

1

Abstract The network of the future will require a greater
degree of service-awareness, and an optimal use of network
resources. This paper presents the architectural design developed
in the AutoI project for an open software-defined network
infrastructure that enables the composition of fast and
guaranteed services in an efficient manner and the execution of
these services in an adaptive way taking into account better
shared network resources provided by network virtualisation.
Validation results are provided with special emphasis on service
deployment scalability over virtualized network infrastructures.

Index Terms Autonomic Internet, network virtualisation,
service enablers, self-management.

I. INTRODUCTION

T is becoming accepted that Future Networks should be

service and management aware [1], which includes (among

others) the following aspects:

involvement and control.

 Fulfilment of business, Quality of Service (QoS) and Service

Level Agreements (SLA).

delivery.

mechanisms and network domains.

Conversely, deployed services [2] in the Future Networks

should be network-aware. Network-awareness means that the

consumer-facing and the resource-facing services are aware of

the properties, the requirements, and the state of the network

environment. This enables services to self-adapt according to

changes in the network context.

In the recent years, network virtualisation techniques have
gained a lot of attention due to their flexibility for creating
computing clouds and for creating separate and independent
virtual networks on top of physical network infrastructures.

Virtual networks abstract away the complexity of the
underlying infrastructure. They are characterized in the
literature either as a main means to test new network
architectures or as a crucial component of future networks [3],
[4], [5]. Multiple logical networks can co-exist above the same
physical substrate. They can take the form of virtual private
networks [6], active and programmable networks [7] overlay
networks [8] or virtual networks [9]. The virtual nodes and

links form a virtual topology over the underlying physical
network.

Virtual Networks are a collection of virtual nodes connected
together by a set of virtual links to form a virtual topology,
which is essentially a subset or an aggregation of the
underlying physical topology. In such networks, links and
nodes may be reconfigured quickly and may be, for example,
powered down to save energy or the node may be redeployed
to a different logical area of the network. Virtual networks
aim at better utilization of the underlying infrastructure in
terms of (i) reusing a single physical or logical resource for
multiple other network instances, or (ii) to aggregate multiples
of these resources, in order to obtain more functionality, such
as providing a pool of resources that can be utilized on
demand. As an example, virtual networks can be aggregated
(or federated) together. Such an approach requires aggregation
and dissolution of control, data, and information planes, which
is a challenging problem.

Virtualized network environments are highly dynamic [4] as
links and nodes may be reconfigured quickly. Virtual routers
may migrate on-demand, as in [3], based on resource
availability, in order to save energy or to follow the physical
location of the users. Nodes may also move logically (i.e., not
physically). Virtual network aggregation or dissolution
triggers changes in the virtual topology, i.e., virtual network
embedding [9]. It is obvious that management of virtual
networks is challenging, since it is necessary to manage this
complex functionality. Manageability and service deployment
is considered to be the biggest concern for network
virtualization [4].

This paper describes the architectural model and validation

results of the EU Autonomic Internet AutoI project [10],

which proposes open-source software defined network (i.e.

Network Cloud). It is a self-managing overlay of virtual

resources that can span across heterogeneous physical

networks. All the components of the AutoI architecture were

developed as open source components available from [10].

Validation results were performed by exercising the open

source components on 3 physical networks ranging from 4 -

5,000 nodes. Two types of validation results based on large-

scale experiments are the focus of this paper as follows:

Built-in network management, specifically self-management

functionality for service- and networking-awareness.

 Large scale provisioning and deployment of both,

Scalable Service Deployment on Software
Defined Networks

J. Rubio-Loyola1, A. Galis2, A. Astorga3, J. Serrat3, L. Lefevre4, A. Fischer5, A. Paler5, H. de Meer5
CINVESTAV Tamaulipas1, University College London2, Universitat Politècnica de Catalunya3,

INRIA4, University of Passau5

I

Copyright and Reference Information: This material (preprint, accepted manuscript, or other author-distributable version) is provided to ensure timely dissemination of scholarly work.
Copyright and all rights therein are retained by the author(s) and/or other copyright holders. All persons copying this work are expected to adhere to the terms and constraints invoked by
these copyrights. This work is for personal use only and may not be redistributed without the explicit permission of the copyright holder. The definite version of this work is published as

[·] Javier Rubio-Loyola, Alex Galis, Antonio Astorga, Joan Serrat, Laurent Lefevre, Andreas Fischer, Alexandru Paler and Hermann De Meer. Scalable service deployment on software
defined networks. IEEE Communications Magazine, Volume 49, Number 12, pages 84–93, 2011. Accepted for publication.

See http://www.net.fim.uni-passau.de/papers/Rubio-Loyola2011a for full reference details (BibTeX, XML).

2

application services and management services over virtual

infrastructures.

This paper is structured as follows. Section II presents the

AutoI architectural framework and its relevant systems.

Section III presents validation results. Section IV provides

some technical discussion. Section V describes related work.

Section VI concludes the paper.

