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Summary

Current large-scale systems, like datacenters and supercomputers, are facing an increasing elec-

tricity consumption. These infrastructures are often dimensioned according to the workload

peak. However, as their consumption is not power-proportional: when the workload is low, the

power consumption is still high. Shutdown techniques have been developed to adapt the num-

ber of switched-on servers to the actual workload. However, datacenter operators are reluctant

to adopt such approaches because of their potential impact on reactivity and hardware failures,

and their energy gain which is often largely misjudged. In this article, we evaluate the poten-

tial gain of shutdown techniques by taking into account shutdown and boot up costs in time and

energy. This evaluation ismade on recent server architectures and future energy-aware architec-

tures. Our simulations exploit real traces collected on production infrastructures under various

machine configurations with several shutdown policies, with and without workload prediction.

We study the impact of future’s knowledge for saving energywith such policies. Finally, we exam-

ine the energy benefits brought by suspend-to-disk and suspend-to-RAM techniques and we

study the impact of shutdown techniques on the energy consumption of prospective hardware

with heterogeneous processors (big-medium-little paradigm).
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1 INTRODUCTION

Data centers are responsible for about 2%of global carbon emissions today and use 80millionmegawatt-hours of energy annually, almost 1.5 times

the amount of electricity used by the whole of New York City (1). This tremendous energy consumption is becoming more and more concerning

andwill evenworsenwith the rapid growth of Cloud computing infrastructures and the raise of a new generation of smart devices requiring always

more data centers to provide new services.

In order to make data centers more energy-efficient, a wide variety of approaches have been proposed in the recent years, ranging from free

cooling to low-power processors, and tacklingwastedwatts at each level of the data center (2). One of themost promising solution for data centers

consists in consolidating the workload on an optimized number of servers and switching off idle servers (3, 4, 5, 6). While such an on/off approach

has been extensively studied in literature, most infrastructure administrators still dare not use it in their datacenters. This situation is due to two

factors: firstly, until very recently, servers were not designed to be switched off; secondly, switching off takes time and energy. So it is difficult for

administrators to estimate their potential energy gains versus their potential loss of reactivity due to a too long booting time. Several solutions have

been proposed to limit this possible performance impact, like keeping few nodes idle (reactivity margin) or using hibernation or standby modes to

fasten the boot.
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In this paper, we study different shutdown techniques for computing resources in data centers, like actual switching off and hibernation modes.

Moreover, we estimate the impact of such techniques on the energy consumption, the reactivity of the platform and on the lifetime of the servers.

Our validations combine real power measurements and real datacenter traces with simulation tools in order to also study future energy-efficient

modes and future energy-aware server architectures.

In particular, this paper extends our previous work presented in (7) with studies on 1) future energy-proportional architectures using the

big-medium-little paradigm, 2) reactivity margin for less aggressive shutdown policies, and 3) alternative techniques to complete shutdown, like

suspend-to-disk and suspend-to-ram.

Our simulations, based on real power measurements and large-scale workload traces from production and experimental platforms, show that

shutdown techniques can save at least 84% of the energy that would be otherwise lost to power idle nodes. This conclusion remains true for

prospective energy-proportional hardware and even aggressive shutdown policies do not have impact on hardware lifetime. Our results also show

that from an energy perspective, efforts should focus on reducing the energy consumption while in sleepmode instead of trying to reduce the time

it takes to switch between on and off modes.

This paper makes the following contributions:

1. an analysis of the impacts of shutdown policies (ie. switching off unused servers) on disk lifetime and on the energy consumption of pro-

duction infrastructures over long periods through simulation of real platform traces: 15 months of a scientific cluster and 6 years of an

experimental testbed.

2. a study of the energy savings reachable through classical shutdown policies, and the influence of workload prediction and reactivity margin

(keeping part of the servers on although they are idle for reactivity reasons) on these savings;

3. an estimation of the energy gains of shutdownpolicies on future hardware, including power-proportional architectures and serverswith fast

and reliable standbymode (like suspend-to-disk and suspend-to-RAM);

The reminder of this paper is structured as follows. Section 2 presents the related work. The on/off energy model and the shutdown policies are

introduced in Section 3. The experimental setup is provided in Section 4. The experimental validation is shown in Section 5 for current hardware

and in Section 6 for future architectures. Finally, Section 7 concludes this work and presents the future directions.

