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Abstract  The network of the future will require a greater 
degree of service-awareness, and an optimal use of network 
resources. This paper presents the architectural design developed 
in the AutoI project for an open software-defined network 
infrastructure that enables the composition of fast and 
guaranteed services in an efficient manner and the execution of 
these services in an adaptive way taking into account better 
shared network resources provided by network virtualisation. 
Validation results are provided with special emphasis on service 
deployment scalability over virtualized network infrastructures.  

Index Terms Autonomic Internet, network virtualisation, 
service enablers, self-management. 

I. INTRODUCTION 

T is becoming accepted that Future Networks should be 

service and management aware [1], which includes (among 

others) the following aspects:  

involvement and control.  

 Fulfilment of business, Quality of Service (QoS) and Service 

Level Agreements (SLA). 

delivery. 

mechanisms and network domains.  

Conversely, deployed services [2] in the Future Networks 

should be network-aware. Network-awareness means that the 

consumer-facing and the resource-facing services are aware of 

the properties, the requirements, and the state of the network 

environment. This enables services to self-adapt according to 

changes in the network context.  

In the recent years, network virtualisation techniques have 
gained a lot of attention due to their flexibility for creating 
computing clouds and for creating separate and independent 
virtual networks on top of physical network infrastructures. 

Virtual networks abstract away the complexity of the 
underlying infrastructure. They are characterized in the 
literature either as a main means to test new network 
architectures or as a crucial component of future networks [3], 
[4], [5]. Multiple logical networks can co-exist above the same 
physical substrate. They can take the form of virtual private 
networks [6], active and programmable networks [7] overlay 
networks [8] or virtual networks [9]. The virtual nodes and 

links form a virtual topology over the underlying physical 
network. 

Virtual Networks are a collection of virtual nodes connected 
together by a set of virtual links to form a virtual topology, 
which is essentially a subset or an aggregation of the 
underlying physical topology. In such networks, links and 
nodes may be reconfigured quickly and may be, for example, 
powered down to save energy or the node may be redeployed 
to a different logical area of the network. Virtual networks 
aim at better utilization of the underlying infrastructure in 
terms of (i) reusing a single physical or logical resource for 
multiple other network instances, or (ii) to aggregate multiples 
of these resources, in order to obtain more functionality, such 
as providing a pool of resources that can be utilized on 
demand. As an example, virtual networks can be aggregated 
(or federated) together. Such an approach requires aggregation 
and dissolution of control, data, and information planes, which 
is a challenging problem.  

Virtualized network environments are highly dynamic [4] as 
links and nodes may be reconfigured quickly. Virtual routers 
may migrate on-demand, as in [3], based on resource 
availability, in order to save energy or to follow the physical 
location of the users. Nodes may also move logically (i.e., not 
physically). Virtual network aggregation or dissolution 
triggers changes in the virtual topology, i.e., virtual network 
embedding [9]. It is obvious that management of virtual 
networks is challenging, since it is necessary to manage this 
complex functionality. Manageability and service deployment 
is considered to be the biggest concern for network 
virtualization [4].  

This paper describes the architectural model and validation 

results of the EU Autonomic Internet AutoI project [10], 

which proposes open-source software defined network (i.e. 

Network Cloud). It is a self-managing overlay of virtual 

resources that can span across heterogeneous physical 

networks. All the components of the AutoI architecture were 

developed as open source components available from [10]. 

Validation results were performed by exercising the open 

source components on 3 physical networks ranging from 4 -

5,000 nodes. Two types of validation results based on large-

scale experiments are the focus of this paper as follows: 

Built-in network management, specifically self-management 

functionality for service- and networking-awareness. 

 Large scale provisioning and deployment of both, 
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application services and management services over virtual 

infrastructures. 

This paper is structured as follows. Section II presents the 

AutoI architectural framework and its relevant systems. 

Section III presents validation results. Section IV provides 

some technical discussion. Section V describes related work. 

Section VI concludes the paper. 

II. AUTOI ARCHITECTURAL FRAMEWORK AND SYSTEMS 

The AutoI framework consists of a software defined 

network described with the help of five abstractions  the 

OSKMV planes: Orchestration Plane (OP). Service Enablers 

Plane (SP), Knowledge Plane (KP), Management Plane (MP) 

and Virtualisation Plane (VP). At the physical level, they are 

embedded on network hosts, devices, and servers within the 

network. The main purpose of the OSKMV planes is to make 

the Future Networks capable of self-knowledge, and 

ultimately fully self-managing. The AutoI architectural model 

is shown in Figure 1 and a description of the major elements 

follows. Open source platform components developed in 

support of the AutoI architecture, which are available from 

[10], are indicated as (*) in the following section.  