II. AUTOI ARCHITECTURAL FRAMEWORK AND SYSTEMS

The AutoI framework consists of a software defined

network described with the help of five abstractions the

OSKMV planes: Orchestration Plane (OP). Service Enablers

Plane (SP), Knowledge Plane (KP), Management Plane (MP)

and Virtualisation Plane (VP). At the physical level, they are

embedded on network hosts, devices, and servers within the

network. The main purpose of the OSKMV planes is to make

the Future Networks capable of self-knowledge, and

ultimately fully self-managing. The AutoI architectural model

is shown in Figure 1 and a description of the major elements

follows. Open source platform components developed in

support of the AutoI architecture, which are available from

[10], are indicated as (*) in the following section.

A. Orchestration Plane Overview

The purpose of the Orchestration Plane is to govern the

behaviour of the system in response to changing context and

in accordance with applicable business goals and policies. It

supervises and integrates all other plan

integrity of the future Internet management operations.

The Orchestration Plane is a control framework into which

any number of components can be plugged into in order to

Fig. 1. AUTOI Architectural Model- software defined network

achieve the required functionality. These components could

have direct interworking with control algorithms, situated in

the control plane of the Internet (i.e. to provide real time

reaction), and interworking with other management functions

(i.e. to provide near real time reaction).

In practical terms, the Orchestration Plane controls one or

more Autonomic Management Systems (AMS described

later). It acts as control workflow for AMSs ensuring their

bootstrapping, initialisation, dynamic reconfiguration,

adaptation and contextualisation, optimisation, organisation,

closing down. It is functionally integrated by one or more

Distributed Orchestration Components (DOC) and a dynamic

knowledge base consisting of a set of models and ontologies

and appropriate mapping logic and buses. DOCs can federate

via buses. The internal design details of the Orchestration

Plane can be found in [11].

B. Autonomic Management System (AMS)

A key advantage of the AutoI architecture is that it can

provide a programmable mix of isolation and sharing of

network resources. A key advantage of separating the control

and data planes is to provide increased isolation for an

application or set of applications.

Each Autonomic Management System (AMS) is part of the

Management Plane (described later) and it includes interfaces

to a dedicated set of models and ontologies and interfaces to

one or more Distributed Orchestration Components. Mapping

logic enables the data stored in models to be transformed into

knowledge and combined with knowledge stored in ontologies

to provide a context-sensitive assessment of the operation of

one or more virtual resources.

Another set of interfaces

enables framework services,

such as directory services,

naming, federation, and

others, to be used by the

AMS.

C. Distributed Orchestration
Component (DOC)

The Distributed

Orchestration Component

(DOC) (*) provides a set of

framework network services.

Framework services provide

a common infrastructure that

enables all AMSs controlled

by the Orchestration Plane to

have (un)plug-and-play

behaviour. Applications

compliant with these

framework services share

common security, metadata,

administration, and

management services. The

Mapping Mapping

Virtualisation

Plane

Semantic Bus

Federation Services

Models and
Ontologies

Distributed

Orchestration

Component

Intra-System View

O
th

e
rs

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

Fe
d

e
ra

ti
o

n
Fe

d
e

ra
ti

o
n

N
e

g
o

ti
a

ti
o

n
N

e
g

o
ti

a
ti

o
n

vCPI vCPI vCPI

vSPI

vCPI vCPI

Physical Resource

Component

Inter-System View

End-User Composite

Virtualised Services

Orchestration

Plane

End-User

Virtualised

Services

System View

O
th

e
rs

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

F
e
d

e
ra

ti
o

n
F

e
d

e
ra

ti
o

n

N
e
g

o
ti

a
ti

o
n

N
e
g

o
ti

a
ti

o
n

O
th

e
rs

O
th

e
rs

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

F
e
d

e
ra

ti
o

n
F

e
d

e
ra

ti
o

n
F

e
d

e
ra

ti
o

n
F

e
d

e
ra

ti
o

n

N
e
g

o
ti

a
ti

o
n

N
e
g

o
ti

a
ti

o
n

N
e
g

o
ti

a
ti

o
n

N
e
g

o
ti

a
ti

o
n

System View

O
th

e
rs

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

F
e
d

e
ra

ti
o

n
F

e
d

e
ra

ti
o

n

N
e
g

o
ti

a
ti

o
n

N
e
g

o
ti

a
ti

o
n

O
th

e
rs

O
th

e
rs

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

D
is

tr
ib

u
ti

o
n

F
e
d

e
ra

ti
o

n
F

e
d

e
ra

ti
o

n
F

e
d

e
ra

ti
o

n
F

e
d

e
ra

ti
o

n

N
e
g

o
ti

a
ti

o
n

N
e
g

o
ti

a
ti

o
n

N
e
g

o
ti

a
ti

o
n

N
e
g

o
ti

a
ti

o
n

Service Enablers Plane

User Interface Services

Business Goals

Customer Needs
Developer Interface

Operator Interface
Service

Lifecycle

Management

Lifecycle Management Services

Autonomic Management System

Management Plane

Knowledge Plane

Autonomic Management System

Management Plane

Knowledge Plane

3

DOC enables the following framework network services to the

AMSs under its control:

 Federation: each AMS is responsible for its own set of

virtual and non-virtual resources and management services

that it governs. Federation enables a set of domains to be

combined into a larger domain, where selected functionality of

each constituent domain contributes to the overall

functionality of the larger domain.

 Negotiation: each AMS advertises a set of capabilities (i.e.,

services and/or resources) that it offers for use by other

components in the Orchestration Plane.