2 RELATEDWORK

Shutdown techniques require 1) the hardware ability to remotely switch on and off servers, and 2) energy-aware algorithms to timely employ such

an ability. This section describes the state-of-the-art approaches for both features.

2.1 ACPI specification

ACPI (Advanced Configuration and Power Interface) is the key point for implementing Operating System-directed configuration and Power Man-

agement (OSPM).Hardware and software vendors are then encouraged to implement and respect these defined interfaces. ACPI specifies different

power states for several kinds of devices, among which the C-states concerning processor power consumption and thermal management for

instance.

In this study on shutdown approaches, we focus on the ACPI sleeping states. They consists in various types of node configurations including

different sleeping policies and protocols. According to the ACPI specification, there are 5 possibles sleeping state:

• S1 (weak): this is a lowwake latency sleeping. No system context is lost and no hardware is turned off in this state.

• S2 (weak): Similar to S1, except that CPU and system cache is lost

• S3: lowwake latency sleeping state where all context is lost except systemmemory i.e CPU, caches, and chip set context are lost. Hardware

restores some CPU and L2 configurations andmaintains memory context.

• S4: Lowest power but longest wake latency with only platform context is maintained.

• S5: System shutdown state. Similar to S4, except that theOS doesn’t save any context.
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2.2 Suspendmodes on Linux kernel

Given this theoretical specification, we focus on the Linux implementation of this system power management. The available sleep states on the

Linux kernel are:

• S0 or "Suspend to Idle" : freezing user space and putting all I/O devices into low-power states

• S1 or "Standby / Power-On Suspend" : same as S0 adding the fact that non boot CPUs are put in offline mode and all low-level systems

functions are suspended during transitions into this state. TheCPU retains powermeaning operating state is lost, so the system easily starts

up again where it left off

• S3 or "Suspend-to-RAM" : Everything in the system is put into low power state mode. System and device state is saved and kept in memory

(RAM).

• S4 or "Suspend-to-disk" : Like S3, adding a final step of writingmemory contents to disk.

On the topof our knowledge,manydatacenters servers donot implement or allowS3 (Suspend-to-RAM) sleep state, becauseof numerous errors

when resuming (especially errors due to network connections with Myrinet or Ethernet protocols). Typically, only S0, S4 and S5 are available for

operational use.

2.3 Shutdown policies

Early work studying the energy-related impacts of shutdown techniques started in 2001 (8, 9). Yet, they do not consider any transition cost for

switching between on and off, but they nonetheless showed the potential impact of such techniques (10). Demaine et al. examine the power min-

imization problem where the objective is to minimize the total transition costs plus the total time spent in the active state (11). They develop a

(1 + 2↵)-approximation algorithm, with↵ the transition cost.

However, the parameters considered for this transition cost highly varies across the literature (10). Gandhi et al. take into account the energy

cost of switching on servers (no switching off cost as it is estimated to be negligible in comparison with the switching on cost) (12). This energy

cost is assumed to be equal to the transition timemultiplied by the power consumption while in the on state. Lin et al. take into account the energy

used for the transition, the delay in migrating connections or data, the increased wear-and-tear on the servers, and the risk associated with server

toggling (13).

Shutdown policies are nowadays easily implementable with off-the-shelf hardware. In fact, most of data center resource managers propose

techniques or hooks to configure such capabilities. For example, slurm (14), an open-source clustermanagement system introduces a SuspendTime1

that represents theminimum idle time after which it allows the node to be switched off.

Then, the resource manager is responsible for deciding when to suspend and resume nodes. It takes decisions either based on pre-determined

policy (14) or on workload predictions (3). Shutdown policies are often combined with consolidation algorithms which gather the load on less

nodes to favor the shutdown of more nodes. Employing either reactive or proactive scheduling options (6, 15), consolidation algorithms increase

the energy gains brought by shutdown techniques at a cost of a trade-off with performance (5). In this paper, we study simple shutdown tech-

niques,without combining them to scheduling algorithms and consolidation approaches in order to evaluate the impacts of such techniqueswithout

interfering with the workload of real platforms andwith the users’ expected performances.

Themain disadvantage of shutdownpolicies resides in the energy and time losses thatmayoccurwhen switching off and on takes longer than the

actual idle period. In such cases, the user has towait for the server to be on (up to fewminutes), thus incurring a lessening in the platform rapidity in

handling incoming users requests (16). The various suspendmodes offer different performances concerning the time they need to switch between

theOn andOff states and the energy they consumewhile in Off state. The next section provides the necessary formalism for evaluating the impact

of such key parameters for shutdown techniques.