A. Orchestration Plane Overview 

The purpose of the Orchestration Plane is to govern the 

behaviour of the system in response to changing context and 

in accordance with applicable business goals and policies. It 

supervises and integrates all other plan

integrity of the future Internet management operations.  

The Orchestration Plane is a control framework into which 

any number of components can be plugged into in order to  

 

Fig. 1. AUTOI Architectural Model- software defined network 

achieve the required functionality. These components could 

have direct interworking with control algorithms, situated in 

the control plane of the Internet (i.e. to provide real time 

reaction), and interworking with other management functions 

(i.e. to provide near real time reaction).  

In practical terms, the Orchestration Plane controls one or 

more Autonomic Management Systems (AMS  described 

later). It acts as control workflow for AMSs ensuring their 

bootstrapping, initialisation, dynamic reconfiguration, 

adaptation and contextualisation, optimisation, organisation, 

closing down. It is functionally integrated by one or more 

Distributed Orchestration Components (DOC) and a dynamic 

knowledge base consisting of a set of models and ontologies 

and appropriate mapping logic and buses. DOCs can federate 

via buses. The internal design details of the Orchestration 

Plane can be found in [11]. 

B. Autonomic Management System (AMS) 

A key advantage of the AutoI architecture is that it can 

provide a programmable mix of isolation and sharing of 

network resources. A key advantage of separating the control 

and data planes is to provide increased isolation for an 

application or set of applications.  

Each Autonomic Management System (AMS) is part of the 

Management Plane (described later) and it includes interfaces 

to a dedicated set of models and ontologies and interfaces to 

one or more Distributed Orchestration Components. Mapping 

logic enables the data stored in models to be transformed into 

knowledge and combined with knowledge stored in ontologies 

to provide a context-sensitive assessment of the operation of 

one or more virtual resources. 

Another set of interfaces 

enables framework services, 

such as directory services, 

naming, federation, and 

others, to be used by the 

AMS. 

C. Distributed Orchestration 
Component (DOC) 

The Distributed 

Orchestration Component 

(DOC) (*) provides a set of 

framework network services. 

Framework services provide 

a common infrastructure that 

enables all AMSs controlled 

by the Orchestration Plane to 

have (un)plug-and-play 

behaviour. Applications 

compliant with these 

framework services share 

common security, metadata, 

administration, and 

management services. The 
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DOC enables the following framework network services to the 

AMSs under its control:  

 Federation: each AMS is responsible for its own set of 

virtual and non-virtual resources and management services 

that it governs. Federation enables a set of domains to be 

combined into a larger domain, where selected functionality of 

each constituent domain contributes to the overall 

functionality of the larger domain. 

 Negotiation: each AMS advertises a set of capabilities (i.e., 

services and/or resources) that it offers for use by other 

components in the Orchestration Plane.  

 Distribution: this service enables tasks to be split into parts 

that run concurrently on multiple AMS controlled by a DOC, 

or even across multiple DOCs. This function ensures that 

AMSs with different implementations and functionality can 

collaborate.  

 Governance: this service enables each AMS to be able to 

operate in an individual, distributed, or collaborative mode. 

Business goals, service requirements, context, capabilities and 

constraints are all considered as part of the decision making 

process. 

 Intra-System View: this service provides an overall, 

composite view of the system as seen by the components 

within a DOC. 

 Inter-System View: this service provides an overall, 

composite view of collaborating DOCs, as in a multiple 

domain system.  

D. Service Enablers Plane Overview 

The Service Enablers Plane (SP) consists of functions for 

the automatic (re)deployment of new management services, 

protocols as well as resource-facing and end-user facing 

services. It includes enablers to allow code to be executed on 

the network entities. This functionality is implemented by the 

ANPI (Autonomic Network Programming Interface) (*)[10], 

which supports large scale network programmability in 

deployed virtual networks. The safe and controlled 

deployment of new code enables new services to be activated 

on demand, and to be made available to both, management 

and orchestration planes for the benefit of service-awareness. 

This approach has the following advantages: 

 Automatic service deployment allowing a significant 

number of new services to be offered on demand. 

 Flexible network configuration capabilities. 

 Special management functions and services can be easily 

enabled locally for testing purposes before they are 

automatically deployed network-wide. 

 Flexible support for service migration, both for consumer-

facing and the resource-facing services.  

E. Knowledge Plane Overview 

The Knowledge Plane was proposed by Clark et al. [13] as 

a new dimension to a network architecture, contrasting with 

the data and control planes; its purpose is to provide 

knowledge and expertise to enable the network to be self-

monitoring, self-analysing, self-diagnosing and self- 

maintaining.  