 Distribution: this service enables tasks to be split into parts

that run concurrently on multiple AMS controlled by a DOC,

or even across multiple DOCs. This function ensures that

AMSs with different implementations and functionality can

collaborate.

 Governance: this service enables each AMS to be able to

operate in an individual, distributed, or collaborative mode.

Business goals, service requirements, context, capabilities and

constraints are all considered as part of the decision making

process.

 Intra-System View: this service provides an overall,

composite view of the system as seen by the components

within a DOC.

 Inter-System View: this service provides an overall,

composite view of collaborating DOCs, as in a multiple

domain system.

D. Service Enablers Plane Overview

The Service Enablers Plane (SP) consists of functions for

the automatic (re)deployment of new management services,

protocols as well as resource-facing and end-user facing

services. It includes enablers to allow code to be executed on

the network entities. This functionality is implemented by the

ANPI (Autonomic Network Programming Interface) (*)[10],

which supports large scale network programmability in

deployed virtual networks. The safe and controlled

deployment of new code enables new services to be activated

on demand, and to be made available to both, management

and orchestration planes for the benefit of service-awareness.

This approach has the following advantages:

 Automatic service deployment allowing a significant

number of new services to be offered on demand.

 Flexible network configuration capabilities.

 Special management functions and services can be easily

enabled locally for testing purposes before they are

automatically deployed network-wide.

 Flexible support for service migration, both for consumer-

facing and the resource-facing services.

E. Knowledge Plane Overview

The Knowledge Plane was proposed by Clark et al. [13] as

a new dimension to a network architecture, contrasting with

the data and control planes; its purpose is to provide

knowledge and expertise to enable the network to be self-

monitoring, self-analysing, self-diagnosing and self-

maintaining.

AutoI introduces a narrow functionality Knowledge Plane

(KP), consisting of models and ontologies, to provide

increased a

brings together widely distributed data collection, wide

availability of that data, and sophisticated and adaptive

processing or KP functions, within a unifying structure. This

brings order and meets the policy, scaling and functional

requirements of a global network. The main KP components

are a Context and Service Information Platform (CISP) (*)

[10] and ontologies, which enable the analysis and inferencing

capabilities. The CISP provides:

 information life cycle management (storage, aggregation,

transformations, updates, distribution) of all information and

context in the network addressing the size/scope.

 responsiveness to requests made by the AMS;

 triggers for the purpose of contextualisation of AMS

(supported by the context model of the information model);

 support for robustness enabling the KP to continue to

function as best possible, even under incorrect or incomplete

behaviour of the network itself;

 support of virtual networks and virtual system resources in

their needs for privacy and other forms of local control, while

enabling them to cooperate for mutual benefit in more

effective network management.

Logic

Self-Knowledge

Local Context

Life-cycleInput 1

Input N

Output 1

Output N

Control 1 Control P

Enviroment Global Context

Sensor 1 Sensor M

Autonomic Subsystem

Logic

Goals Knowledge

Local Context

Life-cycleInput 1

Input N

Output 1

Output N

Control 1 Control P

Enviroment Global Context

Sensor 1 Sensor M

Autonomic Subsystem

Logic

Goals Self-Knowledge

Local Context

Life-cycleInput 1

Input N

Output 1

Output N

Control 1 Control P

Enviroment Global Context

Sensor 1 Sensor M

Autonomic Subsystem

Collect Analyse

Decide

Change Enforce

Fig. 2. Autonomic Control Loops

F. Management Plane Overview

The Management Plane (MP) governs all virtual resources,

performing decisions on their optimal placement, function and

continuous migration. The functionality of the MP is

implemented by the AMS (*). The MP functionality is subject

to constraints determined by the Orchestration Plane. The MP

is designed to meet the following objectives and functionality:

 Embedded (Inside) Network functions: The majority of

management functionality is embedded in the network and it

is abstracted from the human activities. The AMSs run on

execution environments on top of virtual networks and

systems, which run on top of all current network (i.e. fixed,

wireless and mobile networks) and service physical

infrastructures.

 Aware and Self-aware functions: it monitors the network

and operational context as well as internal operational network

state in order to assess if the network current behaviour serve

4

its purposes.

 Adaptive and Self-adaptive functions: It triggers changes in

network operation (state, configurations, etc.) as a result of

changes in network and service context.

 Automatic self-functions: It enables self-control (i.e. self-

FCAPS, self-*) of its internal network operations, functions

and state. Manual/external input is provided in the setting-up

of the business goals and other unavoidable functions.

 Extensibility functions: It adds new functions without

disturbing the rest of the system (Plug and Play dynamic

programmability of management functions and services). The

AMSs that implement the functionality of the MP and the KP

are designed to follow the autonomic control loops (collect,

analyse, decide, enforce, change [14]) depicted in Figure 2.

G. Virtualisation Plane Overview

One of the key requirements that differentiate AutoI from

other systems is its emphasis on virtualisation of resources and

services. AutoI uses platform virtualisation to provide virtual

services and resources. Platform virtualisation separates an

operating system from its underlying platform resources;

resource virtualisation abstracts physical resources into

manageable units of functionality. For example, a single

physical resource can appear as multiple virtual resources

(e.g., the concept of a virtual router, where a single physical

router can support multiple independent routing processes by

assigning different internal resources to each routing process);

alternatively, multiple physical resources can appear as a

single physical resource (e.g., when multiple switches are

t the

set of stacked switches appears as a single virtual switch).