Shutdownpolicies’ impacts also extend to temperaturemanagement in data centers, and consequently cooling systems, as they abruptly clear or

add heat sources (i.e. servers) (17). At a data center level, it translates into power budgeting, where the total power budget is partitioned among the

cooling and computing units, andwhere the cooling power has to be sufficient to extract the heat of the computing power (10). Given the computing

power budget, Zhan et al. propose an optimal computing budgeting technique based on knapsack-solving algorithms to determine the power caps

for the individual servers (18). Adding constraints (i.e. temperature, power capping or energy budget) lead to the design of complex shutdown

policies where energy consumption belongs to themultiple criteria to optimize, but is generally not the predominant one (10).

1http://slurm.schedmd.com/power_save.html
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3 MODELS

In this section, we describe the different models used by the shutdown policies we want to evaluate in order to determine when a node has to be

switched off.

3.1 Energy efficiency time threshold

Switching on and off a server consumes time and energy, it is thus required to take these costs into account when deciding whether to switch off an

idle server or not.

FIGURE 1 Time threshold to decide whether to switch off or not

In (16), the authors introduce Ts a time threshold such that: when a node is idle for more than Ts seconds, it is more energy-efficient to switch it

off and then on again at the adequate time; otherwise, if the server is idle for less than Ts, it should remain idle to save energy. Moreover, Ts needs

to be greater than the time required to switch off and on again a server in order for this threshold to be physically acceptable. Figure 1 illustrates

the computation of thisTs time threshold.On both graphs, the blue curve depicts the power consumption of amachine over time. The colored areas

of these two graphs correspond to the energy consumed in the two cases. The upper graph represents a machine where anOn toOff sequence

is launched (the orange area highlights the energy consumption during this sequence), followed by anOff section (green area), and then anOff

toOn sequence (red area). The bottom graph represents the same machine in Idle state for the same time period (purple area). So, Ts is the time

threshold such that the areas of both graphs (orange + green + red in the first case, and purple in the second case) are equal.

Following this principle, Ts is defined as:

Ts = max

✓
EOnOff + EOffOn � POff (TOnOff + TOffOn)

Pidle � POff
, (TOnOff + TOffOn)

◆

where:

• Pidle is the power consumption when the node is unused, but powered on;

• Poff is the power consumption when the node is switched off (typically not null and lower thanPidle);

• TOnOff is the time spent by the nodewhen asked for a On-Off sequence;

• TOffOn is the time spent by the nodewhen asked for a Off-On sequence;

• EOnOff is the energy consumed during theOn-Off sequence;
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• EOffOn is the energy consumed during theOff-On sequence.

In order to compute Ts, all parameters have to be known for each concerned server. These parameters can be acquired through a calibration

measurement campaign. Then a shutdown policy is required to knowwhen to switch off nodes. Indeed, as future is not known in the general case, it

is difficult to determine for a given idle data center server if it will stay idle for more than Ts or not.

As explained in Section 2.3, energy consumption can be combined with other constraints (i.e. power capping or temperature) to design more

complex shutdown policies. Yet, the time threshold model used in this paper is the simplest one guaranteeing energy savings (by definition of Ts),

and therefore, it provides a solid basis for more elaboratedmodels.

3.2 Studied shutdown policies

As the goal of this paper is to evaluate the impacts of on/off strategies rather than proposing new shutdown policies, we chose to lean on two ideal

policies which will provide theoretical values about energy consumption.

Policy P1: knowing the future In this first policy, we consider that the future is completely known. Thus, dates and lengths of idle period are

known for each server.

This policy will give a theoretical lower bound for energy consumption with a perfect prediction algorithm. Trace-driven experiments shown

in (16) indicate a7%differenceon theoverall energy consumptionwith a simple prediction algorithms compared to this perfect case (future known),

so not far from the bound.

PolicyP2: aggressive shutdown The secondpolicy does not consider the future and tries to switch off a server as soon as it is in idle statewithout

any prediction attempt. Such an aggressive approach is expected to result in a higher energy consumption than Policy 1 because some idle periods

may be lower than Ts. In such cases, switching off increases the energy consumption compared to staying idle.