AutoI introduces a narrow functionality Knowledge Plane 

(KP), consisting of models and ontologies, to provide 

increased a

brings together widely distributed data collection, wide 

availability of that data, and sophisticated and adaptive 

processing or KP functions, within a unifying structure. This 

brings order and meets the policy, scaling and functional 

requirements of a global network. The main KP components 

are a Context and Service Information Platform (CISP) (*) 

[10] and ontologies, which enable the analysis and inferencing 

capabilities. The CISP provides: 

 information life cycle management (storage, aggregation, 

transformations, updates, distribution) of all information and 

context in the network addressing the size/scope. 

 responsiveness to requests made by the AMS;  

 triggers for the purpose of contextualisation of AMS 

(supported by the context model of the information model); 

 support for robustness enabling the KP to continue to 

function as best possible, even under incorrect or incomplete 

behaviour of the network itself; 

 support of virtual networks and virtual system resources in 

their needs for privacy and other forms of local control, while 

enabling them to cooperate for mutual benefit in more 

effective network management.  

Logic
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Fig. 2. Autonomic Control Loops 

F. Management Plane Overview 

The Management Plane (MP) governs all virtual resources, 

performing decisions on their optimal placement, function and 

continuous migration. The functionality of the MP is 

implemented by the AMS (*). The MP functionality is subject 

to constraints determined by the Orchestration Plane. The MP 

is designed to meet the following objectives and functionality:  

 Embedded (Inside) Network functions: The majority of 

management functionality is embedded in the network and it 

is abstracted from the human activities. The AMSs run on 

execution environments on top of virtual networks and 

systems, which run on top of all current network (i.e. fixed, 

wireless and mobile networks) and service physical 

infrastructures. 

 Aware and Self-aware functions: it monitors the network 

and operational context as well as internal operational network 

state in order to assess if the network current behaviour serve 
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its purposes. 

 Adaptive and Self-adaptive functions: It triggers changes in 

network operation (state, configurations, etc.) as a result of 

changes in network and service context. 

 Automatic self-functions: It enables self-control (i.e. self-

FCAPS, self-*) of its internal network operations, functions 

and state. Manual/external input is provided in the setting-up 

of the business goals and other unavoidable functions. 

 Extensibility functions: It adds new functions without 

disturbing the rest of the system (Plug and Play dynamic 

programmability of management functions and services). The 

AMSs that implement the functionality of the MP and the KP 

are designed to follow the autonomic control loops (collect, 

analyse, decide, enforce, change [14]) depicted in Figure 2.  

G.  Virtualisation Plane Overview 

One of the key requirements that differentiate AutoI from 

other systems is its emphasis on virtualisation of resources and 

services. AutoI uses platform virtualisation to provide virtual 

services and resources. Platform virtualisation separates an 

operating system from its underlying platform resources; 

resource virtualisation abstracts physical resources into 

manageable units of functionality. For example, a single 

physical resource can appear as multiple virtual resources 

(e.g., the concept of a virtual router, where a single physical 

router can support multiple independent routing processes by 

assigning different internal resources to each routing process); 

alternatively, multiple physical resources can appear as a 

single physical resource (e.g., when multiple switches are 

t the 

set of stacked switches appears as a single virtual switch).  

AutoI extends contemporary virtualisation approaches and 

aims at building an infrastructure in which virtual machines 

can be dynamically relocated to any physical node or server 

regardless of location, network and storage configurations and 

administrative domain. 

The Virtualisation Plane (VP) consists of software 

mechanisms to treat selected physical resources as a 

programmable pool of virtual resources that can be organised 

by the Orchestration and Management Planes into appropriate 

sets of virtual resources to form components (e.g., increased 

storage or memory), devices (e.g., a switch with more ports), 

or even networks. The organisation is done in order to realise 

a certain business goal or service requirement. Two special 

interfaces, called the vSPI and the vCPI (Virtualisation 

System Programming Interface) and Virtualisation 

Component Programming Interface, respectively assess the 

basic functionality of the Virtualisation Plane, for which a 

brief description is given hereafter.  

H.  vSPI (Virtualisation System Programmability Interface) 

-

resources that a particular Orchestration Plane governs, and is 

responsible for orchestrating groups of virtual resources in 

response to changing user needs, business requirements, and 

environmental conditions. The low-level configuration (i.e., 

-

vCPI, as explained in the next section. 

The vSPI (*) is responsible for determining what portion of 

a component (i.e., set of virtual resources) is allocated to a 

given task. This means that all or part of a virtual resource can 

be used for each task, providing an optimised partitioning of 

virtual resources according to business need, priority and 

other requirements. Composite virtual services can thus be 

constructed using all or part of the virtual resources provided 

by each physical resource. 