AutoI extends contemporary virtualisation approaches and

aims at building an infrastructure in which virtual machines

can be dynamically relocated to any physical node or server

regardless of location, network and storage configurations and

administrative domain.

The Virtualisation Plane (VP) consists of software

mechanisms to treat selected physical resources as a

programmable pool of virtual resources that can be organised

by the Orchestration and Management Planes into appropriate

sets of virtual resources to form components (e.g., increased

storage or memory), devices (e.g., a switch with more ports),

or even networks. The organisation is done in order to realise

a certain business goal or service requirement. Two special

interfaces, called the vSPI and the vCPI (Virtualisation

System Programming Interface) and Virtualisation

Component Programming Interface, respectively assess the

basic functionality of the Virtualisation Plane, for which a

brief description is given hereafter.

H. vSPI (Virtualisation System Programmability Interface)

-

resources that a particular Orchestration Plane governs, and is

responsible for orchestrating groups of virtual resources in

response to changing user needs, business requirements, and

environmental conditions. The low-level configuration (i.e.,

-

vCPI, as explained in the next section.

The vSPI (*) is responsible for determining what portion of

a component (i.e., set of virtual resources) is allocated to a

given task. This means that all or part of a virtual resource can

be used for each task, providing an optimised partitioning of

virtual resources according to business need, priority and

other requirements. Composite virtual services can thus be

constructed using all or part of the virtual resources provided

by each physical resource.

-

resources that it governs. This is different from the vCPI,

-

that it configures. For example, the vSPI collects global

information about available physical resources. When an

AMS receives requests to instantiate a new virtual resource it

contacts the vSPI to determine which physical resources can

be used. The vSPI then instructs the vCPI to instantiate the

virtual resources on the correct physical resource for such

purpose. The vSPI informs the AMS when the virtual resource

is ready for use, and the vCPI informs the AMS when each

virtual resource has been successfully reconfigured.

I. vCPI (Virtualisation Component Programming Interface)

The vCPI (virtual Component Virtual Interface) (*) is a

modular, scalable and communication protocol-agnostic,

system for monitoring and managing virtual resources. It

operates locally; for each component of a physical network

there is an embedded vCPI that is operating with third-party

software by using a request/response mechanism. It is used for

constructing, modifying and managing virtual networks (VN)

consisting of virtual links (VL), virtual routers (VR) and

routing services (RS). This enables the Autonomic

Management System (AMS) to manage the physical resource,

and to request virtual resources to be constructed from that

physical resource via the vCPI. The AMS sends device-

independent commands to the vCPI, which are translated into

device- and vendor-specific commands that reconfigure the

physical resource and manage the virtual resources provided

by that physical resource. The vCPI also provides monitoring

information from the virtual resources back to the AMS that

controls that physical resource. Note that the AMS is

responsible for obtaining management data describing the

physical resource.

The vCPI is responsible for providing dynamic

management data to its governing AMS that states how many

virtual resources are currently instantiated, and how many

additional virtual resources of what type can be supported.

The vCPI needs to be aware of the structural information of

the relations among virtual resources, and therefore, a

discovery mechanism is included to inspect the contents of a

physical component and map it to a data structure.

More details of the AutoI open source software defined

network components that integrate the five-plane AUTOI

approach introduced earlier are provided in [10] [12].

5

III. PRACTICAL APPROACH AND VALIDATION RESULTS

This section tests the AutoI framework and the open source

components, which were installed and run on 3 physical

testbed networks ranging from 4 to 5,000 nodes. It provides

relevant results emphasising in the creation of virtual

networks, service deployment and scalability aspects. The

section concentrates on wired physical networks. The

interested reader will find a description of the AutoI support

for mobile users in [10].

A. Creation of Virtual Networks

In AutoI, virtual networks can be set up by means of

administrative decisions, programmed at a given time,

triggered by events like threshold crossings, or they can be

created on demand.

This section demonstrates the AutoI context-aware, on-

demand, scalable creation of functional virtual networks. The

term functional implies that virtual networks are ready to

support application-services deployment, having all

networking-services (e.g. routing services) deployed and

configured properly. For this purpose we have used a physical

infrastructure consisting of four physical components (2 Quad

Core AMD Opteron 2347H CPUs and 32 GB RAM, running

Linux, XEN or Qemu and Open SSH).

In this test setting the autonomic collect part (see

figure 2 for details of this loop) is exercised by the Context

Information Services Platform (CISP) that manages context

information and triggers notifications about changes

corresponding to demand requests for virtual networks.

Demand request correspond to end-points of connectivity with

specific QoS constraints (e.g. throughput). CISP nodes are

deployed in each physical node and also in each virtual router

as soon as it is created. The collected data is made available to

all AutoI components along the life cycle of the virtual

infrastructure.