This policy provides a simplified version of actual algorithms that wait for a given amount of time (usually greater than Ts) before switching off

idle nodes. For instance, a similar policy is implemented on the French experimental testbed Grid’5000 (19) with an additional measure: a small

portion of idle nodes are kept idle to support urgent computation needs.

These two policies depict a representative sample of typical shutdown policies deployed on real data centers. They will be compared in order to

provide an evaluation of the potential impacts of such policies on energy consumption and nodes lifetime.

4 EXPERIMENT SETUP

In order to provide a fair comparison among policies P1 and P2, we simulate their behavior on real workload traces. The simulation tool is using

calibrationmeasurements thatwe performed on several servers representing different hardware architectures. Simulations combine theworkload

traces and the energy calibration values to compare the two policies according to relevant metrics presented at the end of this section.

4.1 Workload traces

The utilized workload traces come from two kinds of data centers: an experimental small-size data center of an experimental testbed and a

supercomputer for bioinformatics. They provide two different utilization scenarios which exhibit different workload patterns and utilization levels.

4.1.1 Operational Cloud platform: E-Biothon

The E-Biothon platform is an experimental Cloud platform to help speed up and advance research in biology, health and environment (20). It is

based on four BlueGene/P racks and aweb portal that allowmembers of the bioinformatics community to easily launch their scientific applications.

Overall, the platform offers 4096 4-cores nodes, reaching a peak power of 56 Travel (20).

We obtained aworkload trace for this platform covering from the 1st of January 2015 to the 1st of April 2016, so roughly 15months of resource

utilization. In this trace, the average size of idle periods is around 2.8 hours while the overall usage is 98%

4.1.2 Experimental testbed: Grid’5000

Grid’5000 is a large-scale and versatile testbed for experiment-driven research in all areas of computer science, with a focus on parallel and dis-

tributed computing including Cloud, HPC and Big Data (19). Since 2005, the testbed offers distributed computing resources which are highly

reconfigurable. Thus, it is a unique operational platform dedicated to experiments. In 2016, it consists of about 1,000 servers embedding 8,000

overall, geographically distributed on 9 sites. For our evaluation, we extracted the workload trace of the Rennes site from the 1st of April 2010 to
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the 1st of April 2016, thus representing 6 years of resource utilization on this site. During this period, the weighted arithmetic mean of the number

of nodes is 149 and the average size of idle periods is around 6.17 hours. The overall usage is around 33%.

4.2 Energy calibration for real servers

Along with computing nodes, Grid’5000 provides management tools like kapower3, a utility that allows a user to have control on the power status

of a reserved node2, and, on some sites, it gives access to external wattmetersmonitoring entire servers and providing one powermeasurement per

second per server with a 0.125Watts accuracy. This infrastructure is used for obtaining the energy calibrationmeasurements required to compute

Ts as described in Section 3.1.

We applied the following protocol for calibration: an idle period of 20 seconds, followed by amonitoredOn toOff sequence, then a 20 seconds

Off section, and finally a monitored Off to On sequence. Thus, every energy and time monitored sequence is followed and preceded by idle

periods to avoid noise.

Grid’5000 servers are representative of typical architectures that can be found in usual datacenters. As it is an experimental testbed mainly for

distributed systems research, it presents a high variety of servers (currently 24 different clusters). We used servers from three clusters which are

power-monitored (one server per cluster). These servers present heterogeneous characteristics described on top of the Table 1 .

TABLE 1 Calibration nodes’ characteristics and energy parameters for On-Off and Off-On sequences (average and standard deviation on 100

experimental measurements)

Features Orion Taurus Paravance

Server model Dell PowerEdge R720 Dell PowerEdge R720 Dell PowerEdge R630

CPUmodel Intel Xeon E5-2630 Intel Xeon E5-2630 Intel Xeon E5-2630v3

# of CPU 2 2 2

Cores per CPU 6 6 8

Memory (GB) 32 32 128

Storage (GB) 2 x 300 (HDD) 2 x 300 (HDD) 2 x 600 (HDD)

GPU Nvidia TeslaM2075 - -

Parameters Orion Taurus Paravance

Average Std dev. Average Std dev. Average Std dev.