-

resources that it governs. This is different from the vCPI, 

-

that it configures. For example, the vSPI collects global 

information about available physical resources. When an 

AMS receives requests to instantiate a new virtual resource it 

contacts the vSPI to determine which physical resources can 

be used. The vSPI then instructs the vCPI to instantiate the 

virtual resources on the correct physical resource for such 

purpose. The vSPI informs the AMS when the virtual resource 

is ready for use, and the vCPI informs the AMS when each 

virtual resource has been successfully reconfigured. 

I. vCPI (Virtualisation Component Programming Interface) 

The vCPI (virtual Component Virtual Interface) (*) is a 

modular, scalable and communication protocol-agnostic, 

system for monitoring and managing virtual resources. It 

operates locally; for each component of a physical network 

there is an embedded vCPI that is operating with third-party 

software by using a request/response mechanism. It is used for 

constructing, modifying and managing virtual networks (VN) 

consisting of virtual links (VL), virtual routers (VR) and 

routing services (RS). This enables the Autonomic 

Management System (AMS) to manage the physical resource, 

and to request virtual resources to be constructed from that 

physical resource via the vCPI. The AMS sends device-

independent commands to the vCPI, which are translated into 

device- and vendor-specific commands that reconfigure the 

physical resource and manage the virtual resources provided 

by that physical resource. The vCPI also provides monitoring 

information from the virtual resources back to the AMS that 

controls that physical resource. Note that the AMS is 

responsible for obtaining management data describing the 

physical resource. 

The vCPI is responsible for providing dynamic 

management data to its governing AMS that states how many 

virtual resources are currently instantiated, and how many 

additional virtual resources of what type can be supported. 

The vCPI needs to be aware of the structural information of 

the relations among virtual resources, and therefore, a 

discovery mechanism is included to inspect the contents of a 

physical component and map it to a data structure. 

More details of the AutoI open source software defined 

network components that integrate the five-plane AUTOI 

approach introduced earlier are provided in [10] [12]. 
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III. PRACTICAL APPROACH AND VALIDATION RESULTS 

This section tests the AutoI framework and the open source 

components, which were installed and run on 3 physical 

testbed networks ranging from 4 to 5,000 nodes. It provides 

relevant results emphasising in the creation of virtual 

networks, service deployment and scalability aspects. The 

section concentrates on wired physical networks. The 

interested reader will find a description of the AutoI support 

for mobile users in [10]. 

A. Creation of Virtual Networks 

In AutoI, virtual networks can be set up by means of 

administrative decisions, programmed at a given time, 

triggered by events like threshold crossings, or they can be 

created on demand.  

This section demonstrates the AutoI context-aware, on-

demand, scalable creation of functional virtual networks. The 

term functional implies that virtual networks are ready to 

support application-services deployment, having all 

networking-services (e.g. routing services) deployed and 

configured properly. For this purpose we have used a physical 

infrastructure consisting of four physical components (2 Quad 

Core AMD Opteron 2347H CPUs and 32 GB RAM, running 

Linux, XEN or Qemu and Open SSH). 

In this test setting the autonomic collect part (see 

figure 2 for details of this loop) is exercised by the Context 

Information Services Platform (CISP) that manages context 

information and triggers notifications about changes 

corresponding to demand requests for virtual networks. 

Demand request correspond to end-points of connectivity with 

specific QoS constraints (e.g. throughput). CISP nodes are 

deployed in each physical node and also in each virtual router 

as soon as it is created. The collected data is made available to 

all AutoI components along the life cycle of the virtual 

infrastructure.  

The autonomic analyse and decide parts are 

implemented by the AMSs and the DOCs, which analyse 

context changes (e.g. end point network requests) and 

evaluate the conditions under which context changes occur, 

and eventually decide on appropriate actions that would fulfil 

their business goals. Business goals in this test case 

correspond to specific characteristics of the to-be-created 

virtual network topology. In this test scene a network 

topology that emulates the current (2010) topology of the 

German X-WiN network [15] was used. Such network 

consists of 60 nodes interconnected by 80 links, representing 

sites all over Germany as graphically depicted in Figure 3. 

The virtual routers are spread among the four physical 

components, 15 VRs are created on each component. 

Decisions are taken and result in concrete configurations that 

will need to be enforced via the vSPIs, vCPIs and ANPI 

platforms.  

 
Fig. 3. 60-Virtual Router and 80-Virtual Link Virtual Network Created in 

Four-Component-physical Test-bed 

The autonomic s enforce parts are assessed by the 

vSPIs, vCPIs and ANPIs. They are aimed at executing the 

appropriate commands to configure the Virtual Network 

(VN). In practical terms, creating a VN is a two-step process:  

1) Creation/start-up of Virtual Routers (VRs) and creation of 

Virtual Links (VLs) attached to the former (enforced by the 

vSPIs and vCPIs. 