The autonomic analyse and decide parts are

implemented by the AMSs and the DOCs, which analyse

context changes (e.g. end point network requests) and

evaluate the conditions under which context changes occur,

and eventually decide on appropriate actions that would fulfil

their business goals. Business goals in this test case

correspond to specific characteristics of the to-be-created

virtual network topology. In this test scene a network

topology that emulates the current (2010) topology of the

German X-WiN network [15] was used. Such network

consists of 60 nodes interconnected by 80 links, representing

sites all over Germany as graphically depicted in Figure 3.

The virtual routers are spread among the four physical

components, 15 VRs are created on each component.

Decisions are taken and result in concrete configurations that

will need to be enforced via the vSPIs, vCPIs and ANPI

platforms.

Fig. 3. 60-Virtual Router and 80-Virtual Link Virtual Network Created in

Four-Component-physical Test-bed

The autonomic s enforce parts are assessed by the

vSPIs, vCPIs and ANPIs. They are aimed at executing the

appropriate commands to configure the Virtual Network

(VN). In practical terms, creating a VN is a two-step process:

1) Creation/start-up of Virtual Routers (VRs) and creation of

Virtual Links (VLs) attached to the former (enforced by the

vSPIs and vCPIs.

2) Deployment of the networking-facing services (e.g. routing

services) that would support the virtual network (enforced by

the ANPIs.

A VL exists between two VRs and consists of three

segments: one is connecting the physical hosts, and the other

two are connecting each VR with its host. All three segments

are aggregated to a VL by two software bridges (driven by

two vCPIs). Therefore, for each VL (between VR1 and VR2

for example) the following operations are conducted:

a) Create the central segment (tunnel) between the physical

components (optional if the linked routers are hosted on the

same physical component).

b) Add a virtual network interface to both VR1 and VR2.

c) Bridge each virtual interface to the corresponding physical

component to create the first link-segments.

d) Deploy the networking facing-services in VR1 and VR2.

To start up a VR, the vCPI uses hypervisor commands to

create a virtual router from a template image. This template is

instantiated with individual configuration options, like the

initial network address or the amount of virtual hardware to be

assigned. The tunnels to instantiate VLs are created using

OpenSSH. Tunnels that are using the same physical Network

Interface Card (NIC) share the available bandwidth among

themselves. Statically assigning a guaranteed amount of

bandwidth for a VL is possible by using traffic control

mechanisms as demonstrated in [16].

6

+ +
+ +

+ + +
+

+ + + ++

+

+ +x x
x

x x
x x x x x x x x x

x

x

Fig. 4. Start-up Times of 60 Virtual Routers Created in Four-Component

physical Test-bed

The AMSs and DOCs in this test scenario issue commands

to the vCPIs sequentially, which in turn have processed them

(in parallel when possible). The start-up times for the Virtual

Routers (VRs) are depicted in Figure 4, where the most

relevant behaviour is that the start-up times are stable for an

increasing number of VRs in each physical component. In this

execution run each VR needs in average 25 seconds to be

started. After the routers are started, the AutoI solution reacts

to this context-change (new virtual resources available) and

issue appropriate commands to the vCPIs to instantiate the

Virtual Links (VLs). The vCPIs enforce the commands in the

four components of our test-bed in parallel when possible,

using the three-segment approach described earlier. Again, the

most relevant behaviour is that the start-up times of each VL

are stable for an increasing number of VLs in the four

physical components. The average time to construct a VL is

about 5 seconds with a little variation between the minimum

and maximum values as graphically depicted in Figure 5.

+x + + +
+

+ + + + +
+

+ + + + +
+ + +

+ +
+ +

+ + +x x x x x
x

x x
x x x

xx x x x x x

+
x

Fig. 5. Virtual Link Creation Times in 4-Component-physical Test-bed

Fig. 6. Round-Trip Times in 60 Router- 80 Link Virtual Network

As mentioned earlier, the a

assessed by the ANPIs are devoted to discover and deploy the

networking-facing services (i.e. routing) that will make such

network operational. The round-trip times between each

Virtual Router were measured to test that the network is

operational. The minimum, maximum and mean values of 5

measurements are presented in Figure 6. The most important

behaviour here is that the average round-trip time appears to

be linear with the number of virtual hops, with a moderate

slope and values below 40 ms in our test-bed.

B. Service Deployment Results

This section demonstrates the AutoI context-aware, on-

demand, service deployment capabilities over virtual

networks. Similarly as in our last test scene, the autonomic

collect part is exercised by the Context Information

Services Platform (CISP) that manages context information

and triggers notifications about changes corresponding to

service requests for virtual networks, availability of services,

resource usage information, etc.

analyse and decide parts are

implemented by the AMSs and the DOCs, which analyse

context changes (e.g. service requests) and evaluate the

conditions under which context changes occur, and eventually

decide on appropriate actions that would fulfil their business

goals. Business goals in this test case would have an impact

on the level of service deployment that would be eventually

enforced. For example, Local Service support implies that a

service would be deployed in a single virtual element, whereas

Domain or Global support would imply that a set of services

be deployed by network operators to a specific area of the

virtual network.

enforce part is assessed by the

Autonomic Network Programming Interface (ANPI), which

executes a number of atomized autonomic processes in each

node of the network when necessary. The main AutoI

components enforcing this service deployment test are

graphically depicted in Figure 7.

The ANPI maintains service repositories with available

tested service code. Services are discovered by the ANPIs and

7

they are available for download from repositories located in

the virtual network.