EOffOn (J) 23,386 215.45 19,000 169.6 19,893 1,571.2

EOnOff (J) 775.79 125.6 616.08 75.23 1,115 82.3

TOffOn (s) 150 1.73 150 1.49 167.5 16.6

TOnOff (s) 6.1 1.0 6.1 0.7 13 1.9

Pidle (W) 135 0.5 95 0.4 150 0.9

Poff (W) 18.5 0.4 8.5 0.3 4.5 0.6

Ts (s) 182.60 211.43 138.80

Toobtain theneeded calibration values,wemonitored three servers (Orion, Taurus, Paravance)while performing switchingoff andonoperations.

The nodes are running a standardDebian Jessie (DebianGNU/Linux 8.0 for x64 architectures). The results presented on the bottompart of Table 1

show averaged values over 100 experiments for these operations with the S5 mode (regular shutdown). They provide all the requested values to

compute Ts for the three nodes. Note that the observed standard deviations are negligible, thus confirming the stability of our measurements.

We performed similar experiments for the S4mode (Suspend-to-Disk). However, our experiments show that S4mode takesmore time to switch

betweenOn andOff states (TOnOff ) than the S5, the same time for switching betweenOff andOn (TOffOn), and a similarOff power consumption

(POff ). Consequently, this mode is useless from an energy point of view. The nodes do not support the S3mode (Suspend-to-RAM).

2https://www.grid5000.fr/mediawiki/index.php/Power_State_Manipulation_commands

https://www.grid5000.fr/mediawiki/index.php/Power_State_Manipulation_commands
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4.3 Energy calibration for future architectures

The ARM big.LITTLE processor is an example of promising architecture from an energy point of view. It combines a low-power processor with a

high-performance one to offer an heterogeneous architecture closer to power proportionality than other processors evenwith dynamic frequency

scaling (21). The idea consists in activating one processor at a time: either the low-power one during lowworkload or the powerful one during high

activity.

This concept has been extended to data centers in (22) in order to build power-proportional servers. In this approach named BML (Big, Medium,

Little), a computing node is composed of three processing units aiming at different levels of workload and energy consumption. It is assumed that

each processing unit is able to be turned on and off independently from the others.

We take the same BML configuration that the calibration measurements presented in (23). A Big unit corresponds to Graphene node (x86 Intel

Xeon X3440) on Grid’5000 platform, a Medium unit corresponds to a Chromebook (ARM Cortex-A15) and finally, a Little unit corresponds to a

Raspberry node (ARM Cortex-A7). We then assume, as in (23), that it exists a computing node composed with these three processing units. The

required energy values for BML nodes are provided in Table 2 . Interestingly, the Medium unit presents a behavior different from the two others

with a TOffOn < TOnOff .

TABLE 2 Initial calibration values for independent BML units from (23)

Parameters Big Medium Little

EOffOn (Joules) 4,940 49.3 40.5

EOnOff (Joules) 760 77.6 36.2

TOffOn (seconds) 71 12 16

TOnOff (seconds) 16 21 14

Pidle (Watts) 47.7 4 3.1

Poff (Watts) 8 1.9 2.2

We consider several configurations where BML components can be turned off separately or simultaneously. The considered configurations are

the following:

• AtomicBML: the three processing units composing a BML node are turned off simultaneously, behaving as a single node. For this configura-

tion, the energy values EOffOn and EOnOff are the sum of the three units’ values, the times TOffOn and TOnOff are the maximum as

we assume that components can be switched in parallel, and the power valuesPidle andPoff are the sum.

• OnlyB, OnlyM, OnlyL: only one of the processing unit composing the BML node is turned off. In this case, Poff corresponds to the sum of

the Poff of the turned off processing unit and the Pidle of the others. Pidle corresponds to the sum of the three Pidle. TOffOn, TOnOff ,

EOffOn andEOnOff are equal to the values in Table 2 of the component which is switched on or off.

• FlexibleBML: all possible computing units are turned off individually: if an idle period does not allow for all processing units to be turned off,

only the possible ones are turned off.

These use cases represent possible configurations of future processing architectures which should get closer to energy proportionality than

current ones. One canwonder if shutdown techniques can be beneficial for such architectures from an energy point of view.

4.4 Evaluationmetrics

In order to fairly compare the shutdown policies in the determined use cases, we define several evaluationmetrics. In particular, for evaluating their

energy impact, we compare the energy consumedwith each policy against the energy usedwithout any shutdown policy (ie. policywhere the nodes

stays idle and consumesPidle Watts during periods without any work). This metric will indicate the potential energy savings with each policy.