2) Deployment of the networking-facing services (e.g. routing 

services) that would support the virtual network (enforced by 

the ANPIs. 

A VL exists between two VRs and consists of three 

segments: one is connecting the physical hosts, and the other 

two are connecting each VR with its host. All three segments 

are aggregated to a VL by two software bridges (driven by 

two vCPIs). Therefore, for each VL (between VR1 and VR2 

for example) the following operations are conducted:  

a) Create the central segment (tunnel) between the physical 

components (optional if the linked routers are hosted on the 

same physical component). 

b) Add a virtual network interface to both VR1 and VR2.  

c) Bridge each virtual interface to the corresponding physical 

component to create the first link-segments. 

d) Deploy the networking facing-services in VR1 and VR2. 

To start up a VR, the vCPI uses hypervisor commands to 

create a virtual router from a template image. This template is 

instantiated with individual configuration options, like the 

initial network address or the amount of virtual hardware to be 

assigned. The tunnels to instantiate VLs are created using 

OpenSSH. Tunnels that are using the same physical Network 

Interface Card (NIC) share the available bandwidth among 

themselves. Statically assigning a guaranteed amount of 

bandwidth for a VL is possible by using traffic control 

mechanisms as demonstrated in [16].  
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Fig. 4. Start-up Times of 60 Virtual Routers Created in Four-Component 

physical Test-bed 

The AMSs and DOCs in this test scenario issue commands 

to the vCPIs sequentially, which in turn have processed them 

(in parallel when possible). The start-up times for the Virtual 

Routers (VRs) are depicted in Figure 4, where the most 

relevant behaviour is that the start-up times are stable for an 

increasing number of VRs in each physical component. In this 

execution run each VR needs in average 25 seconds to be 

started. After the routers are started, the AutoI solution reacts 

to this context-change (new virtual resources available) and 

issue appropriate commands to the vCPIs to instantiate the 

Virtual Links (VLs). The vCPIs enforce the commands in the 

four components of our test-bed in parallel when possible, 

using the three-segment approach described earlier. Again, the 

most relevant behaviour is that the start-up times of each VL 

are stable for an increasing number of VLs in the four 

physical components. The average time to construct a VL is 

about 5 seconds with a little variation between the minimum 

and maximum values as graphically depicted in Figure 5. 
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Fig. 5. Virtual Link Creation Times in 4-Component-physical Test-bed 

 
Fig. 6. Round-Trip Times in 60 Router- 80 Link Virtual Network 

As mentioned earlier, the a

assessed by the ANPIs are devoted to discover and deploy the 

networking-facing services (i.e. routing) that will make such 

network operational. The round-trip times between each 

Virtual Router were measured to test that the network is 

operational. The minimum, maximum and mean values of 5 

measurements are presented in Figure 6. The most important 

behaviour here is that the average round-trip time appears to 

be linear with the number of virtual hops, with a moderate 

slope and values below 40 ms in our test-bed.  

B. Service Deployment Results 

This section demonstrates the AutoI context-aware, on-

demand, service deployment capabilities over virtual 

networks. Similarly as in our last test scene, the autonomic 

collect part is exercised by the Context Information 

Services Platform (CISP) that manages context information 

and triggers notifications about changes corresponding to 

service requests for virtual networks, availability of services, 

resource usage information, etc.  

analyse and decide parts are 

implemented by the AMSs and the DOCs, which analyse 

context changes (e.g. service requests) and evaluate the 

conditions under which context changes occur, and eventually 

decide on appropriate actions that would fulfil their business 

goals. Business goals in this test case would have an impact 

on the level of service deployment that would be eventually 

enforced. For example, Local Service support implies that a 

service would be deployed in a single virtual element, whereas 

Domain or Global support would imply that a set of services 

be deployed by network operators to a specific area of the 

virtual network. 

enforce part is assessed by the 

Autonomic Network Programming Interface (ANPI), which 

executes a number of atomized autonomic processes in each 

node of the network when necessary. The main AutoI 

components enforcing this service deployment test are 

graphically depicted in Figure 7.  

The ANPI maintains service repositories with available 

tested service code. Services are discovered by the ANPIs and 
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they are available for download from repositories located in 

the virtual network. 
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Fig. 7. Basic Virtual Network with AutoI Service Deployment Support 

ANPI daemons deploy and manage the lifecycle of services. 

There is one ANPI running in each virtual component of the 

deployed network. When the ANPI receives a command from 

an AMS and/or DOC component to deploy or to migrate a 

specific consumer-facing and/or the resource-facing service, it 

analyses such information, and this triggers a new decision 

making process in the ANPI nodes. The type of service, 

characteristics, availability of services in the network, etc., is 

information that is taken into account to decide the best 

deployment steps.  