Service Repository

Client
Client

CISP

CISP

CISP

CISP

CISP
CISP

CISP

CISP

ANPI &

Services

ANPI &

Services
ANPI &

Services

ANPI &

Services

ANPI &

Services

ANPI &

Services

ANPI &

Services

Fig. 7. Basic Virtual Network with AutoI Service Deployment Support

ANPI daemons deploy and manage the lifecycle of services.

There is one ANPI running in each virtual component of the

deployed network. When the ANPI receives a command from

an AMS and/or DOC component to deploy or to migrate a

specific consumer-facing and/or the resource-facing service, it

analyses such information, and this triggers a new decision

making process in the ANPI nodes. The type of service,

characteristics, availability of services in the network, etc., is

information that is taken into account to decide the best

deployment steps.

The ANPI communicates through the Context and

Information Service Platform (CISP) to expose and notify

service deployment operations and services states.

Following on the described test case, the action of a client

requesting a streaming service in the network of Figure 7 is

emulated. AutoI creates a new virtual router on demand and

attaches it to the new client. The ANPI discovers the location

of the appropriate streaming services to drive the

configuration of the required networking services (e.g. routing

services in this case) and supporting services (e.g. context,

monitoring) required. In each router of the network (now with

8 virtual routers), the ANPI deploys a basic routing service.

The Figure 8 shows the time taken (bottom part) for the

deployment of 8 ANPIs (continuous line), and the time taken

(dotted line) to deploy 12 services (networking-facing, and

application-facing) required to provision an end-to-end

streaming service over the deployed virtual infrastructure. It is

worth mentioning that once all ANPIs are deployed there is a

small gap of time taken by the AutoI systems to find and

download the required services and correlate appropriate

context-changes. After this, the services are deployed,

configured and started in about 3 minutes as depicted at the

right part of Fig. 8.

Physical resources have limited capacities in terms of

bandwidth, CPU, memory, etc., which in turn are shared

among virtual resources. Lack of physical resources is

eventually manifested as service degradation. AutoI reacts

effectively to service degradation with coordinated service

migration actions, in which, all virtual networking services

and application services are actually re-configured in

appropriate physical resources. The interested reader will find

extensive results of the Autoi migration support in [10]. The

remaining of the paper will focus on the scalability support.

0

13

4

9

0

13

4

9

Time

14:57:38

15:01:58

15:06:18

15:10:38

15:14:58

15:19:19

15:23:39

N
u

m
b

er
o

f
A

N
P

I s
ta

rt
ed

N
u

m
b

er
o

f
Se

rv
ic

es
st

ar
te

d

Fig. 8. Deployment of ANPIs (continuous) and Deployment of Services

(dotted)

C. Scalability Results on Network Virtualisation and Service
Deployment

Large scale validations were performed in an experimental

test-bed (Grid5000 test-bed [17]) composed by a cluster of 10

separate sites located in France, where all AutoI components

were installed. The test-bed supports 5000 cores located on

various clusters connected with 10G links.

This section analyses the scalability of the AutoI solution

for network virtualization and service deployments at large

scale, in similar set ups as presented for mid-scale validations

in sections III.A and III.B.
TABLE I

VIRTUAL INFRASTRUCTURE DEPLOYMENT FROM 10 TO 150 VR

Deployment of
VR

10PM *
1VR = 10
VR

10PM * 3VR
= 30 VR

50PM * 1VR
= 50 VR

50PM * 3VR
= 150 VR

Lyon 55s 3m18s 1m38s 3m42s

Bordeaux 57s 3m7s 1m14s 4m41s

Table I shows the result of the deployment of 10 to 150

Virtual Routers (VR) on 10 to 50 Physical Machines (PM) on

two sites of the test-bed. It is worth mentioning that the

deployment of virtual machines depends on the number of

Virtual Routers to deploy more than depending on the number

of Physical Machines. Observed results are closely similar

between Grid5000 sites. Table I shows the results obtained

from two sites (Bordeaux and Lyon).

For service deployment tests, target topologies like chains

or trees were generated with the means to allow analysis of

observed results. Figure 9 presents the service deployment

results of a virtual network with 110 virtual routers in a chain

topology in the Grid5000 test-bed. The deployment of 110

ANPI daemons with its activation occurred in 30 seconds

(continuous line in Fig. 9), while the deployment of 110 small

sized services (4.4 Kbytes) required only 8 seconds (dotted

line in Fig. 9).

8

0

121

40

81

Time

1
4

:3
0

:1
2

1
4

:3
0

:2
3

1
4

:3
0

:3
5

1
4

:3
0

:4
7

1
4

:3
0

:5
9

1
4

:3
1

:1
0

1
4

:3
1

:2
2

1
4

:3
1

:3
4

1
4

:3
1

:4
6

1
4

:3
1

:5
7

1
4

:3
2

:0
9

1
4

:3
2

:2
1

0

121

40

81

N
u

m
b

e
r

o
f

A
N

P
I

st
a

rt
e

d

N
u

m
b

e
r

o
f

S
e

rv
ic

e
s

st
a

rt
e

d

Fig. 9. Deployment of 110 ANPI (continuous) and 110 services (dotted)

Figure 10 presents the results of 220 services deployment

on 110 virtual routers located in one virtual network with tree

topology. This scenario shows that service deployment can

occur at any time during the life of components provided that

the ANPIs are already deployed in each virtual router. The

deployment of the first 110 services occurred in 8 seconds

(first part of the dotted line in Fig. 10). After a small gap the

remaining 110 services were progressively deployed in about

9 minutes.