We also provide the theoreticalmaximumenergy savings if switching operations had a null cost (ie. zero energy, zero time for switching between

on and off states). This provides an idea on how far the policies are from the theoretical ideal case and how much the costs related to switching

operations are impacting the energy savings. The ideal case does not provide 100% energy gains compared to the idle case as switched off nodes

consume energy (Poff 6= 0).

Finally, the results include the number of On-Off cycles per node for each workload in order to evaluate the impact of shutdown policies on the

servers’ lifetime. Indeed, one obstacle to the adoption of shutdown policies lies in the number of On-Off cycles imposed to the servers. In case of a
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too high number of cycles, it could damage the hardware parts like the hard disk drives (HDD). Typically, it is considered that hard drives can support

a given amount of switching on and off during their lifetime. This parameter, known as Contact Start/Stop Cycles or load/unload cycles depending on

the physical configuration of the hard drive head, is typically around 50,000 and 300,000 respectively for desktop HDD (24), and around 600,000

for NASHDD (Network-Attached Storage) which use only load/unload technology (25). So, the number ofOn-Off cycles per nodewill be compared

with these figures to determine whether the policy may alter or not the servers’ lifetime.

Herewe only consider HDDdisks as they represent the dominant storage technology in current data centers (26).While solid state drives (SSD)

start to equip data centers and provide higher data transfer rate and lower access latency thanHDD, their high price and limited numbers of erasure

cycles prevent them frombeingwidely applied to large data centers (27). Yet, SSD technologies do not challenge shutdown techniques as the behav-

ior of mechanical technologies (like HDD) does. Indeed, contrarily to HDD, SSD’s drawbacks do not include limited number of on/off cycles (28),

and can thus smoothly accommodate with any server shutdown policy. Finally, hybrid systems like solid state hybrid drive (SSHD) combine both

technologies and consequently, they exhibit a warranted number of load/unload cycles identical to HDD technologies alone (29).

4.5 Simulation Tool

In order to exploit theworkload traces described in Section4.1 and to combine themwith ourmeasurements on theGrid’5000 testbed (Section4.2),

we have designed a specific simulation framework. This simulation tool has been developed in Java and replays the studied workloads with the

different shutdown policies that are explored in this paper. Consequently, the simulation tool has three inputs: the trace to replay, the calibration

measurements (on-off sequencesmonitored on a real platform), and the shutdown policy to apply.

During the replay, on every idle period encountered for each machine, the simulation tool determines if the chosen policy would have switched

the machine off and then on, instead of keeping it idle. As we did not have physical access to all the machines appearing in the obtained work-

load traces for monitoring the on-off sequences, we assume that all the machines are homogeneous and that they follow the calibrated sequences

detailed in Tables 1 and 2 . Since our aim is to estimate the potential energy gains of shutdown techniques without impacting the users’ perfor-

mances, the simulated replays do not modify the working sequences: computing jobs are not delayed due to on-off sequences. Indeed, if an idle

period of time lasts less than Ts seconds (as defined in Section 3.1), it is not considered for a shutdown sequence.

5 IMPACTOF SHUTDOWNPOLICIES

This section explores the simulation results of the shutdown policies with the various hardware calibrations and the workload traces described in

Section 4. For every trace replay, the nodes are assumed to be homogeneous. Thus, every node of the trace is respecting the configuration of one

of the calibrated nodes for each run. This assumption situates our results in the context of an homogeneous cluster for clarity’s sake: in case of

opposite effects on different server architectures, results would not bemeaningful.

We first examine the case of current architectures based on the calibrationmade on theGrid’5000 nodes and described in Table 1 .While policy

P1 always performs exact prediction of the future workload in order to adequately switch on and off the nodes, policy P2 does not attempt to

foresee the future and switches off a node as soon as it is unemployed. The ideal case assumes that state transitions have no cost in terms of energy

and time, but switched off nodes are still consuming a bit (Poff 6= 0), so the energy gains of the ideal case is not 100%.

Table 3 shows the percentage of energy that could be saved during idle periods with each policy compared to the energy consumed if nodes are

never switchedoff. The last two columns present the average number ofOn-off cycles per node for the entire duration of theworkload (respectively

6 years and 15months for the twoworkload traces).