The ANPI communicates through the Context and 

Information Service Platform (CISP) to expose and notify 

service deployment operations and services states.  

Following on the described test case, the action of a client 

requesting a streaming service in the network of Figure 7 is 

emulated. AutoI creates a new virtual router on demand and 

attaches it to the new client. The ANPI discovers the location 

of the appropriate streaming services to drive the 

configuration of the required networking services (e.g. routing 

services in this case) and supporting services (e.g. context, 

monitoring) required. In each router of the network (now with 

8 virtual routers), the ANPI deploys a basic routing service. 

The Figure 8 shows the time taken (bottom part) for the 

deployment of 8 ANPIs (continuous line), and the time taken 

(dotted line) to deploy 12 services (networking-facing, and 

application-facing) required to provision an end-to-end 

streaming service over the deployed virtual infrastructure. It is 

worth mentioning that once all ANPIs are deployed there is a 

small gap of time taken by the AutoI systems to find and 

download the required services and correlate appropriate 

context-changes. After this, the services are deployed, 

configured and started in about 3 minutes as depicted at the 

right part of Fig. 8.  

Physical resources have limited capacities in terms of 

bandwidth, CPU, memory, etc., which in turn are shared 

among virtual resources. Lack of physical resources is 

eventually manifested as service degradation. AutoI reacts 

effectively to service degradation with coordinated service 

migration actions, in which, all virtual networking services 

and application services are actually re-configured in 

appropriate physical resources. The interested reader will find 

extensive results of the Autoi migration support in [10]. The 

remaining of the paper will focus on the scalability support.  
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Fig. 8. Deployment of ANPIs (continuous) and Deployment of Services 

(dotted) 

C. Scalability Results on Network Virtualisation and Service 
Deployment 

Large scale validations were performed in an experimental 

test-bed (Grid5000 test-bed [17]) composed by a cluster of 10 

separate sites located in France, where all AutoI components 

were installed. The test-bed supports 5000 cores located on 

various clusters connected with 10G links. 

This section analyses the scalability of the AutoI solution 

for network virtualization and service deployments at large 

scale, in similar set ups as presented for mid-scale validations 

in sections III.A and III.B.  
TABLE I 

VIRTUAL INFRASTRUCTURE DEPLOYMENT FROM 10 TO 150 VR 

Deployment of 
VR 

10PM * 
1VR = 10 
VR 

10PM * 3VR 
= 30 VR 

50PM * 1VR 
= 50 VR 

50PM * 3VR 
= 150 VR 

Lyon 55s 3m18s 1m38s 3m42s 

Bordeaux 57s 3m7s 1m14s 4m41s 

Table I shows the result of the deployment of 10 to 150 

Virtual Routers (VR) on 10 to 50 Physical Machines (PM) on 

two sites of the test-bed. It is worth mentioning that the 

deployment of virtual machines depends on the number of 

Virtual Routers to deploy more than depending on the number 

of Physical Machines. Observed results are closely similar 

between Grid5000 sites. Table I shows the results obtained 

from two sites (Bordeaux and Lyon). 

For service deployment tests, target topologies like chains 

or trees were generated with the means to allow analysis of 

observed results. Figure 9 presents the service deployment 

results of a virtual network with 110 virtual routers in a chain 

topology in the Grid5000 test-bed. The deployment of 110 

ANPI daemons with its activation occurred in 30 seconds 

(continuous line in Fig. 9), while the deployment of 110 small 

sized services (4.4 Kbytes) required only 8 seconds (dotted 

line in Fig. 9).  
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Fig. 9. Deployment of 110 ANPI (continuous) and 110 services (dotted) 

 

Figure 10 presents the results of 220 services deployment 

on 110 virtual routers located in one virtual network with tree 

topology. This scenario shows that service deployment can 

occur at any time during the life of components provided that 

the ANPIs are already deployed in each virtual router. The 

deployment of the first 110 services occurred in 8 seconds 

(first part of the dotted line in Fig. 10). After a small gap the 

remaining 110 services were progressively deployed in about 

9 minutes. 
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Fig. 10. Deployment of 110 ANPI with 220 services 

IV. TECHNICAL DISCUSSION AND LESSONS LEARNT 

One of the primary arguments for setting up multiple virtual 

infrastructures is the possibility to support networks with 

different network protocols on the same hardware. However, 

it is necessary to develop and provide the means to also 

manage the virtual network elements, in particular the 

configuration of the virtual network layer. In order for 

network virtualisation techniques to be a key component for 

next generation Internet, network virtualisation interfaces (like 

the vCPI and vSPI in our architectural model) need to be able 

to configure virtual network interfaces, while at the same time 

need to remain protocol-agnostic and open to future Internet 

protocol stacks.  