0

242

81

161

0

242

81

161

Time

1
5

:4
7

:5
9

1
5

:4
8

:5
2

1
5

:4
9

:4
6

1
5

:5
0

:3
9

1
5

:5
1

:3
3

1
5

:5
2

:2
7

1
5

:5
3

:2
0

1
5

:5
4

:1
4

1
5

:5
5

:0
7

1
5

:5
6

:0
1

1
5

:5
6

:5
4

1
5

:5
7

:4
8

N
u

m
b

e
r

o
f

A
N

P
I

st
a

rt
e

d

N
u

m
b

e
r

o
f

S
e

rv
ic

e
s

st
a

rt
e

d

Fig. 10. Deployment of 110 ANPI with 220 services

IV. TECHNICAL DISCUSSION AND LESSONS LEARNT

One of the primary arguments for setting up multiple virtual

infrastructures is the possibility to support networks with

different network protocols on the same hardware. However,

it is necessary to develop and provide the means to also

manage the virtual network elements, in particular the

configuration of the virtual network layer. In order for

network virtualisation techniques to be a key component for

next generation Internet, network virtualisation interfaces (like

the vCPI and vSPI in our architectural model) need to be able

to configure virtual network interfaces, while at the same time

need to remain protocol-agnostic and open to future Internet

protocol stacks.

Stability of virtual networks is an important issue that

deserves special attention. Several instability problems were

encountered during our experimental research. For example,

when trying to create a number of coexisting virtual networks,

each with 6 virtual routers distributed over four physical

components, instability problems occurred when going

beyond 15 virtual networks. Beyond this point, the creation of

both virtual links and virtual routers became unpredictable.

From our numerous experiments the conclusion drawn is that

current virtualisation technologies are not built to cope with

the dynamicity and load expected in future virtualised network

environments. Additional implementation effort is needed to

bring both hypervisor and virtual link technologies to a level

where arbitrary creation of virtual networks becomes possible.

Programmability in network and services encompasses the

study of decentralized enablers for dynamic (de)activation and

reconfiguration of new/existing services, including

management services and network components. AutoI has

taken the challenge to enable trusted parties (users, operators,

and service providers) to activate management-specific

service and network components into a specific platform.

Dynamic programming enablers will be created as executable

elements to create the new functionality at runtime. Network

and service enablers for programmability can therefore realise

the capabilities for flexible management support.

Large scale validation experiments were performed to

validate the efficient support of AutoI service deployment

support. Due to the high quality (in terms of latency and

throughput) of the test-bed, time required to deploy services

was extremely short. However, deploying services in less

reliable infrastructures requires more fault tolerant

approaches.

V. RELATED WORK

 The last decade has seen a tremendous interest for all

aspects of the future Internet (FI). As a comprehensive survey

would require more than a single paper, this section describes

key initiatives in USA and Europe contributing to the

development of the Future Internet

From the USA perspective, the National Science

Foundation (NSF) supports four big projects. Named Data

Networking [18] is aiming at an approach to identify the

content to be supported by the Future Networks by itself

instead of the locations where it resides. Mobility First [19] is

looking at the inherent challenges of mobility and in particular

to the use of opportunistic networking to support

communications between end points. NEBULA [20] is aiming

at a cloud computing architecture as a means to guarantee

always available services. Finally, eXpresive Internet

Architecture [21] addresses the growing diversity of network

use models, the need for trustworthy communication, and the

growing set of stakeholders who coordinate their activities.

The scope of all these projects is much broader and

concentrated on issues different than the ones presented in this

paper. None of them use an orchestration plane to coordinate

autonomic systems and do not explicitly mention the

autonomic networking paradigm in support of service

deployment and maintenance.

From the European perspective, efforts are driven by the

EC and its Future Internet Assembly (FIA). The FIA is

supported by researchers working on approximately thirty

projects of dealing with aspects of the Network of the Future.

Closely related to our objectives we can mention TRILOGY,

SOCRATES, 4WARD and Universal projects..

9

The focus of TRILOGY [22] is on the development of the

generic control functions of the network. These control

functions deal with routing mechanisms, resource control and

social and commercial control. Instead our approach

concentrates on a management plane in support of service

deployment.

The scope of the SOCRATES project [23] is the bottleneck

problems created by the mobile access network and proposes

self-* mechanisms to create a solution. In that sense our

approach adopts the same conceptual solution because the

autonomic Internet as we have conceived it has to make

extensive use of self-* mechanisms. Nevertheless the AutoI

autonomic approach goes beyond the access network and

makes it an integral part of the fixed network as well.

Furthermore, the mobile technologies considered in AutoI are

not related to any particular technology (e.g. LTE) as in

SOCRATES.

