$2,500

Over 5 billion messages/day
$0.70

Table II depicts two IoT cost models. The first cost model
is the Microsoft Azure IoT Hub [35]. Each tier enables a
maximum number of messages exchanged between the Azure
IoT Edge and the Azure IoT Hub and vice versa per day.
T1 allows up to 400,000 messages a day, T2 allows up to
6,000,000 messages a day, and T3 allows up to 300,000,000
messages a day.

The second cost model is the Amazon IoT Core [36] where
messaging is metered by the number of messages transmitted
between your devices and AWS IoT Core and vice versa per
day. Amazon offers multiple costs for different regions, for
this experiment we choose the cheapest region (N.Virginia)
which charges $1 per million messages sent, and the cost per
message decreases after the first 1 billion messages per day.

Figure 8 depicts the cost of deploying the ETL dataflow
using the Microsoft cost model using the four different ap-
proaches presented earlier. When using a small setup (15

15 200 5000 10000
Number of Sensors

M
on

th
ly

 C
os

t i
n

$

 T3
$2500

 T2
$250

 T1
$25

Cloud
LB
R-Pulsar
Random

Fig. 8: Messaging cost savings evaluation based on the Microsoft
Azure IoT Hub pricing model, for four different setups.

sensors), the monthly cost for our system will be $25 a month
while the cloud, LB, or Random approaches will cost $250
a month, savings of 90%. A similar behavior happens with a
medium (200 sensors) and extra large (10000 sensors) setups.

15 200 5000 10000
Number of Sensors

1

10

100

1000

10000

100000
M

on
th

ly
 C

os
t i

n
$

Cloud
LB
R-Pulsar
Random

Fig. 9: Messaging cost savings evaluation based on the Amazon IoT
pricing model, for four different setups.

Figure 9 depicts the cost of deploying the ETL dataflow
using the Amazon cost model. Our system obtains a 50% cost
reduction when compared to the cloud and LB approaches in
all four different setups (15, 200, 5000 and 10000 sensors). In
addition our system obtains a 97% savings when compared to
the Random approach in all four different setups.

VII. CONCLUSION & FUTURE WORK

This paper presents a framework for solving the operator
placement problem of Internet of Things dataflows among
edge and cloud resources. Authors proposed a new operator
placement strategy to reduce end-to-end latencies, data transfer
rates and messaging costs between the edge and the cloud, by
using a three phase additive weighted model. We implemented
the operator placement strategy in R-Pulsar, in the form of a
programming model for specifying how IoT applications will
be split across the edge and the cloud.

Evaluation of this work was performed using an experimen-
tal testbed comprised of edge and cloud resources to deploy
and execute a real-world IoT applications. The operator place-
ment approach was evaluated against three other strategies
from the litterature, showing the ability of the framework to
efficiently place the computations between the edge and the
core of the network. Results show that the system is capable of
reducing the end-to-end latency by at most 45%. In addition,
our system can minimize the data transfer rate and reduce the
number of messages exchanged.

As for future work, we intend to extend this approach by
considering the power consumption of operators to achieve
energy and performance trade-offs when taking placement
decisions.

VIII. ACKNOWLEDGEMENTS

This work was performed within the framework of the
LABEX MILYON (ANR-10-LABX-0070) of the University of
Lyon, within the program “Investissements d’Avenir” (ANR-
11-IDEX-0007). This work was partly funded by SUSTAM
through the Inria Associate Teams program and NSF via
grant number OCE 1745246. SUSTAM is an associate Team
between Inria (ENS Lyon) and RDI2 (Rutgers University).

REFERENCES

[1] “Data Our New Natural Resource - https://www.demandcaster.com/blog-
news/data-our-new-resource/.”

[2] M. AbdelBaky, M. Zou, A. R. Zamani, E. G. Renart, J. D. Montes,
and M. Parashar, “Computing in the continuum: Combining pervasive
devices and services to support data-driven applications,” 2017 IEEE
37th Int. Conf. on Dstb Comp. Systems, 2017.

[3] A. Benoit, A. Dobrila, J.-M. Nicod, and L. Philippe, “Scheduling linear
chain streaming applications on heterogeneous systems with failures,”
Future Gener. Comput. Syst., vol. 29, July 2013.

[4] M. D. de Assuncao, A. da Silva Veith, and R. Buyya, “Distributed data
stream processing and edge computing: A survey on resource elasticity
and future directions,” Journal of Net. and Computer Applications,
vol. 103, 2018.

[5] O. Runsewe and N. Samaan, “Cloud resource scaling for big data
streaming applications using a layered multi-dimensional hidden markov
model,” in Proc. of the 17th IEEE/ACM Int. Symposium on Cluster,
Cloud and Grid Computing, CCGrid ’17, (Piscataway, NJ, USA), IEEE
Press, 2017.

[6] V. Cardellini, V. Grassi, F. Lo Presti, and M. Nardelli, “Optimal operator
placement for distributed stream processing applications,” in 10th ACM
Int. Conf. on Dstb Event-Based Systems, (New York, NY, USA), ACM,
2016.

[7] B. Peng, M. Hosseini, Z. Hong, R. Farivar, and R. Campbell, “R-storm:
Resource-aware scheduling in storm,” in 16th Annual Middleware Conf.,
Middleware ’15, (New York, NY, USA), ACM, 2015.

[8] J. Xu, Z. Chen, J. Tang, and S. Su, “T-Storm: Traffic-aware online
scheduling in storm,” in IEEE 34th Int. Conf. on Distributed Computing
Systems (ICDCS), June 2014.