Stability of virtual networks is an important issue that 

deserves special attention. Several instability problems were 

encountered during our experimental research. For example, 

when trying to create a number of coexisting virtual networks, 

each with 6 virtual routers distributed over four physical 

components, instability problems occurred when going 

beyond 15 virtual networks. Beyond this point, the creation of 

both virtual links and virtual routers became unpredictable. 

From our numerous experiments the conclusion drawn is that 

current virtualisation technologies are not built to cope with 

the dynamicity and load expected in future virtualised network 

environments. Additional implementation effort is needed to 

bring both hypervisor and virtual link technologies to a level 

where arbitrary creation of virtual networks becomes possible. 

Programmability in network and services encompasses the 

study of decentralized enablers for dynamic (de)activation and 

reconfiguration of new/existing services, including 

management services and network components. AutoI has 

taken the challenge to enable trusted parties (users, operators, 

and service providers) to activate management-specific 

service and network components into a specific platform. 

Dynamic programming enablers will be created as executable 

elements to create the new functionality at runtime. Network 

and service enablers for programmability can therefore realise 

the capabilities for flexible management support.  

Large scale validation experiments were performed to 

validate the efficient support of AutoI service deployment 

support. Due to the high quality (in terms of latency and 

throughput) of the test-bed, time required to deploy services 

was extremely short. However, deploying services in less 

reliable infrastructures requires more fault tolerant 

approaches. 

V. RELATED WORK 

 The last decade has seen a tremendous interest for all 

aspects of the future Internet (FI). As a comprehensive survey 

would require more than a single paper, this section describes 

key initiatives in USA and Europe contributing to the 

development of the Future Internet 

From the USA perspective, the National Science 

Foundation (NSF) supports four big projects. Named Data 

Networking [18] is aiming at an approach to identify the 

content to be supported by the Future Networks by itself 

instead of the locations where it resides. Mobility First [19] is 

looking at the inherent challenges of mobility and in particular 

to the use of opportunistic networking to support 

communications between end points. NEBULA [20] is aiming 

at a cloud computing architecture as a means to guarantee 

always available services. Finally, eXpresive Internet 

Architecture [21] addresses the growing diversity of network 

use models, the need for trustworthy communication, and the 

growing set of stakeholders who coordinate their activities. 

The scope of all these projects is much broader and 

concentrated on issues different than the ones presented in this 

paper. None of them use an orchestration plane to coordinate 

autonomic systems and do not explicitly mention the 

autonomic networking paradigm in support of service 

deployment and maintenance.  

From the European perspective, efforts are driven by the 

EC and its Future Internet Assembly (FIA). The FIA is 

supported by researchers working on approximately thirty 

projects of dealing with aspects of the Network of the Future. 

Closely related to our objectives we can mention TRILOGY, 

SOCRATES, 4WARD and Universal projects..  
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The focus of TRILOGY [22] is on the development of the 

generic control functions of the network. These control 

functions deal with routing mechanisms, resource control and 

social and commercial control. Instead our approach 

concentrates on a management plane in support of service 

deployment.  

The scope of the SOCRATES project [23] is the bottleneck 

problems created by the mobile access network and proposes 

self-* mechanisms to create a solution. In that sense our 

approach adopts the same conceptual solution because the 

autonomic Internet as we have conceived it has to make 

extensive use of self-* mechanisms. Nevertheless the AutoI 

autonomic approach goes beyond the access network and 

makes it an integral part of the fixed network as well. 

Furthermore, the mobile technologies considered in AutoI are 

not related to any particular technology (e.g. LTE) as in 

SOCRATES. 

4WARD [24] makes use of paravirtualization systems like 

AutoI approach to virtualize routers and network links. The 

most important similarity is the management approach; both 

approaches adopt the autonomic paradigm. Nevertheless the 

main difference is in the architectural approach. In fact, 

4WARD -

solution, i.e. embedding the management functionality in the 

same managed network device, which also makes use of a 

hierarchy from the operator management guidelines to the 

enforceable actions in the managed network devices. Instead, 

AutoI creates a multi-level hierarchy involving the service 

plane, the distributed orchestration elements and the 

autonomic management systems, which take care of one or 

many devices as necessary. From the architectural point of 

view the AutoI approach is more evolutionary from the 

current distributed management systems. The management 

functions are separated from the data forwarding and control 

functions and are not necessarily associated to the network 

device, but can be shared by different network devices. 

Separating the management activities in planes and not 

associating management functions to managed devices makes 

our solution scalable and easy to deploy in current network 

infrastructures. 

UniverSelf [25] is meant to create a framework federating 

different self-management approaches to make the Future 

Internet a global autonomic management system. 