4WARD [24] makes use of paravirtualization systems like

AutoI approach to virtualize routers and network links. The

most important similarity is the management approach; both

approaches adopt the autonomic paradigm. Nevertheless the

main difference is in the architectural approach. In fact,

4WARD -

solution, i.e. embedding the management functionality in the

same managed network device, which also makes use of a

hierarchy from the operator management guidelines to the

enforceable actions in the managed network devices. Instead,

AutoI creates a multi-level hierarchy involving the service

plane, the distributed orchestration elements and the

autonomic management systems, which take care of one or

many devices as necessary. From the architectural point of

view the AutoI approach is more evolutionary from the

current distributed management systems. The management

functions are separated from the data forwarding and control

functions and are not necessarily associated to the network

device, but can be shared by different network devices.

Separating the management activities in planes and not

associating management functions to managed devices makes

our solution scalable and easy to deploy in current network

infrastructures.

UniverSelf [25] is meant to create a framework federating

different self-management approaches to make the Future

Internet a global autonomic management system.

VI. CONCLUDING REMARKS

This work has presented the design and validation results of

an open-software defined network infrastructure (i.e. a

Network Cloud) that enables a fast and scalable composition

of services in an efficient manner, and the execution of these

services in an adaptive way taking into account better shared

network resources provided by a virtualized network

substrate.

Current communication networks are composed of a set of

heterogeneous resources. Virtualising these resources has

served two purposes: Managing the heterogeneity through

introduction of homogeneous virtual resources and enabling

programmability of central network elements. The flexibility

gained through this approach helps to adapt the network

dynamically to both unforeseen and predictable changes in the

network.

The Autonomic Internet service deployment approach has

demonstrated that dynamic programming can be used to

enable creating new functionality at runtime over virtual

infrastructures. Executable service code can be injected and

activated into the virtual systems elements in runtime to give

higher degree of flexibility in the deployment of services in

the future networks.

In addition, the adopted approach has revealed its

scalability when large scale testbeds like Grid 5000 are used.

Nevertheless, scalability in such a complex and multitier

system like AutoI requires much more extensive testing than

the experiments reflected in this paper. We mean for instance

experiments within scenarios stressing specific planes or

components of planes. Considering the AutoI architecture this

would likely yield to tens of scenarios. This paper reflects the

results of scalability tests in one particular scenario. Then we

have to emphasize that our system scales well under the

conditions of this particular scenario and that by no means

these results can be generalized to different scopes or

situations. Additional testing is in fact part of a challenging

future work.

ACKNOWLEDGMENT

This work was undertaken in the context of the FP7-EU

AUTOI project and the MCYT TEC2009-14598-C02-02.

REFERENCES

[1] -
Recommendation ITU-T - http://www.itu.int/en/ITU-
T/focusgroups/fn/Pages/Default.aspx

[2] B., Rochwerger, et al. "An Architecture for Federated Cloud
Computing" in Cloud Computing: Principles and Paradigms (eds R.
Buyya, et al), John Wiley & Sons, Inc., Hoboken, NJ, USA. 2011

[3] Y. Wang, et al. "Virtual routers on the move: live router migration as a
network-
communication SIGCOMM 2008

[4]
Computer Networks. vol. 54, pp. 862 876, April 2010.

[5] T. Anderson et al.
41, April 2005.

[6]
March

2005
[7] A. Galis et al. Programmable Networks for IP Service Deployment

Artech House Books, 2004
[8]

ns Magazine, vol.
47, no. 7, 2009

[9] M. Yu et al.

Communication Review, vol. 38, no. 2, pp. 17 29, 2008
[10] EU IST Autonomic Internet Project Web Site http://ist-autoi.eu.
[11] D. F. Macedo et al. The Autonomic Internet Approach for the

Orchestration of Next-Generation Autonomic Networks Journal Annals
of Telecommunications, Ed. Springer, April 2011

[12] J. Rubio-Loyola et al. "Platforms and Software Systems for an
-10 Miami FL, USA

10

[13] D.D., Clark, C., Partridge, J.C. Ramming, J.T. Wroclawski A
knowledge plane for the interne IEEE SIGCOMM 2003

[14] AG Ganek, TA Corbi The dawning of the autonomic computing era
IBM Systems Journal, 2003, 42(1):5 18

[15] J. Pattloch et al. X-WiN: The New German National Research and
Education Network Praxis der Informationsverarbeitung und
Kommunikation. Volume 29, Issue 1, Pages 50 53, ISSN 0930-5157

[16] A. Berl et al. Using System Virtualization to Create Virtualized
Networks Journal Electronic Communications of the EASST, 17:1--12
2009, ISSN: 1863-2122

[17] Grid5000 TestBed www.grid5000.fr/
[18] Named Data Networking, http://www.named-data.net/index.html
[19] Mobility First, http://mobilityfirst.winlab.rutgers.edu/
[20] Nebula, http://nebula.cis.upenn.edu/
[21] eXpressive Internet Architecture, http://www.cs.cmu.edu/~xia/
[22] -Architecting the Internet: An

Hourglass control Architecture for the Internet, Supporting Extremes of
trilogy-

project.org/
[23] -Optimisation and self-

-socrates.org
[24] EU IST FP7 4WARD Project, http://www.4ward-project.eu/
[25] EU IST FP7 UNIVERSELF Project Realizing Autonomics for Future

Networks http://www.univerself-project.eu