The results show that by turning off nodes, even when considering On-Off and Off-On costs, consequent energy gains can be made on real

platforms. In the most unfavorable configuration (ie. Orion configuration), by using shutdown techniques, we can theoretically save up to 86% of

the energy consumed while being in idle state. In the case of Grid’5000 trace, this percentage represents around 706,000 kWh for the 6 years, so

roughly a cost of 70,600 euros (at a cost of 0.10 euros per kWh). For the E-Biothon trace, we can also save up to 86% of the energy consumed in the

idle case, this represents 109,000 kWh for 15months, roughly 10,900 euros of loss to keep servers idle.

The number of On-Off cycles per node reaches at the maximum 5, 690 for the 6-year Grid’5000 traces, so 2.59 per day, far less than the

50,000 start/stop cycles typically allowed byHDDmanufacturers during their 5-year lifetime under warranty (24, 25). This clearly states that even

aggressive shutdown policies have no impact on disk lifetime.

It is worth noticing that significant energy gains can be performed for both traces even though they present completely different use cases.

In particular, the E-Biothon trace comes from an operational bioinformatics supercomputer and although energy savings are smaller than for the

Grid’5000 trace in comparisonwith the infrastructure size, they are still not negligible, representing around73,680 kWhper year for theOrion case

(most unfavorable case) with a basic shutdown policy like P2 (without prediction algorithm).
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TABLE 3 Energy gains on idle periods and number of on-off cycles per node for current servers

% Energy saved on idle periods #On-Off cycles per node

Calibration P1 P2 Ideal P1 P2

Grid’5000 trace, 6 years, 149 nodes on average

Orion 85.87% 85.59% 86.29% 3,080 5,690

Taurus 90.56% 90.22% 91.05% 2,980 5,690

Paravance 96.66% 96.46% 97.00% 3,333 5,690

E-Biothon trace, 15months, 4096 nodes

Orion 85.18% 84.56% 86.29% 33 70

Taurus 89.83% 89.07% 91.05% 33 70

Paravance 96.03% 95.61% 97.00% 38 70

The energy savedwith policies P1 andP2are very close to the ideal case (around2%difference in theworst case). Evenwithout knowledge about

the future (policy P2), energy gains are quite similar. This means that even simple shutdown policies – not including workload predictions – can

save consequent amounts of energy, close to the optimal bound in the context of the studied types of workload. These results show that the energy

gains of P1 and P2 is too close (for Orion 0.28% of difference between the policies, roughly 2,000kWh over 6 years) to justify the elaboration of a

prediction algorithm: such a complex algorithm to design would only bring negligible benefits. Such a conclusion can differ in the context of other

types of workloads with small and frequent idle periods for instance.

6 IMPACTOF FUTURE ENERGY-AWAREHARDWARE

6.1 Experiments on future architectures with improved shutdownmodes

After this analysis on current hardware, we study the impact of shutdown techniques on envisioned future architectures: regular nodes with an S3

mode (Suspend-to-RAM) and power-proportional nodes. For the S3 mode, it was not available on the Grid’5000 servers used for our calibration

measurements. However, one can assume that when this technology will become more mature and used in hardware composing datacenters, it

could present an appealing trade-off between energy consumption (for switching off nodes) and reactivity (for their short switching time TOnOff

and TOffOn).

TABLE 4 Assumed energy calibration on envisioned nodes with S3mode

Parameters Values

EOffOn (Joules) 2,300

EOnOff (Joules) 2,300

TOffOn (seconds) 10

TOnOff (seconds) 10

Pidle (Watts) 135

Poff (Watts) 37

Ts (seconds) 20

After discussing with people from the Leibniz Supercomputing Centre operating the SuperMUC HPC system (30) on which S3 is available, we

get quantitative indications stating that, the power consumption on S3 mode is about twice bigger than when regularly switched off, and the On-

Off and Off-On sequences are close in terms of duration. So, based on an Orion calibration from our measurements (as presented in Table 1 ), we

assume that an envisioned nodewith S3modewould present the energy calibration parameters shown in Table 4 .

Table 5 presents the comparison of the energy gains between this S3mode and a regular shutdown (S5) for theOrion case as shown in previous

results presented in Table 3 . Results indicate that S5 mode allows for more energy savings than S3 mode on these traces. Indeed, idle periods are

long enough to easily compensate for the energy and time costs of switching between states. However, the consumption while in S3 mode (Poff )
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is, in this case, too high for competing with the energy saving percentage reached with a regular shutdown. For the S3 mode to be beneficial for

workloadswith consequent idle periods, it is thus required to diminish its energy consumption (Poff ) rather than reducing the switching costs (and

thus Ts).