VI. CONCLUDING REMARKS 

This work has presented the design and validation results of 

an open-software defined network infrastructure (i.e. a 

Network Cloud) that enables a fast and scalable composition 

of services in an efficient manner, and the execution of these 

services in an adaptive way taking into account better shared 

network resources provided by a virtualized network 

substrate.  

Current communication networks are composed of a set of 

heterogeneous resources. Virtualising these resources has 

served two purposes: Managing the heterogeneity through 

introduction of homogeneous virtual resources and enabling 

programmability of central network elements. The flexibility 

gained through this approach helps to adapt the network 

dynamically to both unforeseen and predictable changes in the 

network.  

The Autonomic Internet service deployment approach has 

demonstrated that dynamic programming can be used to 

enable creating new functionality at runtime over virtual 

infrastructures. Executable service code can be injected and 

activated into the virtual systems elements in runtime to give 

higher degree of flexibility in the deployment of services in 

the future networks.  

In addition, the adopted approach has revealed its 

scalability when large scale testbeds like Grid 5000 are used. 

Nevertheless, scalability in such a complex and multitier 

system like AutoI requires much more extensive testing than 

the experiments reflected in this paper. We mean for instance 

experiments within scenarios stressing specific planes or 

components of planes. Considering the AutoI architecture this 

would likely yield to tens of scenarios. This paper reflects the 

results of scalability tests in one particular scenario. Then we 

have to emphasize that our system scales well under the 

conditions of this particular scenario and that by no means 

these results can be generalized to different scopes or 

situations. Additional testing is in fact part of a challenging 

future work. 

ACKNOWLEDGMENT 

This work was undertaken in the context of the FP7-EU 

AUTOI project and the MCYT TEC2009-14598-C02-02. 

REFERENCES 

[1] - 
Recommendation ITU-T - http://www.itu.int/en/ITU-
T/focusgroups/fn/Pages/Default.aspx 

[2] B., Rochwerger, et al. "An Architecture for Federated Cloud 
Computing" in Cloud Computing: Principles and Paradigms (eds R. 
Buyya, et al), John Wiley & Sons, Inc., Hoboken, NJ, USA. 2011 

[3] Y. Wang, et al. "Virtual routers on the move: live router migration as a 
network-
communication SIGCOMM 2008 

[4] 
Computer Networks. vol. 54, pp. 862 876, April 2010.  

[5] T. Anderson et al. 
41, April 2005. 

[6] 
March 

2005 
[7] A. Galis et al. Programmable Networks for IP Service Deployment  

Artech House Books, 2004 
[8] 

ns Magazine, vol. 
47, no. 7, 2009 

[9] M. Yu et al. 

Communication Review, vol. 38, no. 2, pp. 17  29, 2008 
[10] EU IST Autonomic Internet Project Web Site http://ist-autoi.eu. 
[11] D. F. Macedo et al. The Autonomic Internet Approach for the 

Orchestration of Next-Generation Autonomic Networks Journal Annals 
of Telecommunications, Ed. Springer, April 2011 

[12] J. Rubio-Loyola et al. "Platforms and Software Systems for an 
-10 Miami FL, USA 



 

 

10 

[13] D.D., Clark, C., Partridge, J.C. Ramming, J.T. Wroclawski A 
knowledge plane for the interne  IEEE SIGCOMM 2003 

[14] AG Ganek, TA Corbi The dawning of the autonomic computing era  
IBM Systems Journal, 2003, 42(1):5 18 

[15] J. Pattloch et al. X-WiN: The New German National Research and 
Education Network Praxis der Informationsverarbeitung und 
Kommunikation. Volume 29, Issue 1, Pages 50 53, ISSN 0930-5157 

[16] A. Berl et al. Using System Virtualization to Create Virtualized 
Networks Journal Electronic Communications of the EASST, 17:1--12 
2009, ISSN: 1863-2122 

[17] Grid5000 TestBed www.grid5000.fr/ 
[18] Named Data Networking, http://www.named-data.net/index.html 
[19] Mobility First, http://mobilityfirst.winlab.rutgers.edu/ 
[20] Nebula, http://nebula.cis.upenn.edu/ 
[21] eXpressive Internet Architecture, http://www.cs.cmu.edu/~xia/ 
[22] -Architecting the Internet: An 

Hourglass control Architecture for the Internet, Supporting Extremes of 
trilogy-

project.org/ 
[23] -Optimisation and self-

-socrates.org 
[24] EU IST FP7 4WARD Project, http://www.4ward-project.eu/ 
[25] EU IST FP7 UNIVERSELF Project Realizing Autonomics for Future 

Networks  http://www.univerself-project.eu 