[9] H. P. Sajjad, K. Danniswara, A. Al-Shishtawy, and V. Vlassov,
“Spanedge: Towards unifying stream processing over central and near-
the-edge data centers,” in 2016 IEEE/ACM Symp. on Edge Comp., Oct
2016.

[10] B. Cheng, A. Papageorgiou, and M. Bauer, “Geelytics: Enabling on-
demand edge analytics over scoped data sources,” in IEEE Int. Cong.
on BigData, 2016.

[11] C. Hochreiner, M. Vogler, P. Waibel, and S. Dustdar, “VISP: An
ecosystem for elastic data stream processing for the internet of things,”
in 20th IEEE Int. Ent. Dstb Object Comp. Conf., Sept 2016.

[12] V. Cardellini, V. Grassi, F. L. Presti, and M. Nardelli, “Distributed QoS-
aware scheduling in Storm,” in 9th ACM Int. Conf. on Dstb Event-Based
Systems, DEBS ’15, (New York, USA), ACM, 2015.

[13] L. Ni, J. Zhang, C. Jiang, C. Yan, and K. Yu, “Resource allocation
strategy in fog computing based on priced timed petri nets,” IEEE IoT
Journal, 2017.

[14] E. Gibert Renart, J. Diaz-Montes, and M. Parashar, “Data-driven stream
processing at the edge,” in IEEE Int. Conf. on Fog and Edge Computing,
2017.

[15] E. Gibert Renart, D. Balouek-Thomert, X. Hu, J. Gong, and M. Parashar,
“Online decision-making using edge resources for content-driven stream
processing,” in IEEE Int. Conf. on eScience, 2017.

[16] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: An iot bench-
mark for distributed stream processing systems,” Concurrency and
Computation: Practice and Experience, vol. 29, no. 21, 2017.

[17] B. Brehmer, “The dynamic ooda loop : Amalgamating boyd s ooda
loop and the cybernetic approach to command and control assessment ,
tools and metrics,” 2005.

[18] A. Shukla, S. Chaturvedi, and Y. Simmhan, “Riotbench: A real-time
iot benchmark for distributed stream processing platforms,” CoRR,
vol. abs/1701.08530, 2017.

[19] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, “Quantifying the impact of edge computing on mo-
bile applications,” in 7th ACM SIGOPS Asia-Pacific Wksp on Systems,
APSys ’16, (New York, NY, USA), ACM, 2016.

[20] R. Eidenbenz and T. Locher, “Task allocation for distributed stream
processing,” in IEEE INFOCOM 2016, April 2016.

[21] M. Taneja and A. Davy, “Resource aware placement of iot application
modules in fog-cloud computing paradigm,” in IFIP/IEEE Symp. on
Integrated Net. and Service Mgmt (IM), May 2017.

[22] V. Cardellini, F. LoPresti, M. Nardelli, and G. RussoRusso, “Optimal
operator deployment and replication for elastic distributed data stream
processing,” Concurrency and Computation: Practice and Experience.

[23] W. Chen, I. Paik, and Z. Li, “Cost-aware streaming workflow allocation
on geo-distributed data centers,” IEEE Transactions on Computers, Feb
2017.

[24] “Apache Hadoop - https://hadoop.apache.org/.”
[25] “Apache Spark - http://spark.apache.org/.”
[26] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, Patel, et al.,

“Storm@twitter,” in Proc. of the 2014 ACM SIGMOD Int. Conf. on
Mgmt of Data, SIGMOD ’14, (New York, NY, USA), ACM, 2014.

[27] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in a single
engine,” IEEE Data Eng. Bull., 2015.

[28] A. da Silva Veith, M. D. de Assuno, and L. Lefevre, “Latency-aware
placement of data stream analytics on edge computing,” in 16th Int.
Conf. Service-Oriented Comp., ICSOC ’18, Nov. 2018.

[29] K. Yoon, P. Yoon, C. Hwang, SAGE., and i. Sage Publications, Multiple
Attribute Decision Making: An Introduction. Multiple Attribute Decision
Making: An Introduction, SAGE Publications, 1995.

[30] E. G. Renart, D. Balouek-Thomert, and M. Parashar, “Edge based data-
driven pipelines (technical report),” CoRR, vol. abs/1808.01353, 2018.

[31] N. Kaur and S. K. Sood, “Efficient resource management system based
on 4vs of big data streams,” Big Data Res., 2017.

[32] W. Hu, Y. Gao, K. Ha, J. Wang, B. Amos, Z. Chen, P. Pillai, and
M. Satyanarayanan, “Quantifying the impact of edge computing on
mobile applications,” in APSys, 2016.

[33] “Chameleon Cloud. https://www.chameleoncloud.org/.”
[34] K. Ha, P. Pillai, G. Lewis, S. Simanta, S. Clinch, N. Davies, and

M. Satyanarayanan, “The impact of mobile multimedia applications on
data center consolidation,” in IEEE Int. Conf. on Cloud Engineering
(IC2E), March 2013.

[35] “Microsoft Azure IoT Hub Pricing - https://azure.microsoft.com/en-
us/pricing/details/iot-hub/.”

[36] “AWS IoT Core Pricing - https://aws.amazon.com/iot-core/pricing/.”

	Introduction
	Case Study: Observe Orient Decide Act Loop
	Related Work
	Operator Placement Problem
	Programming model

	Problem Description
	R-Pulsar Framework
	R-Pulsar Layers
	R-Pulsar Nodes
	Placement Strategy
	R-Pulsar API

	Evaluation
	Setup
	End-to-end Tuple Latency Evaluation
	Data Transfer Rate Evaluation
	Messaging Cost Evaluation

	Conclusion & Future work
	Acknowledgements
	References