TABLE 5 Energy gains on idle periods and number of on-off cycles per nodewith an envisioned S3mode

% Energy saved on idle periods #On-Off cycles per node

Calibration P1 P2 Ideal P1 P2

Grid’5000 trace, 6 years, 149 nodes on average

Orion 85.87% 85.59% 86.29% 3,080 5,690

S3 72.51% 72.48% 72.59% 3,343 5,690

E-Biothon trace, 15months, 4096 nodes

Orion 85.18% 84.56% 86.29% 33 70

S3 72.31% 72.26% 72.59% 52 70

6.2 Experiments on future energy-proportional architectures

Concerning power-proportional nodes, results are provided by Table 6 based on the calibration values and configurations exposed in Section 4.3.

As expected, for both policies, when only one component over the three units composing the processing node can be switched off (cases OnlyL,

OnlyM andOnlyB), it consumesmore thanwhen the three can (AtomicBML and FlexibleBML).

Moreover, switching off only the Little or the Medium components result in little energy savings (less than 9%). This explains that FlexibleBML

– able to switch off the three components independently or together – brings minor improvements compared to AtomicBML, where the three

components are always switched jointly (0.6% difference on policy P1). For policy P2 and configuration FlexibleBML, it gives the same results as

configurationAtomicBMLbecause this policy automatically switches downall the componentswhenever possible, so it produces the samebehavior

as AtomicBML in this case.

TABLE 6 Shutdown impacts with an energy-proportional architecture

% Energy saved on idle periods #On-Off cycles per node

Calibration P1 P2 Ideal P1 P2

Grid’5000 trace, 6 years, 149 nodes on average

AtomicBML 77.66% 77.51% 77.91% 3,495 5,690

OnlyL 2.00% 2.00% 2.007% 5,690 5,690

OnlyM 8.93% 8.93% 8.941% 5,690 5,690

OnlyB 72.19% 72.05% 72.44% 3,511 5,690

FlexibleBML 77.72% 77.91% 5,690

E-Biothon trace, 15months, 4096 nodes

AtomicBML 77.22% 76.93% 77.91% 42 70

OnlyL 2.00% 2.00% 2.007% 70 70

OnlyM 8.93% 8.93% 8.941% 70 70

OnlyB 71.78% 71.50% 72.44% 42 70

FlexibleBML 77.72% 76.93% 77.91% 70 70

Similarly to previous results, we observe that policy P1 and P2 give comparable results (0.79% of difference at maximum), and they are close

to ideal case (0.98% at most). Designing an accurate workload prediction algorithm has therefore little interest for energy saving purpose in the

studied context. In the samewayas previous results also, thenumber ofOn-Off per cycle is small enoughnot tomodify thehardware life expectancy.
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7 CONCLUSIONANDFUTUREWORK

The energy-efficiency of servers is increasing withMoore’s law. Yet, due to an increased demand for Internet-based services, the energy consump-

tion of large-scale systems keeps growing and is becoming more and more a worrying concern. Although shutdown techniques are available to

reduce the overall energy consumption during idle periods, they are rarely employed because of their supposed impact on hardware.

Simulation results combining real workload traces and energy calibration measurements conducted in this paper allow us to draw several

conclusions:

• Shutdown techniques can save – even in production data centers – important amounts of energy otherwise wasted during idle periods and

this conclusion remains true for envisioned future hardware with power-proportional processing units.

• Even aggressive shutdown policies have no negative impact on disk lifetime.

• Reducing the consumption while in Off state has a greater impact on energy savings than reducing the switching energy and time costs

between On and Off states. For this reason, S3 (Suspend-to-RAM) and S4 (Suspend-to-Disk) states are currently not beneficial in terms of

energy consumption.

• Workload prediction can improve the reactivity of the system implementing shutdown techniques. Nevertheless, for the types of workload

studied in this paper, we underline the fact that prediction is not necessary to save important amounts of energy.

As stated by (10), switching on and off large scale infrastructures can be a real challenge due to several constraints: temperature, power capping,

renewable energy provision, etc. Our future work includes an integration of failure models when resuming from Off state in order to study the

impact of bad resuming behavior. We also plan to evaluate other shutdown policies which are applied in current data centers like switching nodes

by portions of the total number to control the impact on data center cooling system.
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